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Abstract 

 

A tic-tac-toe is a two-person game in which there is a three-by-three array of blank 

squares. Players occupy squares alternately, marking the square occupied by an O or 

an X, respectively. The first player who attains a horizontal, vertical, or diagonal 

sequence of three of his symbols wins. If the whole array is filled without either 

player’s attaining such a sequence, the game is a draw. Newell and Simon in [1] 

proposed the strategy of playing tic-tac-toe as a production system. In this paper, it is 

demonstrated that biological operations can be used to learn how to implement the 

strategy of playing tic-tac-toe proposed by Newell and Simon where each O and each 

X are encoded as DNA strands. In order to achieve this goal, biological algorithms are 

proposed to play a tic-tac-toe with one person. Furthermore, this work offers clear 

evidence of the ability of molecular computing to learn human’s intelligence. 

 

 

 

Keywords  Molecular Computing, Biological Algorithms, Tic-Tac-Toe 
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I. INTRODUCTION 

Playing games is the behavior of human’s intelligence. A tic-tac-toe in [1] is a 

two-person game in which there is a three-by-three array of blank squares and players 

occupy squares alternately, marking the square occupied by an O or an X, respectively. 

The first player who attains a horizontal, vertical, or diagonal sequence of three of his 

symbols wins. If the whole array is filled without either player’s attaining such a 

sequence, the game is a draw. 

 

Feynman [2] in 1961 first presented molecular computation, but his idea was not 

implemented by experiment until a few decades later. In 1994 Adleman [3] succeeded 

in solving an instance of the Hamiltonian path problem in a test tube, just by handling 

DNA strands. Many famous biological algorithms have been proposed for solving 

many difficult problems in [4-5]. An interesting open question is asking whether 

bio-molecular operations and DNA strands are able to learn the behavior of human’s 

intelligence (for example, playing tic-tac-toe that is the simplest game with human 

together) or not. 

 

Our major contributions in this paper are as follows. 

 We show that biological operations and DNA strands are able to learn the 

behavior of human’s intelligence. 

 We also demonstrate that the proposed biological method that is made of 

biological operations and DNA strands is able to play tic-tac-toe with human 

together. 

 

The rest of the paper is organized as follows: in Section II, DNA model of 

computation is introduced. In Section III, the motivation of this work is given. In 

Section IV, the development of molecular computing is illustrated. In Section V, the 

strategy of playing tic-tac-toe as a production system proposed by Newell and Simon 

in [1] is introduced. In Section VI, based on learning the Newell-Simon strategy, the 

biological algorithms of playing tic-tac-toe with human together are proposed. In 

Section VII, assessment of complexity to the proposed biological algorithms is given. 

In Section VIII, a brief conclusion is given. 

II. DNA MODEL OF COMPUTATION 

The genetic information of cellular organisms is encoded by DNA 
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(deoxyribonucleic acid) in [4, 5]. DNA includes polymer chains which are commonly 

regarded as DNA strands. By means of an automated process, DNA strands may be 

synthesized to order. Each strand may be made of a sequence of nucleotides, or bases, 

attached to a sugar-phosphate “backbone”. The four DNA nucleotides are adenine, 

guanine, cytosine and thymine, commonly abbreviated to A, G, C and T, respectively. 

By chemical convention, each strand has a 5’ end and a 3’ end. Because one end of the 

single strand has a free (i.e., unattached to another nucleotide) 5’ phosphate group, 

and the other has a free 3’ deoxyribose hydroxyl group, therefore, any single strand 

has a natural orientation, as described in [4]. 

 

The classical double helix of DNA is formed when two separate single strands 

bond. Bonding occurs by the pairwise attraction of bases: A bonds with T and G bonds 

with C. The pairs (A, T) and (G, C) are therefore known as complementary base pairs 

in [4]. Double-stranded DNA may be denatured into single strands by heating the 

solution to a temperature determined by the composition of the strand in [4]. Heating 

breaks the hydrogen bonds between complementary strands (Figure 2-1) in [4]. Beca- 

  

5’  G-G-A-T-A-G-C-T-G-G-T-A  3’ 

｜｜｜｜｜｜｜｜｜｜｜｜ 

3’  C-C-T-A-T-C-G-A-C-C-A-T  5’ 

 

Annealing promoted   Denaturing promoted 

by cooling solution     by heating solution 

 

5’  G-G-A-T-A-G-C-T-G-G-T-A  3’ 

 

3’  C-C-T-A-T-C-G-A-C-C-A-T  5’ 

 

Figure 2-1: DNA denaturing and annealing. 

 

use a G − C pair is joined by three hydrogen bonds, the temperature required to break 

it is slightly higher than that for an A − T pair, joined by only two hydrogen bonds in 

[4]. This factor must be taken into account when designing sequences to represent 

computational elements. Annealing is the reverse of melting, whereby a solution of 

single strands is cooled, and allowing complementary strands to bind together (Figure 

2-1) in [4]. In double-stranded DNA, if one of the single strands contains a 

discontinuity (i.e., one nucleotide is not bonded to its neighbor) then this may be 
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repaired by DNA ligase in [4]. This allows us to create a unified strand from several 

bound together by their respective complements. 

 

The following bio-molecular operations cited in [3, 5, 7, 8, 9] will be applied to 

learn how human play a tic-tac-toe. From [4], the implementation of eight biological 

operations that are denoted in Definition 2-1 through Definition 2-8 is described 

below. Each implementation illustrates only one possible way to perform the 

computational behavior of one biological operation. Future improvements in 

laboratory techniques may well yield more efficient and error-resistant 

implementations of biological operations, but this does not diminish the theoretical 

power of the model. We simply offer descriptions of the implementation in order to 

show the feasibility, in principle, of executing biological operations in vitro (that is to 

say, every biological operation is completely feasible using existing laboratory 

techniques). From a biological standpoint, all sequences generated to represent bits 

must be checked to ensure that the DNA strands that they encode do not form 

unwanted secondary structures with one another (i.e., strands remain separate at all 

times, and only bind together when this is required). The problem of strand design for 

DNA-based computing has been addressed at length, and we use the methods 

described in [4] to minimize the possibility of unwanted binding. 

 

Definition 2-1: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit 

xj, the bio-molecular operation “Append-Head” appends xj onto the head of every 

element in set X. The formal representation is written as Append-Head(X, xj) = {xj xn 

xn  1  x2 x1  xd  {0, 1} for 1  d  n and xj  {0, 1}}. 

 

Definition 2-2: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit 

xj, the bio-molecular operation, “Append-Tail”, appends xj onto the end of every 

element in set X. The formal representation is written as Append-Tail(X, xj) = {xn xn  1 

 x2 x1 xj  xd  {0, 1} for 1  d  n and xj  {0, 1}}. 

 

Two strands (labeled S and T in Figure 2-2) may be concatenated by the following 

process: create a linker strand, which has a sequence that is the complement of S 

followed by the complement of T. This linker strand is affixed to a surface with a 

magnetic bead (Figure 2-2(a)). Strand S is then added to the solution, and anneals with 

the linker strand in the appropriate position (Figure 2-2(b)). Strand T is then added to 

the solution, and this also anneals with the linker strand, at a position immediately 

adjacent to strand S (Figure 2-2(c)). The ligase enzyme is then added to the solution to 
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seal the “nick” between S and T, forming a single strand which may be freed by 

heating the solution to break its bonds with the linker strand (Figure 2-2(d)). The 

implementation of the concatenate() operation defined above may easily be used to 

append a specific sequence, s, to the head of each strand in a tube X. The sequence s 

corresponds, in this case, to the strand S defined in Figure 2-2, and strand T in Figure 

2-2 corresponds to the beginning sequence of every strand in the tube X. In this case, 

only the beginning sequence of every strand anneals to the linker strand. Clearly, then, 

after a series of append-head() operations denoted in Definition 2-1 has been 

performed on a strand, its sequence will be made up of a number of sequences 

representing bit-strings. A similar implementation can be used to complete the 

append-tail() operation denoted in Definition 2-2. 

 

 

 

Figure 2-2: Concatenation process: (a) Linker strand affixed to surface. (b) S anneals 

to linker strand. (c) T anneals to linker strand, adjacent to S. (d) S and T ligated to 

form a single strand, which is then freed by heating the solution. 

 

Definition 2-3: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the 

bio-molecular operation “Discard(X)” sets X to be an empty set and can be 

represented as “X = ”. 

 

The implementation of the Discard(X) operation denoted in Definition 2-3 is to 
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discard the content of a tube X, and the tube X is replaced by a new, empty tube. Since 

the number of tubes will generally be one, this is considered to be a constant-time 

operation. 

 

Definition 2-4: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the 

bio-molecular operation “Amplify(X, {Xi})” creates a number of identical copies Xi of 

set X, and then “Discard(X)”. 

 

The implementation of the Amplify(X, {Xi}) operation denoted in Definition 2-4 is 

that the polymerase chain reaction (PCR) is used with its initial input being a tube X. 

This reaction is used to massively amplify (possibly small) amounts of DNA that 

begin and end with specific primer sequences. As every strand in the tube X is 

delimited by these sequences, they are all copied by the reaction. The result of the 

PCR is then divided equally between the specified number of tubes (the number of 

PCR cycles may therefore be adjusted to ensure a constant DNA volume per tube, 

regardless of the number of tubes). 

 

Definition 2-5: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit, 

xj, if the value of xj is equal to one, then the bio-molecular extract operation creates 

two new sets, +(X, xj
1
) = {xn xn  1  xj

1
  x2 x1  xd  {0, 1} for 1  d  j  n}and 

(X, xj
1
) = {xn xn  1  xj

0
  x2 x1  xd  {0, 1} for 1  d  j  n}. Otherwise, it 

produces another two new sets, +(X, xj
0
) = {xn xn  1  xj

0
  x2 x1  xd  {0, 1} for 1 

 d  j  n}and (X, xj
0
) = {xn xn  1  xj

1
  x2 x1  xd  {0, 1} for 1  d  j  n}. 

 

The implementation of the extract operation denoted in Definition 2-5 is that 

affinity purification is applied to extract any strands from a tube X containing a short 

strand, s, that encodes the value of a bit, xj. This process applies a probe sequence, 

which is complementary to the target sequence being searched for. Probes are fixed to 

a surface, and capture strands through annealing any strands containing the target 

sequence. Captured strands may then be separated from the rest of the population by 

placing them in a separate solution, which is heated to break the bonds between the 

probes and the target sequence. The probe used is therefore the complementary 

sequence of s. Retained strands are placed in one new tube, U = +(X, s), and the 

remainder are placed in another new tube, V = (X, s). 

 

Definition 2-6: Given m sets X1  Xm, the bio-molecular merge operation, merge(X1, 

, Xm) = (X1, , Xm) = X1    Xm. 
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The implementation of the merge operation denoted in Definition 2-6 is that the 

contents of tubes (sets) {Xi} are simply merged by pouring. The number of tubes will 

generally be low, so this is considered to be a constant-time operation. 

 

Definition 2-7: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the 

bio-molecular operation “Detect(X)” returns true if X  . Otherwise, it returns false. 

 

The implementation of the detect operation denoted in Definition 2-7 is that a 

tube X is run through a gel electrophoresis process, which is generally used to sort 

DNA strands on length. Any DNA present in X shows up as a visible band in the gel; 

if DNA strands of the appropriate length are present, the operation returns true. If 

there are no visible bands corresponding to DNA of the correct length, then the 

operation returns false. The length criterion is used to ensure that the DNA fragments 

present do not cause a false positive result. If the DNA in the band corresponding to 

the contents of X is required in a subsequent processing step, the band may be excised 

from the gel by cutting, and then is soaked to remove the strands for further use. 

