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The DNA-Based Algorithms of Implementing
Arithmetical Operations of Complex Vectors on a

Biological Computer
Weng-Long Chang , Athanasios V. Vasilakos, and Michael Shan-HuiHo

Abstract—Here we show that arithmetical operations of complex
vectors can be implemented by means of the proposed DNA-based
algorithms.
Index Terms—DNA-based algorithms, molecular computing.

I. INTRODUCTION

F ROM [1], [2], MANY biological algorithms of solving
different problems were introduced. From [3], molec-

ular algorithms of implementing biomolecular databases were
proposed. From [4], quantum algorithms of implementing
biomolecular solutions of the vertex cover problem were pro-
posed. Our major contributions in this journal paper are as
follows.
• We show that addition of complex vectors and closure ax-
ioms of addition of complex vector can be implemented by
means of biological operations and DNA strands.

II. THE FORMAL MODEL OF COMPUTATION

DNA (deoxyribonucleic acid) in [1], [2] includes polymer
chains which are commonly regarded as DNA strands. Each
strand may be made of a sequence of nucleotides, or bases,
attached to a sugar-phosphate “backbone.” The four DNA
nucleotides are adenine, guanine, cytosine, and thymine, com-
monly abbreviated to A, G, C, and T respectively. The following
biomolecular operations will be applied to develop molecular
algorithms of implementing arithmetical operations of complex
vectors. Their implementation can be found in [1].
Definition 2-1: Given set

and a bit , the biomolec-
ular operation “Append-Head” appends onto the
head of every element in set . The formal rep-
resentation is written as

.

Manuscript received May 13, 2015; revised July 31, 2015; accepted
September 29, 2015. Date of publication October 26, 2015; date of current
version January 07, 2016. This work was supported by National Science
Foundation of Republic of China under Grants 103-2622-E-151-013-CC3.
Asterisk indicates corresponding author.
*W.-L. Chang is with the Department of Computer Science and Information

Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung
807, Taiwan (e-mail: changwl@cc.kuas.edu.tw).
A. V. Vasilakos is with the Department of Computer Science, National Tech-

nical University of Athens, Greece (e-mail: vasilako@ath.forthnet.gr).
M. Ho is with Computer Center and Institute of Electrical Engineering, Na-

tional Taipei University, Taiwan (e-mail: MHoInCerritos@yahoo.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TNB.2015.2492568

Definition 2-2: Given set
and a bit , the biomolec-

ular operation, “Append-Tail,” appends onto the
end of every element in set . The formal rep-
resentation is written as

.
Definition 2-3: Given set

, the biomolecular operation “ ”
sets to be an empty set and can be represented as “ .”
Definition 2-4: Given set

, the biomolecular operation
“ ” creates a number of identical copies of
set , and then “ .”
Definition 2-5: Given set

and a bit, , if the value
of is equal to one, then the biomolecular ex-
tract operation creates two new sets,

and
. Otherwise, it produces another two new sets,

and
.

Definition 2-6: Given sets , the biomolecular
merge operation, .
Definition 2-7: Given set

, the biomolecular operation “ ”
returns true if . Otherwise, it returns false.
Definition 2-8: Given set

, the biomolecular operation “ ”
describes any element in . Even if contains many different
elements, the biomolecular operation can give an explicit de-
scription of exactly one of them.

III. THE DNA-BASED ALGORITHMS OF IMPLEMENTING
ARITHMETICAL OPERATIONS OF COMPLEX VECTORS

The following subsections are applied to show how arith-
metical operations of complex vectors are implemented by the
proposed DNA-based algorithms that are made of biological
operations and DNA sequences.

A. The DNA-Based Algorithms of Implementing Addition of
Complex Vectors and Closure Axioms of Addition
It is assumed that a nonempty set is equal to

. It is supposed that the values of
and in can be subsequently represented as two signed
binary number, and
for . and represent positive sign and
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and represent negative sign. It is assumed for
that and are their

integer, and and are their fraction.
From [1], [2], for every bit and and

, two distinct DNA sequences are designed to encode
them. It is assumed that and denote their value to
be 1, and defines their value to be 0, and
and defines their value to be 0 or 1.
It is supposed for that two binary numbers

and represent, respectively,
the sum of the real part and the imaginary part to the th element
in and that are any element in . and rep-
resent positive sign, and and represent negative
sign. It is assumed that and denotes their value to be
1, and and defines their value to be 0. The following
DNA-based algorithm, Algorithm 3-1, is used to implement
addition of complex vectors and closure axioms of addition. In
Algorithm 3-1, the initial state of each tube is set to an empty
tube.