 

Definition 2-8: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the 

bio-molecular operation “Read(X)” describes any element in X. Even if X contains 

many different elements, the bio-molecular operation can give an explicit description 

of exactly one of them. 

 

The implementation of the read operation denoted in Definition 2-8 is that gel 

electrophoresis is used to sort DNA strands in a tube X by size. Electrophoresis is the 

movement of charged molecules in an electric field. Since DNA molecules carry a 

negative charge, when placed in an electric field they tend to migrate toward the 

positive pole. The rate of migration of a molecule in an aqueous solution depends on 

its shape and electric charge. Since DNA molecules have the same charge per unit 

length, they all migrate at the same speed in an aqueous solution. However, if 

electrophoresis is carried out in a gel (usually made of agarose, polyacrylamide, or a 

combination of the two), the migration rate of a molecule is also affected by its size. 

This is due to the fact that the gel is a dense network of pores through which the 

molecules must travel. Smaller molecules therefore migrate faster through the gel, 

thus sorting them according to size. DNA strands of the appropriate length in base 

pairs are measured. 
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III. MOTIVATION OF THIS WORK 

After Adleman’s article in [3] that is a milestone was published in 1994, many 

biological algorithms were proposed to solve many NP-Complete Problems with the 

number of bits n that is the size of those problems. In those methods, the first phase is 

to construct 2
n
 DNA strands as their solution space. Next, in the second phase, 2

n
 

DNA strands were filtered through biological operations. Next, in the third phase, 

illegal solutions are removed and legal solutions are reserved. Finally, in the fourth 

phase, reading the required answer(s) is completed. For a biological algorithm, the 

first biggest challenge is to that the problem of DNA strand design has been addressed 

at length. From a biological standpoint, all sequences generated to represent bits must 

be checked to ensure that the DNA strands that they encode do not form unwanted 

secondary structures with one another (i.e., strands remain separate at all times, and 

only bind together when this is required). The second biggest challenge is to how 2
n
 

DNA strands are filtered through biological operations without occurring of errors. 

Bonnet et al. in [6] used intensity of green fluorescent protein to encode two values ‘0’ 

and ‘1’ of a bit and implemented AND, NAND, OR, XOR, NOR, and XNOR gates. 

This gives another very good choice for representing two values ‘0’ and ‘1’ of a bit. 

An interesting open question is asking whether biological algorithms are able to learn 

the behavior of human’s intelligence (for example, playing with human together a 

tic-tac-toe that is the simplest game) or not. Our motivation is to find the answer of 

the interesting open question. 

IV. ILLUSTRATION OF RELATIVE WORKS ON MOLECULAR COMPUTING  

From [10], Qian and Winfree showed that arbitrary chemical reaction networks 

can in principle be implemented with DNA strand displacement cascades was a major 

step toward proving the generality and universality of pure-DNA systems. From [11], 

Velasco et al. presented transport spectroscopy measurements of Landau level gaps in 

double-gated suspended bilayer graphene with high mobilities in the quantum Hall 

regime. From [12], they investigated the possibility of constructing an exponentially 

large number of sequences from a short initial sequence and simple replication rules, 

including those resembling genomic replication processes. From [13], a 

polynomial-time algorithm was proposed for that decides, given a matching that is 

stable under the partial preference orderings, whether that matching is stable and 

optimal for one side of the market under some refinement of the partial orders. From 

[14], Cook et al. examined that the self-assembly of structures growing at 

“temperature 1”, meaning that no cooperativity was needed for the bonding of new 

elements – if a bond matched, the particle could stick. From [15], Sun et al. 
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characterized methods to protect linear DNA strands from exonuclease degradation in 

an Escherichia coli based transcription-translation cell-free system, as well as 

mechanisms of degradation. From [16], Sadowski et al. demonstrated the 

“developmental” self-assembly of a DNA tetrahedron.  

 

From [17], Qian et al. proposed a chemical implementation of stack machines — a 

Turing-universal model of computation similar to Turing machines — using DNA 

strand displacement cascades as the underlying chemical primitive. From [18], their 

results suggested that DNA strand displacement cascades could be used to endow 

autonomous chemical systems with the capability of recognizing patterns of 

molecular events, making decisions and responding to the environment. From [19], 

using a simple DNA reaction mechanism based on a reversible strand displacement 

process, they experimentally demonstrated several digital logic circuits, culminating 

in a four-bit square root circuit that comprises 130 DNA strands. From [20], it was 

reported that complex molecular circuits with reliable digital behavior can be created 

using DNA strands. It was introduced from [21] that natural computing was 

concerned with human-designed computing inspired by nature as well as with 

computation taking place in nature. From [22], it is shown how the same principles 

can be applied to breaking the Data Encryption Standard. From [23], molecular 

algorithms of implementing bio-molecular databases on a biological computer were 

proposed. 

 

From [24], it is showed that the proposed quantum algorithm of implementing 

Boolean circuits yielded from the DNA-based algorithm solving the vertex-cover 

problem in [25, 26] of any graph G with m edges and n vertices is the optimal 

quantum algorithm, and also is demonstrated that mathematical solutions of the same 

bio-molecular solutions are represented in terms of a unit vector in the 

finite-dimensional Hilbert space. It is indicated from the hidden variable theorem in 

[27] which in the case of computing states that no classical computer can simulate a 

quantum computer without suffering from an exponential slowdown. This also is to 

say that any classical computer can simulate a quantum computer in term of 

polynomial time is the violation of the hidden variable theorem. From [28], it is 

shown that arithmetical operations of complex vectors can be implemented by means 

of the proposed DNA-based algorithms. 

V. ILLUSTRATION OF THE NEWELL-SIMON METHOD TO PLAY A 

TIC-TAC-TOE 
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A representation of a tic-tac-toe board is shown in Figure 5-1. Nine blank squares 

on the tic-tac-toe board in Figure 5-1 are numbered as one through nine. The first 

square, the third square, the seventh square and the ninth square are called corner 

squares. The second square, the fourth square, the sixth square and the eighth square 

are called side squares. The fifth square is called a center square. The first player who 

attains a horizontal, vertical, or diagonal sequence of three of his symbols wins. If the 

whole array is filled without either player’s attaining such a sequence, the game is a 

draw. 

 

1 2 3 

4 5 6 

7 8 9 

 

Figure 5-1: The tic-tac-toe board 

 

Newell and Simon in [1] proposed the good strategy of playing a tic-tac-toe. 

Because the game is a draw when viewed from a game-theoretic standpoint, good 

means here a strategy that will guarantee a draw and that will give the opponent as 

many opportunities as possible of making a losing mistake. The Newell-Simon 

method in [1] is described below. In the Newell-Simon method, it is assumed that own 

is a computer with a mark (X) and its opponent is one person with a mark (O). 

 

The Newell-Simon method: Select next moving from a tic-tac-toe board. 

(1) If one player (a computer) finds that there is a line with two of the computer’s 

marks and one blank, then an X is filled into the blank square and the 

Newell-Simon method is terminated. 

(2) If one player (a computer) checks that there is a line with two of the opponent’s 

marks and one blank, then an X is filled into the blank square to protect that the 

opponent wins the game and the Newell-Simon method is terminated. 

(3) If one player (a computer) finds that there are two lines, each with one of the 

computer’s mark and two blanks, intersecting in a single blank square, then an X 

is filled into the single blank square to create two lines in which each line has two 

computer’s marks and one blank, thus forking the opponent and the 

Newell-Simon method is terminated.  

(4) If one player (a computer) checks whether in the board the fifth square that is 

called a center square is empty or not and the checked condition is satisfied, then 
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an X is filled into the center square and the Newell-Simon method is terminated. 

(5) If one player (a computer) checks whether in the board the second square, the 

fourth square, the sixth square or the eighth square that are all called side squares 

are occupied by the opponent or not and also simultaneously checks whether the 

opposite of each side square is an empty square or not and the checked condition 

is satisfied, then an X is filled into the opposite of the side square and the 

Newell-Simon method is terminated. 

(6) If one player (a computer) checks whether in the board the first square, the third 

square, the seventh square or the ninth square that are all called corner squares are 

occupied by the opponent or not and also simultaneously checks whether the 

opposite of each corner square is an empty square or not and the checked 

condition is satisfied, then an X is filled into the opposite of the corner square and 

the Newell-Simon method is terminated. 

 

Lemma 5-1: From the Newell-Simon method, next moving in a tic-tac-toe board is 

selected. 

 

Proof: Please refer to [1].    

VI. BIOLOGICAL ALGORITHMS OF PLAYING A TIC-TAC-TOE 

Biological operations and DNA strands will be used to learn how to use the 

Newell-Simon method to together play a tic-tac-toe with human. Biological 

algorithms are proposed in the following subsections. 

A. Data Structures of Playing a Tic-tac-toe 

First we will develop a representation for the tic-tac-toe board shown in Figure 

5-1. We will number the blank squares on the tic-tac-toe board shown in Figure 5-1 

this way: we will use nine tubes (sets) to encode nine squares (positions) and to store 

the contents of each position (square) on the tic-tac-toe board shown in Figure 5-1. It 

is assumed that tube (set) Sk for 1  k  9 is used to encode the k
th

 square (position) 

and to store its contents. Each tube Sk for 1  k  9 is initialized as an empty tube. An 

empty tube Sk for 1  k  9 means that the k
th

 square (position) is not occupied by 

players. 

 

Two distinct DNA strands (sequences) in [3-5, 7-9] are designed to minimize the 

possibility of unwanted binding and their length is  base pairs. One represents the 

value “0” for a binary variable with a bit b and the other represents the value “1” for it. 
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For the sake of convenience in our presentation, it is assumed that b
1
 denotes the 

value of b to be 1, b
0

 defines the value of b to be 0, and b defines the value of b to be 0 

or 1. b
0
 is applied to encode an O that is one of two marked symbols, and b

1
 is 

employed to encode an X that is also one of two marked symbols. If tube (set) Sk for 1 

 k  9 contains b
0
 (DNA strands), then this means that the k

th
 square (position) is 

occupied and is filled by an O. Similarly, if tube (set) Sk for 1  k  9 contains b
1
 

(DNA strands), then this means that the k
th

 square (position) is occupied and is filled 

by an X. Of course, if tube (set) Sk for 1  k  9 does not have any DNA strand, then 

this means that the k
th

 square (position) is empty. Players that include a biological 

computer and his opponent can make a move by destructively changing one of the 

board positions from an empty content to an O (b
0
) or an X (b

1
). 

 

For selecting the best move, it must have some way of analyzing the configuration 

of the board. It is very clear from tic-tac-toe that there are only eight ways to make 

three-in-a-row: three horizontally, three vertically, and two diagonally. Three 

horizontal triplets of making three-in-a-row are, respectively, (1 2 3), (4 5 6) and (7 8 

9). Three vertical triplets are, respectively, (1 4 7), (2 5 8) and (3 6 9). Two diagonal 

triplets are, respectively, (1 5 9) and (3 5 7). This is to say that one of two player wins 

with that three of his symbols appear the same triplet. For example, the opponent wins 

with that three Os appear in the right diagonal triplet is (3 5 7), indicating the contents 

of elements three, five, and seven of a tic-tac-toe board are all Os. 

 

Two distinct DNA strands (sequences) in [3-5, 7-9] are designed to minimize the 

possibility of unwanted binding and their length is  base pairs. One represents the 

value “0” for a binary variable with a bit r and the other represents the value “1” for it. 

For the sake of convenience in our presentation, it is assumed that r
1
 denotes the value 

of r to be 1, r
0

 defines the value of r to be 0, and r defines the value of r to be 0 or 1. 

Bit r
0
 is used to encode the result that indicates that there are three Os to make 

three-in-a-row, and bit r
1
 is applied to encode the result that is that there are three Xs 

to make three-in-a-row. It is assumed that tube T0 is used to store the result that is 

whether the contents of the board positions specified by eight triplets make 

three-in-a-row or not. If tube (set) T0 contains r
0
 (DNA strands), then this indicates 

that in the current configuration of the board there are no three Xs or three Os to make 

three-in-a-row. Similarly, if tube (set) T0 contains r
1
 (DNA strands), then this 

indicates that in the current configuration of the board there are three Xs or three Os 

to make three-in-a-row. 

B. System Architecture of Playing a Tic-tac-toe 



 13 

Now, let us look at the basic framework for playing the game. The function 

Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) first offers to set a new, empty 

board as appropriate input. Then, it also offers the opponent the choice to go first, and 

then calls either Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) or 

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to begin to play the game. In the 

function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), the first parameter that 

is tube T0 stores the result that is whether the contents of the board positions specified 

by eight triplets make three-in-a-row or not. The second parameter to the tenth 

parameter that are, subsequently, tubes S1 through S9 store respectively the contents of 

nine squares (positions), and are all set to empty tubes in the function by means of 

calling Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

 

Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(2) Discard(T0). 

(3) If (the opponent would like to go first) Then 

(4) Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

Else 

(5) Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

EndIf 

EndFunction 

 

Lemma 6-1: The function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers 

beginning of playing a tic-tac-toe. 

 

Proof: 

 

On the first execution of Step (1), it calls the function Make-Board(S1, S2, S3, S4, 

S5, S6, S7, S8, S9) to set nine tubes to empty tubes. After it is completed, a new and 

empty board is obtained. Next, on the first execution of Step (2), it uses the discard 

operation to set tube T0 to an empty tube. Next, from the execution of Step (3) if the 

opponent would like to go first, then the function Opponent-Move(T0, S1, S2, S3, S4, 

S5, S6, S7, S8, S9) is called by the execution of Step (4). 

 

When the opponent goes first, the function Opponent-Move(T0, S1, S2, S3, S4, S5, 

S6, S7, S8, S9) asks the opponent to type in a move and checks that the move is legal. 

The content of the board is updated by it and then the function Computer-Move(T0, 



 14 

S1, S2, S3, S4, S5, S6, S7, S8, S9) is called. However, there are two special cases to cause 

not to call the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). The first 

special case is that if the opponent’s move makes a three-in-a-row, the opponent has 

won and the game is over. The second special case is that if there are no empty spaces 

left on the board, the game has ended in a tie. 

 

If the opponent does not want to go first, then the function Computer-Move(T0, 

S1, S2, S3, S4, S5, S6, S7, S8, S9) is called from the execution of Step (5). When the 

computer goes first, the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

selects the best move. The content of the board is also updated by it and then the 

function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is called. Similarly, there 

are two special cases to cause not to call the function Opponent-Move(T0, S1, S2, S3, 

S4, S5, S6, S7, S8, S9). The first special case is that if the computer’s move makes a 

three-in-a-row, the computer has won and the game is over. The second special case is 

that if there are no empty spaces left on the board, the game has ended in a tie. 

Therefore, it is at once inferred that the function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, 

S5, S6, S7, S8, S9) offers to beginning of playing a tic-tac-toe.    

C. Creating a New Tic-tac-toe Board for Playing a Tic-tac-toe 

The following function (algorithm), Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9), 

is used to create a new tic-tac-toe board. The first parameter to the ninth parameter 

that are, subsequently, tubes S1 through S9 store respectively the contents of nine 

squares (positions), and are all set to empty tubes after the function Make-Board(S1, 

S2, S3, S4, S5, S6, S7, S8, S9) is completed. 

 

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For k = 1 to 9 Step 1 

(1a) Discard(Sk). 

EndFor 

EndFunction 

 

Lemma 6-2: A new tic-tac-toe board can be created from the function 

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

 

Proof: 

 

The function, Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9), is implemented by 

means of using the discard operation. It consists of one single loop. The single loop is 
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applied to set the content of each square (position) to be empty. Mathematical 

induction is applied to complete the proof. When the value of the loop index variable, 

k, is equal to one, on the first execution of Step (1a) embedded in the loop, it uses the 

discard operation to set the content of the first square (position) to be empty. This is to 

say that the first square (position) on a new tic-tac-toe board is not occupied by 

players. Next, when the value of the loop index variable, k, is equal to l for 2  l  9  

1, on the l
th

 execution of Step (1a) embedded in the loop, it employs the discard 

operation to set the content of the l
th

 square (position) to be empty. This indicates that 

the l
th

 square (position) on a new tic-tac-toe board is not occupied by players. Next, 

when the value of the loop index variable, k, is equal to (l + 1) for 2  l  9  1, on the 

(l + 1)
th

 execution of Step (1a) embedded in the loop, it applies the discard operation 

to set the content of the (l + 1)
th

 square (position) to be empty. This is to say that the (l 

+ 1)
th

 square (position) on a new tic-tac-toe board is not occupied by players. Hence, 

it is at once inferred that a new tic-tac-toe board can be created from the function 

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).   ■ 

D. The Strategy of the Move of the Opponent to Play a Tic-tac-toe 

The following function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers 

the strategy of the move of the opponent to play a tic-tac-toe, calls the function 

Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) that asks the opponent to type in 

a move, and checks that the move is legal and updates the board. Next, the function 

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls the function 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). But there are two special cases 

where the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) should not be 

called. First, if the opponent’s move makes a three-in-a-row, then the opponent has 

won and the game is over. Second, if there are no empty spaces left on the board, the 

game has ended in a tie. In the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9), the first parameter T0 contains DNA strands encoding the result of predicating 

whether there is any a three-in-a-row or not. Tubes S1 through S9 that are, 

subsequently, the second parameter through the tenth parameter are used to store the 

contents of nine squares (positions). 

 

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(2) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(3) Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(4) If (Detect(T0) == true) then 

(5) A string with ‘You (the opponent) wins’ is printed out. 
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(6) The execution of the function is terminated. 

Else 

(7) If ((Detect(S1) == true) AND (Detect(S2) == true) AND (Detect(S3) == true) 

AND (Detect(S4) == true) AND (Detect(S5) == true) AND (Detect(S6) == 

true) AND (Detect(S7) == true) AND (Detect(S8) == true) AND (Detect(S9) 

== true)) then 

(8) A string with ‘The game has ended in a tie’ is printed out. 

(9) The execution of the function is terminated. 

Else 

(10) Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

EndIf 

EndIf 

EndFunction 

 

Lemma 6-3: The function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers 

the opponent to play the game. 

 

Proof: 

 

On the execution of Step (1), it calls the function Read-A-Legal-Move(S1, S2, S3, 

S4, S5, S6, S7, S8, S9) that fills an O into the position selected by the opponent. Next, on 

the execution of Step (2), it calls the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, 

S9) that prints out the current configuration of the board after the opponent selected 

his move. Next, on the execution of Step (3), it calls the function 

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) that decides 

whether there are three Os to make a three-in-a-row or not. If there are three Os to 

make a three-in-a-row, then tube T0 contains DNA sequences encoding r
1
 that 

indicates that the condition is true. Otherwise, tube T0 is an empty tube. 

 

Next, on the execution of Step (4), if a true is returned, then a string with ‘You 

(the opponent) wins’ is printed out from the execution of Step (5) and the execution of 

the function is terminated from the execution of Step (6). Otherwise, if nine detect 

operations all returns a true from the execution of Step (7), then a string with ‘The 

game has ended in a tie’ is printed out from the execution of Step (8) and the 

execution of the function is terminated from the execution of Step (9). Otherwise, on 

the execution of Step (10) it calls the function Computer-Move(T0, S1, S2, S3, S4, S5, 

S6, S7, S8, S9) that offers the computer to play the game. Therefore, it is at once 
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inferred that the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers 

the opponent to play the game.    

E. Reading a Legal Move from the Opponent to Play a Tic-tac-toe 

Because nine positions in a board are subsequently numbered as one through nine, 

a legal move is an integer between one and nine such that the corresponding position 

in the board is empty. Therefore, the opponent can select one through nine as his 

move. The following function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) 

reads a value from the opponent’s selection (input) and judges whether it is a legal 

move or not. If not, the function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) 

asks again that the opponent gives his new selection (move) and again reads another 

move. The opponent’s selection is stored in one of tubes S1 through S9 that are 

subsequently the first parameter through the ninth parameter. 

 

Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For j = 1 to 9 Step 1 

(2) The opponent’s selection is read and is stored into an index variable k. 

(3) If (Detect(Sk) == true) then 

(4) Append-Tail(Sk, b
0
). 

(5) The execution of the function is terminated. 

EndIf 

EndFor 

EndFunction 

 

Lemma 6-4: The function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) reads 

a legal move from the opponent’s selection (input). 

 

Proof: 

 

Step (1) is a single loop and at most allows that the opponent selects his move 

nine times. On each execution of Step (2), the opponent’s selection is read and is 

stored into an index variable k. Next, on each execution of Step (3), it uses the detect 

operation to judge whether the position selected by the opponent is not occupied or 

not. If a true is returned, then on each execution of Step (4) it appends a DNA 

sequence, encoding the value b
0
, onto the end of every strand in tube Sk and this is to 

say that the corresponding square is occupied by the opponent and is filled by an O. 

Next, each execution of Step (5), the execution of the function is terminated. 
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Therefore, it is at once inferred that the function Read-A-Legal-Move(S1, S2, S3, S4, 

S5, S6, S7, S8, S9) reads a legal move from the opponent’s selection (input).    

F. Printing out the Configuration of the Board for Playing a Tic-tac-toe 

Displaying the configuration of the board for playing a tic-tac-toe is a part of any 

tic-tac-toe, and also is a function to take a list of nine elements as input. Each element 

will be an X, an O, or an empty content. The following function, Print-Board(S1, S2, 

S3, S4, S5, S6, S7, S8, S9), is used to print out the configuration of the board. Tubes S1 

through S9 are subsequently the first parameter through the ninth parameter, and are 

used to store the content of nine elements. 

 

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For j = 1 to 9 Step 3 

(2) For k = j to j + 2 Step 1 

(2a) If (Detect(Sk) == false) then 

(2b) A space and a string with ‘ | ‘ are printed out. 

Else 

(2c) Sk
ON

 = +(Sk, b
1
) and Sk

OFF
 = ( Sk, b

1
). 

(2d) If (Detect(Sk
ON

) == true) then 

(2e) An X and a string with ‘ | ‘ are printed out. 

(2f) Sk = (Sk, Sk
ON

). 

Else 

(2g) An O and a string with ‘ | ‘ are printed out. 

(2h) Sk = (Sk, Sk
OFF

). 

EndIf 

EndIf 

EndFor 

(3) A string with ‘------------’ is printed out if the value of k is less than seven. 

(4) A new line is printed out. 

EndFor 

EndFunction 

 

Lemma 6-5: The new configuration of the board in a tic-tac-toe can be printed out 

from the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

 

Proof: 

 

The function, Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9), is implemented by 



 19 

means of using the discard operation, the exact operation and the merge operation. It 

consists of one nested loop. The nested loop is employed to print out the content of 

each square on a tic-tac-toe board. Mathematical induction is used to complete the 

proof. When the values of the two loop index variable, j and k, are, respectively, equal 

to one and j (one), on the first execution of Step (2a) embedded in the loop, it applies 

the detect operation to check whether the content of the first square (position) is 

empty or not. If a false is returned from the first execution of Step (2a), then a space 

and a string with ‘ | ‘ are printed out from the first execution of Step (2b). Otherwise, 

Step (2c) through Step (2h) is implemented.  