Algorithm 3-1: Implement addition of complex vectors and
closure axioms of addition.

(1) .
(2) .
(3) For down to 1

(3a)
.

(3b) .
(3c)

.
(3d)

.
(3e) .
(3f)

.
(3g) .
(3h)

.
(3i) .
(3j) .

EndFor
(4) For to

(5) For to
(5a) and .
(5b) and .
(5c) and .
(5d) and

.
(5e) and .
(5f) and .
(5g) If " then

(5h) .
(5i) and .

(5j) ElseIf " then
(5k) .
(5l) and .

(5m) ElseIf " then
(5n) .
(5o) and .

(5p) ElseIf " then
(5q) .
(5r) and .

EndIf
EndFor

EndFor

(6) If " then
(6a) .

EndIf
EndAlgorithm

Theorem 3-1: Algorithm 3-1 can be used to implement addi-
tion of complex vectors and closure axioms of addition.

Proof: After the first execution of Step (1) and Step (2)
is implemented, tube contains DNA sequences encoding all
of the elements in and tube contains DNA sequences en-
coding the real part and the imaginary part of and . Next,
after the th execution of Step (3a) is implemented, two operands
in are positive real values, two operands in are nega-
tive real values, in the absolute value of the first posi-
tive operand is greater than or equal to the absolute value of the
second negative operand, in the absolute value of the first
positive operand is less than the absolute value of the second
negative operand, in the absolute value of the first neg-
ative operand is greater than or equal to the absolute value of
the second negative operand and in the absolute value of
the first negative operand is less than the absolute value of the
second positive operand.
Next, after the th execution of Step (3b) through Step (3d)

is implemented, the required computation for their th elements
in the imaginary part of and in , , , ,

, and is completed. Next, the th execution of Step
(3e) pours their contents into . Next, similar computation to
the real part of and is completed by means of implementing
the th execution of Step (3f) through Step (3j). Next, each exe-
cution of Step (5a) through Step (5f) yields different tubes with
different DNA strands. Next, each execution of Step (5g) through
Step (5r) removes illegal DNA strands and reserves legal DNA
strands. Finally, DNA sequences in give the answer of sat-
isfying closure axioms. Next, the execution of Step (6) and Step
(6a) completes the process of reading the answer(s). Therefore,
it is inferred thatAlgorithm 3-1 can be applied to implement ad-
dition of complex vectors and closure axioms of addition.

B. Constructing Molecular Solutions to Domain and Range
of Closure Axioms of Addition
The following DNA-based algorithm, , is used to

construct molecular solutions of a nonempty set denoted in
Section III-A. The notations used in are denoted in
Section III-A. The first parameter is an empty tube.

Procedure
(1) For to

(1a) .
(1b) .
(1c) .
(2) For down to 1

(2a) .
(2b) .
(2c) .
(2d) .

EndFor
(3) For down to 1

(3a) .
(3b) .
(3c) .
(3d) .

EndFor
EndFor
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(4) For to
(4a) .

EndFor
EndProcedure

Lemma 3-1: The DNA-based algorithm, , can be ap-
plied to construct molecular solutions to domain and range of
closure axioms of addition.

Proof: Please refer to the proof of Theorem 3-1.

C. Constructing Molecular Solutions to Any Two Elements
With p-Tuples of Complex Numbers

It is supposed that
and , where
and , , and are real numbers for

. It is supposed that the value of in and in
can be subsequently represented as two signed binary numbers,

and for .
and represent positive sign, and and
represent negative sign. It is assumed for

that and are their integer and
and are their fraction. It is also

supposed that the value of in and in can be also
represented as two signed binary numbers,
and for . and
represent positive sign, and and represent
negative sign. It is assumed for that
and are their integer, and and

are their fraction. To and ,
it is assumed that , , , , , ,

and denote their values to be one and zero. The
following DNA-based algorithm, , is used to
construct molecular solutions of and . The first parameter
is an empty tube.

Procedure
(1) For to 1

(2) For to
(2a) .

EndFor
(3) For to

(3a) .
EndFor

EndFor
(4) For to 1

(5) For to
(5a) .

EndFor
(6) For to

(6a) .
EndFor

EndFor
EndProcedure

Lemma 3-2: The DNA-based algorithm, ,
can be applied to construct molecular solutions of and .