 

Next, on the first execution of Step (2c), it uses the extract operation to form two 

test tubes, S1
ON

 and S1
OFF

 so that tube S1 is an empty tube. The value encoded by DNA 

strands in tube S1
ON

 is equal to b
1
. The value encoded by DNA strands in tube S1

OFF
 is 

equal to b
0
. Next, on the first execution of Step (2d), it uses the detect operation to 

check whether the content of the first square (position) is an X or not. If a true is 

returned from the first execution of Step (2d), then from the first execution of Step (2e) 

an X and a string with ‘ | ‘ are printed out and from the first execution of Step (2f) the 

merge operation is used to pour the content of tube S1
ON

 into tube S1 so that tube S1
ON

 

is an empty tube. Otherwise, from the first execution of Step (2g) an O and a string 

with ‘ | ‘ are printed out and from the first execution of Step (2h) the merge operation 

is used to pour the content of tube S1
OFF

 into tube S1 so that tube S1
OFF

 is an empty 

tube. 

 

Next, when the values of the two loop index variable, j and k, are, respectively, 

equal to one and j + 2 (3), the content of the third square (position) is printed and from 

the first execution of Step (3) and Step (4) a string with ‘------------’ is printed out and 

a new line is also printed out. Similarly, when the values of the two loop index 

variable, j and k, are, respectively, equal to seven and j + 2 (9), the content of the nine 

square (position) is printed and from the third execution of Step (3) and Step (4) a 

new line is printed out. Therefore, it is at once derived that the new configuration of 

the board in a tic-tac-toe can be printed out from the function Print-Board(S1, S2, S3, 

S4, S5, S6, S7, S8, S9).   ■ 

G. Checking Whether the Contents of Eight Triplets Make Three-in-a-row 

For fully analyzing a board we must look at all eight triplets. The following 

function, Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is 

employed to test whether in the contents of the board positions specified by all eight 

triplets there are three Xs or three Os to make three-in-a-row or not. Tube T0 that is 

the first parameter is initialized to an empty tube. Other nine parameters store the 
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content of each square. Notice that if player O (the opponent) ever gets three in a row, 

from the function Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9) r
1
 that is encoded by DNA strands in tube T0 is obtained. Similarly, if player X 

(the computer) manages to get three in a row, from the function 

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) r
1
 that is 

encoded by DNA strands in tube T0 is also obtained. 

 

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For k = 1 to 9 Step 3 

(1a) Check-One-Triplet(T0, Sk, Sk + 1, Sk + 2). 

(1b) If (Detect(T0) == true) Then 

(1c) The execution of the function is terminated. 

EndIf 

EndFor 

(2) For k = 1 to 3 Step 1 

(2a) Check-One-Triplet(T0, Sk, Sk + 3, Sk + 6). 

(2b) If (Detect(T0) == true) Then 

(2c) The execution of the function is terminated. 

EndIf 

EndFor 

(3) Check-One-Triplet(T0, S1, S5, S9). 

(4) If (Detect(T0) == true) Then 

(5) The execution of the function is terminated. 

EndIf 

(6) Check-One-Triplet(T0, S3, S5, S7). 

(7) If (Detect(T0) == true) Then 

(8) The execution of the function is terminated. 

EndIf 

EndFunction 

 

Lemma 6-6: Testing whether in the contents of the board positions specified by all 

eight triplets there are three Xs or three Os to make three-in-a-row or not can be done 

from the function Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9). 

 

Proof: 

 

The function, Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, 
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S8, S9), is implemented by means of using the extract operation, the detect operation, 

the append-tail operation and the merge operation. Mathematical induction is used to 

complete the proof. Step (1) consists of one single loop, and is used to test whether in 

the contents of the board positions specified by three horizontal triplets with positions 

(1 2 3), (4 5 6) and (7 8 9) there are three Xs or three Os to make three-in-a-row or not. 

When the value of the loop index variable, k, is equal to one, on the first execution of 

Step (1a), it calls the function, Check-One-Triplet(T0, S1, S2, S3). After the first 

execution of Step (1a) is implemented, if the contents of the board positions specified 

by the first horizontal triplet with positions (1 2 3) make three-in-a-row, then tube T0 

contains DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on 

the first execution of Step (1b), if a true is returned from the detect operation, then the 

execution of the function is terminated from the first execution of Step (1c) and the 

contents of the board positions specified by the first horizontal triplet with positions 

(1 2 3) make three-in-a-row. Otherwise, the resting operations will continue to be 

executed.  

 

Similarly, when the value of the loop index variable, k, is equal to four, from the 

second execution of Step (1a), the function, Check-One-Triplet(T0, S4, S5, S6) is 

called and implemented. If the contents of the board positions specified by the second 

horizontal triplet with positions (4 5 6) make three-in-a-row, then tube T0 contains 

DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on the 

second execution of Step (1b), if a true is returned from the detect operation, then the 

execution of the function is terminated from the second execution of Step (1c) and the 

contents of the board positions specified by the second horizontal triplet with 

positions (4 5 6) make three-in-a-row. Otherwise, the resting operations will continue 

to be executed. 

 

Next, when the value of the loop index variable, k, is equal to seven, from the 

third execution of Step (1a), the function, Check-One-Triplet(T0, S7, S8, S9) is called 

and implemented. If the contents of the board positions specified by the third 

horizontal triplet with positions (7 8 9) make three-in-a-row, then tube T0 contains 

DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on the third 

execution of Step (1b), if a true is returned from the detect operation, then the 

execution of the function is terminated from the third execution of Step (1c) and the 

contents of the board positions specified by the third horizontal triplet with positions 

(7 8 9) make three-in-a-row. Otherwise, the resting operations will continue to be 

executed. 
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Next, the same operations that are implemented by the first execution through the 

third execution of Step (2a) through Step (2c) judge whether the contents of the board 

positions specified by three vertical triplets with positions (1 4 7), (2 5 8) and (3 6 9) 

make three-in-a-row or not. If one of three vertical triplets makes three-in-a-row, then 

the execution of the function is terminated. Otherwise, the resting operations will 

continue to be executed. 

 

Next, the same operations that are implemented by the first execution of Step (3) 

through Step (8) judge whether the contents of the board positions specified by two 

diagonal triplets with positions (1 5 9) and (3 5 7) make three-in-a-row or not. If one 

of two diagonal triplets makes three-in-a-row, then the execution of the function is 

terminated and one player wins the game. Otherwise, the game will continue to be 

played. Therefore, it is at once derived that testing whether in the contents of the 

board positions specified by all eight triplets there are three Xs or three Os to make 

three-in-a-row or not can be done from the function 

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).    

H. Testing Whether the Contents of One of Eight Triplets Make Three-in-a-row 

The following function, Check-One-Triplet(T0, U0, V0, W0) is used to check 

whether the contents of the board positions specified by that triplet make 

three-in-a-row or not. Tube T0 that is the first parameter is used to store the result that 

indicates whether there are three Xs or three Os to make three-in-a-row or not. The 

second, third and fourth parameters U0, V0 and W0 are all empty tubes, and they are 

used to subsequently store the contents of three elements in that triplet. 

 

Check-One-Triplet(T0, U0, V0, W0) 

(1) U0
ON

 = +(U0, b
1
) and U0

OFF
 = (U0, b

1
). 

(2) V0
ON

 = +(V0, b
1
) and V0

OFF
 = (V0, b

1
). 

(3) W0
ON

 = +(W0, b
1
) and W0

OFF
 = (W0, b

1
). 

(4) If ((Detect(U0
ON

) == true) AND (Detect(V0
ON

) == true) AND (Detect(W0
ON

) == 

true)) Then 

(5) Append-Tail(T0, r
1
). 

(6) ElseIf ((Detect(U0
OFF

) == true) AND (Detect(V0
OFF

) == true) AND (Detect(W0
OFF

)  

== true)) Then 

(7) Append-Tail(T0, r
0
). 

EndIf 

EndFunction 

 

Lemma 6-7: Checking whether the contents of the board positions specified by that 
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triplet make three-in-a-row or not can be done from the function 

Check-One-Triplet(T0, U0, V0, W0). 

 

Proof: 

 

The function, Check-One-Triplet(T0, U0, V0, W0), is implemented by means of 

using the exact operation and the detect operation. On each execution of Step (1), it 

uses the extract operation to form two test tubes, U0
ON

 and U0
OFF

 so that tube U0 is an 

empty tube. The value encoded by DNA strands in tube U0
ON

 is equal to b
1
. The value 

encoded by DNA strands in tube U0
OFF

 is equal to b
0
. This is to say that an X in the 

first element of that triplet appears in tube U0
ON

 or an O in the first element of that 

triplet appears in tube U0
OFF

. 

 

Next, on each execution of Step (2), it also applies the extract operation to form 

two test tubes, V0
ON

 and V0
OFF

 so that tube V0 is an empty tube. The value encoded by 

DNA strands in tube V0
ON

 is equal to b
1
. The value encoded by DNA strands in tube 

V0
OFF

 is equal to b
0
. This indicates that an X in the second element of that triplet 

appears in tube V0
ON

 or an O in the second element of that triplet appears in tube 

V0
OFF

. Next, on each execution of Step (3), it also employs the extract operation to 

form two test tubes, W0
ON

 and W0
OFF

 so that tube W0 is an empty tube. The value 

encoded by DNA strands in tube W0
ON

 is equal to b
1
. The value encoded by DNA 

strands in tube W0
OFF

 is equal to b
0
. This implies that an X in the third element of that 

triplet appears in tube W0
ON

 or an O in the third element of that triplet appears in tube 

W0
OFF

. 

 

Next, on each execution of Step (4), it uses six detect operations to check whether 

the content of each element in that triplet is an X, an O or empty or not. If the front 

three detect operations all return true, then this is to say that three Xs make 

three-in-a-row. If the last three detect operations all return true, then this indicates that 

three Os make three-in-a-row. Hence, on each execution of Step (5), it appends a 

DNA sequence, encoding the value r
1
, onto the end of every strand in tube T0 and this 

indicates that the contents of three elements in that triplet make three-in-a-row. 

Therefore, it is at once derived that checking whether the contents of the board 

positions specified by that triplet make three-in-a-row or not can be done from the 

function Check-One-Triplet(T0, U0, V0, W0).    

I. The Strategies of the Movement of the Computer 

Because the analysis of selecting the best move to two players is more complex, 

we shall use biological operations and DNA strands to learn how to make use of the 



 24 

Newell-Simon method in which the very good strategies are provided. The function 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is similar to that function 

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), except the player is X instead of 

O, and instead of reading a move from the opponent’s selection (input), how learning 

a good strategy in the Newell-Simon method to the computer is proposed. Because the 

game is a draw when viewed from a game-theoretic standpoint, good means here a 

strategy that will guarantee a draw and that will give the opponent as many 

opportunities as possible of making a losing mistake. The function 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls several other functions to 

choose the best move and to update the configuration of the board. Next, the function 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls the function 

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). But there are two special cases 

where the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) should not be 

called. First, if the computer’s move makes a three-in-a-row, then the computer has 

won and the game is over. Second, if there are no empty spaces left on the board, the 

game has ended in a tie. In the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9), the first parameter T0 contains DNA strands encoding the result of predicating 

whether there is any a three-in-a-row or not. Tubes S1 through S9 that are, 

subsequently, the second parameter through the tenth parameter are used to store the 

contents of nine squares (positions). 

 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) If (Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(1a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(2) Else If (Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(2a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(3) Else If (Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(3a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(4) Else If (Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(4a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(5) Else If (Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(5a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(6) Else If (Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then 

(6a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). 

EndIf 

(7) Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

(8) If (Detect(T0) == true) then 
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(8a) A string with ‘I (the computer) wins’ is printed out. 

(8b) The execution of the function is terminated. 

Else 

(9) If ((Detect(S1) == true) AND (Detect(S2) == true) AND (Detect(S3) == true) 

AND (Detect(S4) == true) AND (Detect(S5) == true) AND (Detect(S6) == 

true) AND (Detect(S7) == true) AND (Detect(S8) == true) AND (Detect(S9) 

== true)) then 

(9a) A string with ‘The game has ended in a tie’ is printed out. 

(9b) The execution of the function is terminated. 

Else 

(9c) Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

EndIf 

EndIf 

EndFunction 

 

Lemma 6-8: The function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns 

how to make use of the good strategies in the Newell-Simon method for winning the 

game. 

 

Proof: 

 

On the first execution of Step (1), it calls the function 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to find whether there 

is a line with two of the computer’s marks and one blank or not. If the condition is 

satisfied, then an X is filled into the blank square and a true is returned. If a true is 

returned, then on the first execution of Step (1a) it calls the function Print-Board(S1, 

S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of the board after 

the computer selected his move. Otherwise, on the first execution of Step (2) it 

invokes the function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

to check whether there is a line with two of the opponent’s marks and one blank or not. 

If the condition is satisfied, then an X is filled into the blank square to protect that the 

opponent wins the game, and a true is returned. 

 

If a true is returned, then on the first execution of Step (2a) it calls the function 

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of 

the board after the computer selected his move. Otherwise, on the first execution of 

Step (3) it calls the function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to 
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find whether there are two lines, each with one of the computer’s mark and two 

blanks, intersecting in a single blank square. If the condition is satisfied, then an X is 

filled into the single blank square to create two lines in which each line has two 

computer’s marks and one blank, thus forking the opponent, and a true is returned.  

 

If a true is returned, then on the first execution of Step (3a) it calls the function 

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of 

the board after the computer selected his move. Otherwise, on the first execution of 

Step (4) it calls the function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to test 

whether in the board the fifth square that is called a center square is empty or not. If 

the condition is satisfied, then an X is filled into the center square and a true is 

returned. 

 

If a true is returned, then on the first execution of Step (4a) it calls the function 

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of 

the board after the computer selected his move. Otherwise, on the first execution of 

Step (5) it calls the function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to 

check whether in the board the second square, the fourth square, the sixth square or 

the eighth square that are all called side squares are occupied by the opponent or not 

and to check whether the eighth square, the sixth square, the fourth square or the 

second square are empty or not. If the condition is satisfied, then an X is filled into the 

opposite of each side square and a true is returned. 

 

If a true is returned, then on the first execution of Step (5a) it calls the function 

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of 

the board after the computer selected his move. Otherwise, on the first execution of 

Step (6) it calls the function Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

to check whether in the board the first square, the third square, the seventh square or 

the ninth square are occupied by the opponent or not and to find whether the opposite 

of the first square, the third square, the seventh square or the ninth position is empty 

or not. If the condition is satisfied, then an X is filled into the opposite of the corner 

square and a true is returned. If a true is returned, then on the first execution of Step 

(6a) it calls the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the 

current configuration of the board after the computer selected his move. 

  

Next, on the first execution of Step (7), it calls the function 

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to decide 
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whether there are three Xs to make a three-in-a-row or not. If there are three Xs to 

make a three-in-a-row, then tube T0 contains DNA sequences encoding r
1
 that 

indicates that the condition is true. Otherwise, tube T0 is an empty tube. Next, on the 

first execution of Step (8), if a true is returned, then a string with ‘I (the computer) 

wins’ is printed out from the first execution of Step (8a) and the execution of the 

function is terminated from the first execution of Step (8b). Otherwise, if nine detect 

operations all returns a true from the first execution of Step (9), then a string with 

‘The game has ended in a tie’ is printed out from the first execution of Step (9a) and 

the execution of the function is terminated from the first execution of Step (9b). 

Otherwise, on the first execution of Step (9c) it calls the function Opponent-Move(T0, 

S1, S2, S3, S4, S5, S6, S7, S8, S9) that offers the opponent to play the game. Therefore, it 

is at once inferred that the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

learns how to make use of the good strategies in the Newell-Simon method for 

winning the game.    

J. Biological Algorithms of the Winning Strategies to the Movement of the Computer 

In the Newell-Simon method the first strategy is if one player (a computer) finds 

that there is a line with two of the computer’s marks and one blank, then an X is filled 

into the blank square and a three-in-a-row is made. Therefore, the following function 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is applied to find 

whether there is a line with two of the computer’s marks and one blank or not. If the 

condition above is satisfied, then an X is filled into the blank square and a true is 

returned. Otherwise, a false is returned. The first parameter T0 contains DNA strands 

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes 

S1 through S9 that are, subsequently, the second parameter through the tenth parameter 

are used to store the contents of nine squares (positions). 

 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For k = 1 to 9 Step 3 

(1a) If (Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 1, Sk + 2)) Then  

(1b) Return a true to the caller and terminate the execution of the function. 

EndIf 

EndFor 

(2) For k = 1 to 3 Step 1 

(2a) If (Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 3, Sk + 6)) Then 

(2b) Return a true to the caller and terminate the execution of the function. 

EndIf 

EndFor 
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(3) If (Find-A-Line-With-Two-Xs-One-Blank(T0, S1, S5, S9)) Then 

(3a) Return a true to the caller and terminate the execution of the function. 

EndIf 

(4) If (Find-A-Line-With-Two-Xs-One-Blank(T0, S3, S5, S7)) Then 

(4a) Return a true to the caller and terminate the execution of the function. 

EndIf 

(5) Return a false to the caller and terminate the execution of the function. 

EndFunction 

 

Lemma 6-9: The function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9) learns how to make use of the first strategy in the Newell-Simon method to 

select one movement of winning the game. 

 

Proof: 

 

Step (1) is one single loop and is used to test whether three horizontal lines (1 2 3), 

(4 5 6) and (7 8 9) contain two of the computer’s marks and one blank or not. On the 

first execution of Step (1a), it calls the function 

Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 1, Sk + 2) to check whether the first 

horizontal line (1 2 3) contains two of the computer’s marks and one blank or not. If 

the condition above is satisfied, then an X is filled into the blank square and a true is 

returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

If a true is returned, then on the first execution of Step (1b) it returns a true to the 

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and  the execution of the 

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is 

terminated. Otherwise, a false is returned to the caller 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same 

processing from the second execution through the third execution of Steps (1a) and 

(1b) is used to check whether the second horizontal line (4 5 6) and the third 

horizontal line (7 8 9) include two of the computer’s marks and one blank or not. 

 

Next, Step (2) is one single loop and is employed to judge whether three vertical 

lines (1 4 7), (2 5 8) and (3 6 9) contain two of the computer’s marks and one blank or 

not. On the first execution of Step (2a), it calls the function 

Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 3, Sk + 6) to decide whether the 

first vertical line (1 4 7) contains two of the computer’s marks and one blank or not. If 

the condition above is satisfied, then an X is filled into the blank square and a true is 
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returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

If a true is returned, then on the first execution of Step (2b) it returns a true to the 

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the 

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is 

terminated. Otherwise, a false is returned to the caller 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same 

processing from the second execution through the third execution of Steps (2a) and 

(2b) is used to check whether the second vertical line (2 5 8) and the third vertical line 

(3 6 9) include two of the computer’s marks and one blank or not. 

 

Next, On the first execution of Step (3), it calls the function 

Find-A-Line-With-Two-Xs-One-Blank(T0, S1, S5, S9) to judge whether the first 

diagonal line (1 5 9) contains two of the computer’s marks and one blank or not. If 

the condition above is satisfied, then an X is filled into the blank square and a true is 

returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

If a true is returned, then on the first execution of Step (3a) it returns a true to the 

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the 

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is 

terminated. Otherwise, a false is returned to the caller 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same 

processing from the first execution of Steps (4) and (4a) is used to check whether the 

second diagonal line (3 5 7) includes two of the computer’s marks and one blank or 

not. If the condition above is not satisfied, then from the first execution of Step (5) a 

false is returned to the caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and 

the execution of the function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9) is terminated. Therefore, it is at once inferred from the statements above that 

the function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns 

how to make use of the first strategy in the Newell-Simon method to select one 

movement of winning the game.    

K. Biological Algorithms of Finding a Line with Two of the Computer’s Marks and 

One Blank 

The following function, Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf), 

learns how to find a line with two of the computer’s Marks and one blank. If the line 

satisfying the condition above is found, then an X is filled into the blank square and a 

true is returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9). Because eight lines (triplets) are respectively (1 2 3), (4 5 6), (7 8 9), (1 4 7), 
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(2 5 8), (3 6 9), (1 5 9) and (3 5 7), the first parameter through the three parameter (d, 

e, f) is respectively the first element, the second element and the third element in one 

of eight lines. Tube T0 that is the fourth parameter contains DNA strands encoding the 

result of predicating whether there is any a three-in-a-row or not. Tubes (Sd, Se, Sf) 

that are the fifth parameter through the seventh parameter are subsequently used to 

store the contents of three squares in one of eight lines. 

 

Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf) 

(1) Sd
ON

 = +(Sd, b
1
) and Sd

 OFF
 = (Sd, b

1
). 

(2) Se
ON

 = +(Se, b
1
) and Se

OFF
 = (Se, b

1
). 

(3) Sf
 ON

 = +(Sf, b
1
) and Sf

 OFF
 = (Sf, b

1
). 

(4) If ((Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == true) AND (Detect(Sf
 ON

) == 

false) AND (Detect(Sf
 OFF

) == false)) Then 

(4a) Append-Tail(Sf, b
1
). 

(4b) Sd = (Sd
ON

, Sd
OFF

) and Se = (Se
ON

, Se
OFF

). 

(4c) Return a true to the caller and terminate the execution of the function. 

(5) Else If ((Detect(Sd
ON

) == true) AND (Detect(Sf
 ON

) == true) AND (Detect(Se
ON

) 

== false) AND (Detect(Se
OFF

) == false)) Then 

(5a) Append-Tail(Se, b
1
). 

(5b) Sd = (Sd
ON

, Sd
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(5c) Return a true to the caller and terminate the execution of the function. 

(6) Else If ((Detect(Se
ON

) == true) AND (Detect(Sf
ON

) == true) AND (Detect(Sd
ON

) == 

false) AND (Detect(Sd
OFF

) == false)) Then 

(6a) Append-Tail(Sd, b
1
). 

(6b) Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(6c) Return a true to the caller and terminate the execution of the function. 

(7) Else 

(7a) Sd = (Sd
ON

, Sd
OFF

), Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(7b) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-10: The function Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf) 

learns how to find a line with two of the computer’s Marks and one blank. 

  

Proof: 

 

On each execution of Step (1) through Step (3), they respectively use three extract 
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operations to form six test tubes, Sd
ON

, Sd
OFF

, Se
ON

, Se
OFF

, Sf
ON

 and Sf
OFF

. DNA strands 

in tubes Sd
ON

, Se
ON

 and Sf
ON

 encodes b
1
 representing an X, and DNA strands in tubes 

Sd
OFF

, Se
OFF

 and Sf
OFF

 encodes b
0
 representing an O. Next, on each execution of Step 

(4), it uses four detect operations to test whether the first square, the second square 

and the third square in a line that is one of eight triplets are subsequently an X, an X 

and a blank or not. If the condition above is satisfied by each detect operation, then an 

X is filled into the blank square from each execution of Step (4a), tubes Sd
ON

 and Sd
OFF

 

are poured into tube Sd from each execution of Step (4b), tubes Se
ON

 and Se
OFF

 are 

poured into tube Se from each execution of Step (4b) and from each execution of Step 

(4c) it returns a true to the caller and the execution of the function is terminated. 