Proof: Please refer to the proof of Theorem 3-1.

D. Constructing Parallel Comparators of Complex Numbers

The following first DNA-based algorithm,

, is proposed to complete the
function of a parallel comparator of bits for the
imaginary part of complex numbers, and the following
second DNA-based algorithm,

, is also presented
to complete the function of a parallel comparator of bits
for the real part of complex numbers. When the two DNA-based
algorithms are called by Algorithm 3-1, molecular solutions
of and are in the first parameter, , the second parameter
through the seventh parameter are all empty tubes, and the
values of the eighth parameter and the ninth parameter are the
value of the index variable of the first single loop in Algorithm
3-1. Notations used in them are denoted in Section III-C.

Procedure

(1)
.

EndProcedure

Lemma 3-3: The DNA-based algo-
rithm,

, can be applied to
complete the function of a parallel comparator of bits for
the imaginary part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

Procedure

(1)
.

EndProcedure

Lemma 3-4: The DNA-based algorithm,

, can be employed to complete the function
of a parallel comparator of bits for the real part of
complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

E. Constructing a Parallel Comparator of Bits for the
Real Part and the Imaginary Part of Complex Numbers

The following DNA-based algorithm,

is proposed to complete the
function of a parallel comparator of bits for the real
part and the imaginary part of complex numbers. The content
from the first parameter to the ninth parameter is the same as
that of nine arguments in two callers. If it is called for dealing
with the imaginary part, then the tenth and eleventh parameters,

and , are replaced by and . Otherwise, they are
replaced by and .

Procedure

(1) and .
(2) and .
(3) and .
(4) For to 1



910 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 14, NO. 8, DECEMBER 2015

(4a)
.

(4b) If ( " and " )
then

(4c) Terminate the execution of the loop.
EndIf

EndFor
(5) .
(6) .
EndProcedure

Lemma 3-5: The DNA-based algorithm,

, can be applied to complete the function of
a parallel comparator of bits for the real part and the
imaginary part of molecular solutions of and .

Proof: Please refer to the proof of Theorem 3-1.

F. Constructing a Parallel Comparator of One Bit for the Real
Part and the Imaginary Part of Complex Numbers

The followingDNA-based algorithm,
, is presented

to finish the function of a parallel comparator of one bit. The first
parameter includes DNA sequences that have
and , the second parameter contains DNA se-
quences that have and , the third param-
eter through the sixth parameter are all empty tubes, the value
of the seventh parameter is the value of the index variable of the
first single loop inAlgorithm 3-1, and the value of the eighth pa-
rameter is the value of the index variable of the only single loop
in the caller. If it is called for dealing with the imaginary part,
then the ninth and tenth parameters, and , are replaced by

and . Otherwise, they are replaced by and .

Procedure

(1) and .
(2) and .
(3) and .
(4) and .
(5) and .
(6) and .
(7)
(8) .
(9) .
(10) .
(11) .
(12) .
EndProcedure

Lemma 3-6: The DNA-based algorithm,

, can be employed to complete the
function of a parallel comparator of one bit.

Proof: Please refer to the proof of Theorem 3-1.

G. Constructing Parallel Adders of Complex Numbers

For the imaginary part and real part of complex num-
bers, and

are offered to com-
plete the function of a parallel adder of bits. DNA

sequences in encode two positive operands, DNA se-
quences in encode two negative operands, and the value
of is the value of the index variable of the first single loop
in Algorithm 3-1. The notations used in the following two
DNA-based algorithms are denoted in the previous subsections.

Procedure
(1) .

EndProcedure

Lemma 3-7: The DNA-based algorithm,
, can be used

to complete the function of a parallel adder of bits for
the imaginary part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

Procedure
(1) .

EndProcedure

Lemma 3-8: The DNA-based algorithm,
, can be applied to

complete the function of a parallel adder of bits for the
real part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

H. Constructing a Parallel Adder of Bits for the Real
Part and the Imaginary Part of Complex Numbers

The following DNA-based algorithm,
is offered

to complete the function of a parallel adder of bits for
the real part and the imaginary part of complex numbers. The
front three parameters are the same as the two callers. If it is
called by ,
then the fourth, fifth and sixth parameters, , and , are
subsequently replaced by , and . Otherwise, they
are subsequently replaced by , and . An adder of
one bit can be applied to figure out the sum and the carry of two
input bits and a previous carry. An adder for two operands with

bits can be completed by means of the adder of one bit.

Procedure
(0) If " then
(1) .
(2) .
(3) For to

(3a)
.

EndFor
(4) .
(5) .
EndIf
(5a) If " then
(6) .
(7) .
(8) For to

(8a)
.

EndFor
(9) .
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(10) .
EndIf
EndProcedure

Lemma 3-9: The DNA-based algorithm,
, can be

applied to complete the function of a parallel adder of
bits for the real part and the imaginary part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

I. Constructing a Parallel Adder of One Bit for the Real Part
and the Imaginary Part of Complex Numbers

The following DNA-based algorithm,
, is proposed to

complete the function of a parallel adder of one bits for the real
part and the imaginary part of complex numbers. If it is called by
Step (3a) in ,
then the first parameter, , contains DNA sequences
encoding positive operands. If it is called by Step (8a) in

, then the
first parameter, , contains DNA sequences encoding
negative operands. The value of the second parameter, , is the
value of the index variable of the first single loop in Algorithm
3-1, and the value of the third parameter, , is the value of the
index variable of the single loop in Step (3) or Step (8) in the
caller. The last three parameters are the same as the last three
arguments in the caller.
In an adder of one bit, it is assumed for and

that represents the first input, represents
the first output, represents the second input, repre-
sents the third input, and represents the second output. It is
assumed that for and , , ,

, and are used to represent their values to
be one, and , , , and are used to
represent their values to be zero.

Procedure
(1) and .
(2) and .
(3) and .
(4) and .
(5) and .
(6) and .
(7) and .
(8) and .
(9) and .
(10) and

.
(11) and

.
(12) and

.
(13) and

.
(14) and

.
(15) and

.
(16) .
EndProcedure

Lemma 3-10: The DNA-based algorithm,
, can be applied

to complete the function of a parallel adder of one bit.
Proof: Please refer to the proof of Theorem 3-1.

J. Constructing Parallel Subtractors for the Absolute Value of
the First Operand Greater Than or Equal to the Absolute Value
of the Second Operand in Complex Numbers
For the absolute value of the first operand greater

than or equal to the absolute value of the second ope-
rand in the imaginary and real parts of complex num-
bers,

and
are proposed to complete the function of a

parallel subtractor of bits. DNA sequences in
encode the first positive operand and the second negative
operand in which the absolute value of the first positive operand
is greater than or equal to the absolute value of the second
negative operand. DNA sequences in encode the first
negative operand and the second positive operand in which the
absolute value of the first negative operand is greater than or
equal to the absolute value of the second positive operand. The
value of the third parameter is the value of the index variable
of the first single loop in Algorithm 3-1. The notations used
in the following two DNA-based algorithms are denoted in the
previous subsections.

Procedure

(1)
.

EndProcedure

Lemma 3-11: The DNA-based algorithm,

, can be employed to complete the function of
a parallel subtractor of bits for the absolute value of the
first operand greater than or equal to the absolute value of the
second operand in the imaginary part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

Procedure

(1)
.

EndProcedure

Lemma 3-12: The DNA-based algorithm,
, can

be used to complete the function of a parallel subtractor of
bits for the absolute value of the first operand greater than

or equal to the absolute value of the second operand in the real
part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

K. Constructing Parallel Subtractors of Bits for the
Absolute Value of the First Operand Greater Than or Equal to
the Absolute Value of the Second Operand in the Real Part and
the Imaginary Part of Complex Numbers
The following DNA-based algorithm,

is
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proposed to complete the function of a parallel subtractor
of bits for that the absolute value of the first operand
is greater than or is equal to the absolute value of the
second operand in the real part and the imaginary part
of complex numbers. The front three parameters are the
same as the front three arguments of the two callers. If it
is called by

, then the fourth, fifth and sixth parameters,
, and , are subsequently replaced by ,

and . Otherwise, they are subsequently replaced by ,
and . A subtractor of one bit can be used to compute

the difference bit and the borrow bit for two input bits and a
previous borrow. A subtractor for two operands with bits
can be completed by means of the subtractor of one bit.