 

Otherwise, next, on each execution of Step (5), it also applies four detect 

operations to check whether the first square, the second square and the third square in 

a line that is one of eight triplets are subsequently an X, a blank and an X or not. If the 

condition above is satisfied by each detect operation, then an X is filled into the blank 

square from each execution of Step (5a), tubes Sd
ON

 and Sd
OFF

 are poured into tube Sd 

from each execution of Step (5b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from 

each execution of Step (5b) and from each execution of Step (5c) it returns a true to 

the caller and the execution of the function is terminated. 

 

Otherwise, next, on each execution of Step (6), it uses four detect operations to 

check whether the first square, the second square and the third square in a line that is 

one of eight triplets are subsequently a blank, an X and an X or not. If the condition 

above is satisfied by each detect operation, then an X is filled into the blank square 

from each execution of Step (6a), tubes Se
ON

 and Se
OFF

 are poured into tube Se from 

each execution of Step (6b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from each 

execution of Step (6b) and from each execution of Step (6c) it returns a true to the 

caller and the execution of the function is terminated. 

 

Otherwise, next, on each execution of Step (7a), tubes Sd
ON

 and Sd
OFF

 are poured 

into tube Sd, tubes Se
ON

 and Se
OFF

 are poured into tube Se, tubes Sf
ON

 and Sf
OFF

 are 

poured into tube Sf and from each execution of Step (7b) it returns a false to the caller 

and the execution of the function is terminated. Therefore, it is at once inferred from 

the statements above that the function Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, 

Se, Sf) learns how to find a line with two of the computer’s Marks and one blank.  

M. Biological Algorithms of Protecting the Opponent That Wins the Game 
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In the Newell-Simon method the second strategy is if one player (a computer) 

checks that there is a line with two of the opponent’s marks and one blank, then an X 

is filled into the blank square to protect that the opponent wins the game. Therefore, 

the following function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, 

S9) is used to find whether there is a line with two of the opponent’s marks and one 

blank or not. If the condition above is satisfied, then an X is filled into the blank 

square to protect that the opponent wins the game and a true is returned. Otherwise, a 

false is returned. The first parameter T0 contains DNA strands encoding the result of 

predicating whether there is any a three-in-a-row or not. Tubes S1 through S9 that are, 

subsequently, the second parameter through the tenth parameter are used to store the 

contents of nine squares (positions). 

 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For k = 1 to 9 Step 3 

(1a) If (Find-A-Line-With-Two-Os-One-Blank(k, k + 1, k + 2, T0, Sk, Sk + 1, Sk + 

2)) Then  

(1b) Return a true to the caller and terminate the execution of the function. 

EndIf 

EndFor 

(2) For k = 1 to 3 Step 1 

(2a) If (Find-A-Line-With-Two-Os-One-Blank(k, k + 3, k + 6, T0, Sk, Sk + 3, Sk + 

6)) Then 

(2b) Return a true to the caller and terminate the execution of the function. 

EndIf 

EndFor 

(3) If (Find-A-Line-With-Two-Os-One-Blank(1, 5, 9, T0, S1, S5, S9)) Then 

(3a) Return a true to the caller and terminate the execution of the function. 

EndIf 

(4) If (Find-A-Line-With-Two-Os-One-Blank(3, 5, 7, T0, S3, S5, S7)) Then 

(4a) Return a true to the caller and terminate the execution of the function. 

EndIf 

(5) Return a false to the caller and terminate the execution of the function. 

EndFunction 

 

Lemma 6-11: The function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, 

S8, S9) learns how to protect that the opponent wins the game. 

 

Proof: 
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Step (1) is one single loop and is employed to judge whether three horizontal lines 

(1 2 3), (4 5 6) and (7 8 9) consists of two of the opponent’s marks and one blank or 

not. On the first execution of Step (1a), it calls the function 

Find-A-Line-With-Two-Os-One-Blank(k, k + 1, k + 2, T0, Sk, Sk + 1, Sk + 2) to test 

whether the first horizontal line (1 2 3) includes two of the opponent’s marks and one 

blank or not. If the condition above is satisfied, then an X is filled into the blank 

square to protect that the opponent wins the game and a true is returned to the caller 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned, 

then on the first execution of Step (1b) it returns a true to the caller 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated. 

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3, 

S4, S5, S6, S7, S8, S9) and the same processing from the second execution through the 

third execution of Steps (1a) and (1b) is applied to decide whether the second 

horizontal line (4 5 6) and the third horizontal line (7 8 9) include two of the 

opponent’s marks and one blank or not. 

 

Next, Step (2) is one single loop and is used to test whether three vertical lines (1 

4 7), (2 5 8) and (3 6 9) contain two of the opponent’s marks and one blank or not. On 

the first execution of Step (2a), it calls the function 

Find-A-Line-With-Two-Os-One-Blank(k, k + 3, k + 6, T0, Sk, Sk + 3, Sk + 6) to judge 

whether the first vertical line (1 4 7) consists of two of the opponent’s marks and one 

blank or not. If the condition above is satisfied, then an X is filled into the blank 

square to protect that the opponent wins the game and a true is returned to the caller 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned, 

then on the first execution of Step (2b) it returns a true to the caller 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated. 

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3, 

S4, S5, S6, S7, S8, S9) and the same processing from the second execution through the 

third execution of Steps (2a) and (2b) is used to check whether the second vertical 

line (2 5 8) and the third vertical line (3 6 9) contain two of the opponent’s marks and 

one blank or not. 

 

Next, On the first execution of Step (3), it calls the function 

Find-A-Line-With-Two-Os-One-Blank(1, 5, 9, T0, S1, S5, S9) to judge whether the 
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first diagonal line (1 5 9) includes two of the opponent’s marks and one blank or not. 

If the condition above is satisfied, then an X is filled into the blank square to protect 

that the opponent wins the game and a true is returned to the caller 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned, 

then on the first execution of Step (3a) it returns a true to the caller 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated. 

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3, 

S4, S5, S6, S7, S8, S9) and the same processing from the first execution of Steps (4) and 

(4a) is used to check whether the second diagonal line (3 5 7) includes two of the 

opponent’s marks and one blank or not. If the condition above is not satisfied, then 

from the first execution of Step (5) a false is returned to the caller 

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated. 

Therefore, it is at once inferred from the statements above that the function 

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to protect 

that the opponent wins the game.    

N. Biological Algorithms of Finding a Line with Two of the Opponent’s Marks and 

One Blank 

The following function, Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se, 

Sf), learns how to find a line with two of the opponent’s Marks and one blank. If the 

line satisfying the condition above is found, then an X is filled into the blank square to 

protect that the opponent wins the game and a true is returned to the caller 

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). Since eight lines 

(triplets) are respectively (1 2 3), (4 5 6), (7 8 9), (1 4 7), (2 5 8), (3 6 9), (1 5 9) and 

(3 5 7), the first parameter through the three parameter (d, e, f) is respectively the first 

element, the second element and the third element in one of eight lines. DNA strands 

in tube T0 that is the fourth parameter encode the result of predicating whether there is 

any a three-in-a-row or not. Tubes (Sd, Se, Sf) that are the fifth parameter through the 

seventh parameter are subsequently used to store the contents of three squares in one 

of eight lines. 

 

Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se, Sf) 

(1) Sd
ON

 = +(Sd, b
0
) and Sd

 OFF
 = (Sd, b

0
). 

(2) Se
ON

 = +(Se, b
0
) and Se

OFF
 = (Se, b

0
). 

(3) Sf
 ON

 = +(Sf, b
0
) and Sf

 OFF
 = (Sf, b

0
). 
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(4) If ((Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == true) AND (Detect(Sf
 ON

) == 

false) AND (Detect(Sf
 OFF

) == false)) Then 

(4a) Append-Tail(Sf, b
1
). 

(4b) Sd = (Sd
ON

, Sd
OFF

) and Se = (Se
ON

, Se
OFF

). 

(4c) Return a true to the caller and terminate the execution of the function. 

(5) Else If ((Detect(Sd
ON

) == true) AND (Detect(Sf
 ON

) == true) AND (Detect(Se
ON

) 

== false) AND (Detect(Se
OFF

) == false)) Then 

(5a) Append-Tail(Se, b
1
). 

(5b) Sd = (Sd
ON

, Sd
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(5c) Return a true to the caller and terminate the execution of the function. 

(6) Else If ((Detect(Se
ON

) == true) AND (Detect(Sf
ON

) == true) AND (Detect(Sd
ON

) == 

false) AND (Detect(Sd
OFF

) == false)) Then 

(6a) Append-Tail(Sd, b
1
). 

(6b) Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(6c) Return a true to the caller and terminate the execution of the function. 

(7) Else 

(7a) Sd = (Sd
ON

, Sd
OFF

), Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

). 

(7b) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-12: The function Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se, 

Sf) learns how to find a line with two of the opponent’s Marks and one blank to 

protect that the opponent wins the game. 

 

Proof: 

 

On each execution of Step (1) through Step (3), they respectively use three extract 

operations to form six test tubes, Sd
ON

, Sd
OFF

, Se
ON

, Se
OFF

, Sf
ON

 and Sf
OFF

. DNA strands 

in tubes Sd
ON

, Se
ON

 and Sf
ON

 encodes b
0
 representing an O, and DNA strands in tubes 

Sd
OFF

, Se
OFF

 and Sf
OFF

 encodes b
1
 representing an X. Next, on each execution of Step 

(4), it uses four detect operations to test whether the first square, the second square 

and the third square in a line that is one of eight triplets are subsequently an O, an O 

and a blank or not. If the condition above is satisfied by each detect operation, then an 

X is filled into the blank square from each execution of Step (4a), tubes Sd
ON

 and Sd
OFF

 

are poured into tube Sd from each execution of Step (4b), tubes Se
ON

 and Se
OFF

 are 

poured into tube Se from each execution of Step (4b) and from each execution of Step 

(4c) it returns a true to the caller and the execution of the function is terminated. 
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Otherwise, next, on each execution of Step (5), it also applies four detect 

operations to check whether the first square, the second square and the third square in 

a line that is one of eight triplets are subsequently an O, a blank and an O or not. If the 

condition above is satisfied by each detect operation, then an X is filled into the blank 

square from each execution of Step (5a), tubes Sd
ON

 and Sd
OFF

 are poured into tube Sd 

from each execution of Step (5b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from 

each execution of Step (5b) and from each execution of Step (5c) it returns a true to 

the caller and the execution of the function is terminated. 

 

Otherwise, next, on each execution of Step (6), it applies four detect operations to 

check whether the first square, the second square and the third square in a line that is 

one of eight triplets are subsequently a blank, an O and an O or not. If the condition 

above is satisfied by each detect operation, then an X is filled into the blank square 

from each execution of Step (6a), tubes Se
ON

 and Se
OFF

 are poured into tube Se from 

each execution of Step (6b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from each 

execution of Step (6b) and from each execution of Step (6c) it returns a true to the 

caller and the execution of the function is terminated. 

 

Otherwise, next, on each execution of Step (7a), tubes Sd
ON

 and Sd
OFF

 are poured 

into tube Sd, tubes Se
ON

 and Se
OFF

 are poured into tube Se, tubes Sf
ON

 and Sf
OFF

 are 

poured into tube Sf and from each execution of Step (7b) it returns a false to the caller 

and the execution of the function is terminated. Therefore, it is at once inferred from 

the statements above that the function Find-A-Line-With-Two-Os-One-Blank(d, e, f, 

T0, Sd, Se, Sf) learns how to find a line with two of the opponent’s marks and one blank 

to protect that the opponent wins the game.  

O. Biological Algorithms of Finding That There Are Two Lines with One of the 

Computer’s Marks and Two Blank and Intersecting in a Single Blank Square 

The following function, Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is 

used to check whether there are two lines, each with one of the computer’s mark and 

two blanks, intersecting in a single blank square or not. If the condition is satisfied, 

then an X is filled into the single blank square to create two lines in which each line 

has two computer’s marks and one blank, thus forking the opponent and a true is 

returned. Otherwise, a false is returned. The first parameter T0 contains DNA strands 

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes 

S1 through S9 that are, subsequently, the second parameter through the tenth parameter 
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are used to store the contents of nine squares (positions). 

 

Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) If (Intersection-In-Two-Lines(S1, S2, S3, S4, S7)) Then 

(1a) Return a true to the caller and terminate the execution of the function. 

(2) If (Intersection-In-Two-Lines(S1, S2, S3, S5, S9)) Then 

(2a) Return a true to the caller and terminate the execution of the function. 

(3) If (Intersection-In-Two-Lines(S1, S4, S7, S5, S9)) Then 

(3a) Return a true to the caller and terminate the execution of the function. 

(4) ElseIf (Intersection-In-Two-Lines(S3, S1, S2, S6, S9)) Then 

(4a) Return a true to the caller and terminate the execution of the function. 

(5) ElseIf (Intersection-In-Two-Lines(S3, S1, S2, S5, S7)) Then 

(5a) Return a true to the caller and terminate the execution of the function. 

(6) ElseIf (Intersection-In-Two-Lines(S3, S6, S9, S5, S7)) Then 

(6a) Return a true to the caller and terminate the execution of the function. 

(7) ElseIf (Intersection-In-Two-Lines(S7, S8, S9, S1, S4)) Then 

(7a) Return a true to the caller and terminate the execution of the function. 

(8) ElseIf (Intersection-In-Two-Lines(S7, S8, S9, S3, S5)) Then 

(8a) Return a true to the caller and terminate the execution of the function. 

(9) ElseIf (Intersection-In-Two-Lines(S7, S1, S4, S3, S5)) Then 

(9a) Return a true to the caller and terminate the execution of the function. 

(10) ElseIf (Intersection-In-Two-Lines(S9, S7, S8, S3, S6)) Then 

(10a) Return a true to the caller and terminate the execution of the function. 

(11) ElseIf (Intersection-In-Two-Lines(S9, S7, S8, S1, S5)) Then 

(11a) Return a true to the caller and terminate the execution of the function. 

(12) ElseIf (Intersection-In-Two-Lines(S9, S3, S6, S1, S5)) Then 

(11a) Return a true to the caller and terminate the execution of the function. 

(13) ElseIf (Intersection-In-Two-Lines(S2, S1, S3, S5, S8)) Then 

(13a) Return a true to the caller and terminate the execution of the function. 

(14) ElseIf (Intersection-In-Two-Lines(S4, S5, S6, S1, S7)) Then 

(14a) Return a true to the caller and terminate the execution of the function. 

(15) ElseIf (Intersection-In-Two-Lines(S6, S4, S5, S3, S9)) Then 

(15a) Return a true to the caller and terminate the execution of the function. 

(16) ElseIf (Intersection-In-Two-Lines(S8, S7, S9, S2, S5)) Then 

(16a) Return a true to the caller and terminate the execution of the function. 

(17) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S2, S8)) Then 

(17a) Return a true to the caller and terminate the execution of the function. 
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(18) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S1, S9)) Then 

(18a) Return a true to the caller and terminate the execution of the function. 

(19) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S3, S7)) Then 

(19a) Return a true to the caller and terminate the execution of the function. 

(20) ElseIf (Intersection-In-Two-Lines(S5, S2, S8, S1, S9)) Then 

(20a) Return a true to the caller and terminate the execution of the function. 

(21) ElseIf (Intersection-In-Two-Lines(S5, S2, S8, S3, S7)) Then 

(21a) Return a true to the caller and terminate the execution of the function. 

(22) Else 

(22a) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-13: The function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

learns how to find that there are two lines, each with one of the computer’s mark and 

two blanks, intersecting in a single blank square. 

 

Proof: 

 

Each execution of Step(1) through Step (21) subsequently checks twenty-one pairs 

of two lines: (1 2 3) and (1 4 7), (1 2 3) and (1 5 9), (1 4 7) and (1 5 9), (1 2 3) and (3 

6 9), (1 2 3) and (3 5 7), (3 6 9) and (3 5 7), (7 8 9) and (1 4 7), (7 8 9) and (3 5 7), (1 

4 7) and (3 5 7), (7 8 9) and (3 6 9), (7 8 9) and (1 5 9), (3 6 9) and (1 5 9), (1 2 3) and 

(2 5 8), (4 5 6) and (1 4 7), (4 5 6) and (3 6 9), (7 8 9) and (2 5 8), (4 5 6) and (2 5 8), 

(4 5 6) and (1 5 9), (4 5 6) and (3 5 7), (2 5 8) and (1 5 9), and (2 5 8) and (3 5 7). If 

the condition is satisfied, then an X is filled into the single blank square to create two 

lines in which each line has two computer’s marks and one blank, thus forking the 

opponent and a true is subsequently returned to the caller and the execution of the 

function is terminated from each execution of Step(1a) through Step (21a). Otherwise, 

on each execution of Step (22a), a false is returned to the caller and the execution of 

the function is terminated. Therefore, it is inferred at once from the statements above 

that the function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to 

find that there are two lines, each with one of the computer’s mark and two blanks, 

intersecting in a single blank square. 

P. Biological Algorithms of Checking Whether One of Twenty-One Pairs of Two Lines 

Has One of the Computer’s Marks and Two Blank and Intersecting in a Single Blank 

Square 
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The following function, Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se), is applied 

to test whether for one of twenty-one pairs in which each pair contains two lines the 

two lines have one of the computer’s marks and two blank and intersecting in a single 

blank square or not. If the condition is satisfied, then an X is filled into the single 

blank square to create two lines in which each line has two computer’s marks and one 

blank, thus forking the opponent and a true is returned to the caller. Otherwise, a false 

is returned to the caller. Tube Sa is used to store the content of an intersectional empty 

square, and tubes Sb, Sc, Sd and Se are subsequently used to store the content of other 

four squares. 

 

Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se) 

(1) Sb
ON

 = +(Sb, b
1
) and Sb

OFF
 = (Sb, b

1
), and Sc

ON
 = +(Sc, b

1
) and Sc

OFF
 = (Sc, b

1
). 

(2) Sd
ON

 = +(Sd, b
1
) and Sd

OFF
 = (Sd, b

1
), and Se

ON
 = +(Se, b

1
) and Se

OFF
 = (Se, b

1
). 

(3) If (Detect(Sa) == false) Then 

(4) If ((Detect(Sb
ON

) == true) AND (Detect(Sc
ON

) == false) AND (Detect(Sc
OFF

) == 

false) AND (Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == false) AND 

(Detect(Se
OFF

) == false)) Then 

(4a) Append-Tail(Sa, b
1
). 

(4b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(4c) Return a true to the caller and terminate the execution of the function. 

(5) Else If ((Detect(Sb
ON

) == true) AND (Detect(Sc
ON

) == false) AND (Detect(Sc
OFF

) 

== false) AND (Detect(Se
ON

) == true) AND (Detect(Sd
ON

) == false) AND 

(Detect(Sd
OFF

) == false)) Then 

(5a) Append-Tail(Sa, b
1
). 

(5b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(5c) Return a true to the caller and terminate the execution of the function. 

(6) Else If ((Detect(Sc
ON

) == true) AND (Detect(Sb
ON

) == false) AND (Detect(Sb
OFF

) 

== false) AND (Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == false) AND 

(Detect(Se
OFF

) == false)) Then 

(6a) Append-Tail(Sa, b
1
). 

(6b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(6c) Return a true to the caller and terminate the execution of the function. 

(7) Else If ((Detect(Sc
ON

) == true) AND (Detect(Sb
ON

) == false) AND (Detect(Sb
OFF

) 

== false) AND (Detect(Se
ON

) == true) AND (Detect(Sd
ON

) == false) AND 

(Detect(Sd
OFF

) == false)) Then 

(7a) Append-Tail(Sa, b
1
). 

(7b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(7c) Return a true to the caller and terminate the execution of the function. 



 40 

(8) Else 

(8a) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(8b) Return a false to the caller and terminate the execution of the function. 

EndIf 

(9) Else 

(9a) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

). 

(9b) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-14: For one of twenty-one pairs in which each pair contains two lines, the 

function Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se) learns how to decide whether 

the two lines have one of the computer’s mark and two blanks, intersecting in a single 

blank square or not. 

 

Proof: 

 

On each execution of Step (1) and Step (2), four extract operations are used to 

separate tubes Sb, Sc, Sd and Se to generate tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, 

Se
ON

 and Se
OFF

. DNA strands in tubes Sb
ON

, Sc
ON

, Sd
ON

, and Se
ON

 all encodes an X, and 

DNA strands in tubes Sb
OFF

, Sc
OFF

, Sd
OFF

, and Se
OFF

 also all encodes an O. If a false is 

returned from each execution of Step (3), then the intersectional square is an empty 

square and Step (4) through Step (8b) will be executed. Otherwise, there is no empty 

intersectional square, tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are 

subsequently poured into tubes Sb, Sc, Sd and Se from each execution of Step (9a) and 

a false is return to the caller and the execution of the function is terminated from each 

execution of Step (9b). 

 

On each execution of Step (4), Step (5), Step (6) or Step (7), six detect operations 

are used to check whether other two squares of each line are one empty square and 

one of the computer’s mark or not. If the condition above is satisfied, then from each 

execution of Step (4a) through Step (4c), each execution of Step (5a) through Step 

(5c), each execution of Step (6a) through Step (6c), or each execution of Step (7a) 

through Step (7c) an X is filled into tube Sa (an intersectional empty square), tubes 

Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are subsequently poured into tubes 

Sb, Sc, Sd and Se and a true is return to the caller and the execution of the function is 

terminated. Otherwise, tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are 



 41 

subsequently poured into tubes Sb, Sc, Sd and Se from each execution of Step (8a) and 

a false is return to the caller and the execution of the function is terminated from each 

execution of Step (8b). Therefore, it is at once inferred from the statements above that 

for one of twenty-one pairs in which each pair contains two lines, the function 

Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se) learns how to decide whether the two 

lines have one of the computer’s mark and two blanks, intersecting in a single blank 

square or not.    

Q. Biological Algorithms of Testing Whether in the Board A Center Square Is Empty 

The following function, Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is 

applied to test whether in the board the fifth square that is called a center square is 

empty or not. If the condition above is satisfied, then an X is filled into the center 

square. The first parameter T0 contains DNA strands encoding the result of 

predicating whether there is any a three-in-a-row or not. Tubes S1 through S9 that are, 

subsequently, the second parameter through the tenth parameter are used to store the 

contents of nine squares. 

 

Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) S5
ON

 = +(S5, b
1
) and S5

OFF
 = (S5, b

1
). 

(2) If ((Detect(S5
ON

) == false) AND (Detect(S5
OFF

) == false)) Then 

(2a) Append-Tail(S5, b
1
). 

(2b) Return a true to the caller and terminate the execution of the function. 

(3) Else 

(3a) S5 = (S5
ON

, S5
OFF

). 

(3b) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-15: The function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns 

how to decide whether in the board the fifth square that is called a center square is 

empty or not. 