Procedure

(1) If " then
(2) .
(3) .
(4) For to
(4a) .
EndFor
(5) .
(6) .
EndIf
(7) If " then
(8) .
(9) .
(10) For to
(10a) .
EndFor
(11) .
(12) .
EndIf
EndProcedure

Lemma 3-13: The DNA-based algorithm,

, can be employed to complete the function of
parallel subtractors of bits for that the absolute value of
the first operand is greater than or equal to the absolute value
of the second operand in the real part and the imaginary part of
complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

L. Constructing Parallel Subtractors of One Bits for the
Absolute Value of the First Operand Greater Than or Equal to
the Absolute Value of the Second Operand in the Real Part and
the Imaginary Part of Complex Numbers

For the real part and the imaginary part of com-
plex numbers, the following DNA-based algorithm,

,
is offered to complete the function of a par-
allel subtractor of one bit. If it is called by Step
(4a) in

, then the first parameter, , consists
of DNA sequences encoding the first positive operand and the
second negative operand in which the absolute value of the
first positive operand is greater than or equal to the absolute
value of the second negative operand. If it is called by Step

(10a) in
, then the first parameter, , contains DNA

sequences encoding the first negative operand and the second
positive operand in which the absolute value of the first negative
operand is greater than or equal to the absolute value of the
second positive operand. The value of the second parameter,
, is the value of the index variable of the first single loop in
Algorithm 3-1, and the value of the third parameter, , is the
value of the index variable of the single loop in Step (4) or
Step (10) in the caller. The last three parameters are the same
as the last three arguments of the caller. In a subtractor of one
bit, it is supposed that for and ,
represents the first input, represents the first output,

represents the second input, represents the third
input, and represents the second output. Distinct DNA
sequences are designed to encode the value “0” or “1” for

, , , and for and
. It is assumed that for and , ,
, , and are applied to represent their

values to be one, and , , , and
are used to represent their values to be zero.

Procedure

(1) and .

(2) and .

(3) and .

(4) and .

(5) and .

(6) and .

(7) and .

(8) and .

(9) and .

(10) and
.

(11) and
.

(12) and
.

(13) and
.

(14) and
.

(15) and
.

(16) .

EndProcedure

Lemma 3-14: The DNA-based algorithm,
, can be

applied to complete the function of a parallel subtractor with
one bit for that the absolute value of the first operand is greater
than or equal to the absolute value of the second operand.

Proof: Please refer to the proof of Theorem 3-1.
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M. Constructing Parallel Subtractors for the Absolute Value of
the First Operand Less Than the Absolute Value of the Second
Operand in Complex Numbers
In the imaginary and real parts of complex numbers,

and are
proposed to complete the function of a parallel subtractor of

bits for that the absolute value of the first operand is
less than the absolute value of the second operand. When the
two DNA-based algorithms are called by Algorithm 3-1, DNA
sequences in encode the first positive operand and the
second negative operand in which the absolute value of the first
positive operand is less than the absolute value of the second
negative operand. DNA sequences in encode the first
negative operand and the second positive operand in which the
absolute value of the first negative operand is less than the abso-
lute value of the second positive operand. The value of the third
parameter is the value of the index variable of the first single
loop in Algorithm 3-1. The notations used in the following two
DNA-based algorithms are denoted in the previous subsections.

Procedure

(1)
.

EndProcedure

Lemma 3-15: The DNA-based algorithm,
,

can be used to complete the function of a parallel subtractor of
bits for that the absolute value of the first operand is less

than the absolute value of the second operand in the imaginary
part of complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

Procedure

(1)
.

EndProcedure

Lemma 3-16: The DNA-based algorithm,
, can be

applied to complete the function of a parallel subtractor of
bits for that the absolute value of the first operand is less

than the absolute value of the second operand in the real part of
complex numbers.

Proof: Please refer to the proof of Theorem 3-1.

N. Constructing Parallel Subtractors of Bits for the
Absolute Value of the First Operand Less Than the Absolute
Value of the Second Operand in the Real Part and the Imaginary
Part of Complex Numbers
The following DNA-based algorithm,

is presented to complete the function of a parallel subtractor of
bits for that the absolute value of the first operand is less

than the absolute value of the second operand in the real part
and the imaginary part of complex numbers. DNA sequences in

encode the first positive operand and the second negative

operand in which the absolute value of the first positive operand
is less than the absolute value of the second negative operand.
DNA sequences in encode the first negative operand and
the second positive operand in which the absolute value of the
first negative operand is less than the absolute value of the
second positive operand. The value of the third parameter is the
value of the index variable of the first single loop in Algorithm
3-1. The fourth, fifth and sixth parameters, , and , are
subsequently replaced by , and if it is called by

.
Otherwise, they are subsequently replaced by , and

. A subtractor of one bit can be employed to figure out
the difference bit and the borrow bit for two input bits and a
previous borrow. A subtractor for two operands with
bits can be completed by means of the subtractor of one bit.

Procedure

(1) If '' then
(2) .
(3) .
(4) For to
(4a) .
EndFor
(5) .
(6) .
EndIf
(7) If '' then
(8) .
(9) .
(10) For to
(10a) .
EndFor
(11) .
(12) .
EndIf
EndProcedure

Lemma 3-17: The DNA-based algorithm,
,

can be applied to complete the function of parallel subtractors
of bits for that the absolute value of the first operand is
less than the absolute value of the second operand.

Proof: Please refer to the proof of Theorem 3-1.

O. Constructing Parallel Subtractors of One Bits for the
Absolute Value of the First Operand Less Than the Absolute
Value of the Second Operand in the Real Part and the Imaginary
Part of Complex Numbers

The following DNA-based algorithm,
, is

presented to complete the function of a parallel subtractor of
one bit for that the absolute value of the first operand is less than
the absolute value of the second operand in the real part and the
imaginary part of complex numbers. If it is called by Step (4a) in

,
then the first parameter, , includes DNA sequences
encoding the first positive operand and the second
negative operand in which the absolute value of the first
positive operand is less than the absolute value of the
second negative operand. If it is called by Step (10a) in

,
then the first parameter, , consists of DNA sequences
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encoding the first negative operand and the second positive
operand in which the absolute value of the first negative
operand is less than the absolute value of the second positive
operand. The value of the second parameter, , is the value of
the index variable of the first single loop in Algorithm 3-1,
and the value of the third parameter, , is the value of the
index variable of the single loop in Step (4) or Step (10) in

.
The last three parameters are the same as the last three
arguments in the caller.
Because the absolute value of the first operand is less than the

absolute value of the second operand, in a subtractor of one bit
it is supposed for and that rep-
resents the first input, represents the second input,
represents the third input, represents the first output, and

represents the second output.

Procedure

(1) and .
(2) and .
(3) and .
(4) and .
(5) and .
(6) and .
(7) and .
(8) and .
(9) and .
(10) and

.
(11) and

.
(12) and

.
(13) and

.
(14) and

.
(15) and

.
(16) .
EndProcedure

Lemma 3-18: The DNA-based algorithm,
, can be

applied to complete the function of a parallel subtractor of one
bit for that the absolute value of the first operand is less than the
absolute value of the second operand.

Proof: Please refer to the proof of Theorem 3-1.

IV. COMPLEXITY ASSESSMENT

Theorem 4-1: For implementing addition and closure axioms
of addition to complex vectors with -tuples of complex numbers

with that the values of each imaginary and real parts are encoded
as signed binary numbers of bits and each bit is encoded by
base pairs, its time complexity is biological operations,

its volume complexity is DNA strands, its tube
complexity is O(1) tubes, and its longest DNA strand is

base pairs.
Proof: The DNA-based algorithm, , in Step (1) of

Algorithm 3-1 is implemented by means of biological
operations. Next, the DNA-based algorithm, ,
in Step (2) of Algorithm 3-1 is implemented by means of
biological operations. The four DNA-based algorithms from

Step (3a) through Step (3d) of Algorithm 3-1 are implemented
by means of biological operations. Next, Step (3e) of Al-
gorithm 3-1 is implemented by means of O(1) biological opera-
tions. Similarly, the four DNA-based algorithms from Step (3f)
through Step (3i) of Algorithm 3-1 are implemented by means
of biological operations. Next, Step (3j) of Algorithm 3-1
is implemented by means of O(1) biological operations. Each
Step from Step (3a) through Step (3j) inAlgorithm 3-1 is imple-
mented times. Therefore, the total number of biological opera-
tions for implementing them is . Next, the total number
of biological operations for implementing Step (5a) through Step
(5r) in Algorithm 3-1 is . Finally, Step (6) and Step (6a)
of Algorithm 3-1 are implemented by means of O(1) biological
operations. Similarly proof can be used to show complexity of
volume, tube and the longest DNA strand. Therefore, it is in-
ferred that its time complexity is biological operations,
its volume complexity is DNA strands, its tube
complexity is O(1) tubes, and its longest DNA strand is

base pairs.

V. CONCLUSIONS

With current biotechnology, the time for each operation is at
least one second. Realistically, steps like gel electrophoresis take
much longer, but for the sake of argument say each biological
operation takes one second. From Theorem 4-1, if the values of
and are equal to , then we need to take at least

which are about .
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