 

Proof: 

 

On each execution of Step (1), it uses the extract operation to generate that tube 

S5
ON

 contains DNA strands encoding an X and tube S5
OFF

 includes DNA strands 

encoding an O. Next, on each execution of Step (2), it applies two detect operations to 
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check whether the fifth square in the board is not occupied by any player or not. If 

both of them returns a false, then an X is filled into the center square from each 

execution of Step (2a), and from each execution of Step (2b) a true is returned to the 

caller and the execution of the function is terminated. Otherwise, on each execution of 

Step (3a) it uses one merge operation to pour tubes S5
ON

 and S5
OFF

 into tube S5 and 

from each execution of Step (3b) a false is returned to the caller and the execution of 

the function is terminated. Therefore, it is at once derived from the statements above 

that the function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to 

decide whether in the board the fifth square that is called a center square is empty or 

not.    

R. Biological Algorithms of Judging Whether Side Squares Are Occupied by the 

Opponent and the Opposite of Each Side Square Is an Empty Square 

The following function, Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is 

applied to check whether in the board the second square, the fourth square, the sixth 

square or the eighth square that are all called side squares are occupied by the 

opponent or not and to also simultaneously check whether the opposite of each side 

square is an empty square or not. If the condition above is satisfied, then an X is filled 

into the opposite of the side square. The first parameter T0 contains DNA strands 

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes 

S1 through S9 that are, subsequently, the second parameter through the tenth parameter 

are used to store the contents of nine squares. 

 

Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) For k = 2 to 8 Step 2 

(2) Sk
ON

 = +(Sk, b
0
) and Sk

OFF
 = (Sk, b

0
). 

(3) S10  k
ON

 = +(S10  k, b
1
) and S10  k

OFF
 = (S10  k, b

1
). 

(4) If ((Detect(Sk
ON

) == true) AND (Detect(S10  k
ON

) == false) AND 

(Detect(S10  k
OFF

) == false)) Then 

(4a) Append-Tail(S10  k, b
1
). 

(4b) Sk = (Sk
ON

, Sk
OFF

). 

(4c) Return a true to the caller and terminate the execution of the function. 

(5) Else 

(5a) Sk = (Sk
ON

, Sk
OFF

) and S10  k = (S10  k
ON

, S10  k
OFF

). 

EndIf 

EndFor 

(6) Return a false to the caller and terminate the execution of the function. 

EndFunction 
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Lemma 6-16: The function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

learns how to check whether in the board the second square, the fourth square, the 

sixth square or the eighth square that are all called side squares are occupied by the 

opponent or not and how to also check whether the opposite of each side square is an 

empty square or not. 

 

Proof: 

 

Step (1) is a single loop and is used to check whether each side square is occupied 

by the opponent and the opposite of each side square is an empty square or not. On 

each execution of Step (2) and Step (3), they use two extract operations to generate 

tubes Sk
ON

, Sk
OFF

, S10  k
ON

 and S10  k
OFF

. In tubes Sk
ON

 and S10  k
ON

, DNA strands 

respectively encode an O and an X, and in tubes Sk
OFF

 and S10  k
OFF

, DNA strands 

respectively encode an X and an O. Next, on each execution of Step (4), it uses three 

detect operations to check whether the kth square (tube Sk
ON

) that is a side square is 

occupied by the opponent and the (10  k)th square (tubes S10  k
ON

 and S10  k
OFF

) that 

is the opposite of the side square is an empty square or not. If a true and two false are 

returned, then an X is filled into the opposite of the side square from each execution of 

Step (4a), tubes Sk
ON

 and Sk
OFF

 are poured into tube Sk from each execution of Step 

(4b) and from each execution of Step (4c) a true is returned to the caller and the 

execution of the function is terminated. Otherwise, from each execution of Step (5a), 

tubes Sk
ON

 and Sk
OFF

 are poured into tube Sk and tubes S10  k
ON

 and S10  k
OFF

 are 

poured into tube S10  k. After each operation from Step (2) through Step (5a) is all 

implemented, if no X is filled into the opposite of any side square, then from each 

execution of Step (6) a false is returned to the caller and the execution of the function 

is terminated. Therefore, it is at once inferred from the statements above that the 

function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to check 

whether in the board the second square, the fourth square, the sixth square or the 

eighth square that are all called side squares are occupied by the opponent or not and 

how to also check whether the opposite of each side square is an empty square or not. 

 

S. Biological Algorithms of Deciding Whether Corner Squares Are Occupied by the 

Opponent and the Opposite of Each Corner Square Is an Empty Square 

The following function, Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), 

is used to decide whether in the board the first square, the third square, the seventh 

square or the ninth square that are all called corner squares are occupied by the 

opponent or not and to also simultaneously check whether the opposite of each corner 
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square is an empty square or not. If the condition above is satisfied, then an X is filled 

into the opposite of the corner square. The first parameter T0 consists of DNA strands 

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes 

S1 through S9 that are, subsequently, the second parameter through the tenth parameter 

are employed to store the contents of nine squares. 

 

Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

(1) If (Checking-Opponent-on-Corner(S1, S9)) Then 

(1a) Return a true to the caller and terminate the execution of the function. 

(2) ElseIf (Checking-Opponent-on-Corner(S3, S7)) Then 

(2a) Return a true to the caller and terminate the execution of the function. 

(3) ElseIf (Checking-Opponent-on-Corner(S7, S3)) Then 

(3a) Return a true to the caller and terminate the execution of the function. 

(4) ElseIf (Checking-Opponent-on-Corner(S9, S1)) Then 

(4a) Return a true to the caller and terminate the execution of the function. 

(5) Else 

(5a) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-17: The function Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) 

learns how to decide whether in the board the first square, the third square, the 

seventh square or the ninth square that are all called corner squares are occupied by 

the opponent or not and also learns how to decide whether the opposite of each corner 

square is an empty square or not. 

 

Proof: 

 

On each execution of Step (1) through Step (4), they respectively call the function 

Checking-Opponent-on-Corner(Sa, Sb) to test whether tubes (four corner square) S1, 

S3, S7, or S9 are occupied by the opponent or not and also simultaneously test whether 

tubes (the opposite of each corner square) S9, S7, S3, or S1 are an empty square or not. 

If a true is returned from the function Checking-Opponent-on-Corner(Sa, Sb), then 

from each execution of Step (1a), Step (2a), Step (3a) or Step (4a) a true is returned to 

the caller and the execution of the function is terminated. Otherwise, from each 

execution of Step (5a) a false is returned to the caller and the execution of the function 

is terminated.    
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T. Biological Algorithms of Deciding Whether One of Corner Squares Is Occupied by 

the Opponent and Its Opposite Is an Empty Square 

The following function, Checking-Opponent-on-Corner(Sa, Sb), is employed to 

check whether one of four corner squares is occupied by the opponent and its opposite 

is an empty square or not. Tube Sa that is the first parameter is used to store the 

content for one of four corner squares (S1, S3, S7, or S9), and tube Sb that is the second 

parameter is applied to store the content for its opposite (S9, S7, S3, or S1). 

 

Checking-Opponent-on-Corner(Sa, Sb) 

(1) Sa
ON

 = +(Sa, b
0
) and Sa

OFF
 = (Sa, b

0
) and Sb

ON
 = +(Sb, b

1
) and Sb

OFF
 = (Sb, b

1
). 

(2) If ((Detect(Sa
ON

) == true) AND (Detect(Sb
ON

) == false) AND 

(Detect(Sb
OFF

) == false)) Then 

(2a) Append-Tail(Sb, b
1
). 

(2b) Sa = (Sa
ON

, Sa
OFF

). 

(2c) Return a true to the caller and terminate the execution of the function. 

(3) Else 

(3a) Sa = (Sa
ON

, Sa
OFF

) and Sb = (Sb
ON

, Sb
OFF

). 

(3b) Return a false to the caller and terminate the execution of the function. 

EndIf 

EndFunction 

 

Lemma 6-18: The function Checking-Opponent-on-Corner(Sa, Sb) learns how to 

decide whether in the board the first square, the third square, the seventh square or the 

ninth square that are all called corner squares are occupied by the opponent or not and 

also learns how to decide whether the opposite of each corner square is an empty 

square or not. 

 

Proof: 

 

On each execution of Step (1), it applies two extract operations to generate tubes 

Sa
ON

, Sa
OFF

, Sb
ON

 and Sb
OFF

. In tubes Sa
ON

 and Sb
ON

, DNA strands respectively encode 

an O and an X, and in tubes Sa
OFF

 and Sb
OFF

, DNA strands respectively encode an X 

and an O. Next, on each execution of Step (2), it uses three detect operations to check 

whether tube Sa
ON

 that is a corner square is occupied by the opponent and tubes Sb
ON

 

and Sb
OFF

 that is the opposite of the corner square is an empty square or not. If a true 

and two false are returned, then an X is filled into the opposite of the corner square 

from each execution of Step (2a), tubes Sa
ON

 and Sa
OFF

 are poured into tube Sa from 
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each execution of Step (2b) and from each execution of Step (2c) a true is returned to 

the caller and the execution of the function is terminated. Otherwise, from each 

execution of Step (3a), tubes Sa
ON

 and Sa
OFF

 are poured into tube Sa, tubes Sb
ON

 and 

Sb
OFF

 are poured into tube Sb and from each execution of Step (3b) a false is returned 

to the caller and the execution of the function is terminated.    

VII. ASSESSMENT OF COMPLEXITY TO THE PROPOSED 

BIOLOGICAL ALGORITHMS 

The following lemma is used to show volume complexity and time complexity of 

the proposed biological algorithms to play a tic-tac-toe. 

 

Lemma 7-1: Playing a tic-tac-toe with human together can be completed with O(1) 

biological operations, O(1) DNA strands, O(1) tubes and the number of the base pairs 

of the longest DNA strand O(1). 

 

Proof: 

 

From the execution of Step (1) and Step (2) in Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, 

S5, S6, S7, S8, S9), it takes constant biological operations and constant tubes. Because 

the execution of Step (3) only gives one selection who go first to play it, no biological 

operation are implemented. Next on the execution of Step (4), it completes one 

moving of the opponent with constant biological operations and constant tubes. Next, 

on the execution of Step (5), it completes one moving of the computer with constant 

biological operations and constant tubes. The opponent and the computer at most only 

give their five selections which can be completed with constant biological operations 

and constant tubes, and the contents of nine squares are encoded by constant DNA 

strands with constant length. Therefore, it is at once inferred from the statements 

above that playing a tic-tac-toe with human together can be completed with O(1) 

biological operations, O(1) DNA strands, O(1) tubes and the number of the base pairs 

of the longest DNA strand O(1).  

VIII. CONCLUSIONS 

Playing games is the behavior of human’s intelligence, and a tic-tac-toe is one of 

the simplest games. Nine tubes S1 through S9 can be regarded nine variables that are 

used to store an O or an X of each square. Tube T0 also can be regarded as a variable 

storing r
0
 that predicates that there are no three Os or three Xs to make three-in-a-row 

or storing r
1
 that predicates that there are three Os or three Xs to make three-in-a-row. 
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From a biological standpoint, all sequences generated to represent each bit must be 

checked to ensure that the DNA strands that they encode do not form unwanted 

secondary structures with one another (i.e., strands remain separate at all times, and 

only bind together when this is required). The biggest challenge of implementing the 

proposed method is actually to the problem of strand design that has been addressed at 

length to minimize the possibility of unwanted binding. However, from the 

implementation of the proposed method, O(1) DNA strands, O(1) tubes and the 

number of the base pairs of the longest DNA strand O(1) are needed. This is to say 

that the problem of strand design can be easily overcome. 

 

From Lemma 7-1, playing a tic-tac-toe with human together can be implemented 

with O(1) biological operations that are a constant time. This is a very useful 

algorithm for consideration in a DNA implementation. With current biotechnology, 

the time for each operation is at least one second. Realistically, steps like gel 

electrophoresis take much longer, but for the sake of argument say each biological 

operation takes one second. Because from the proposed algorithm constant biological 

operations are implemented, it takes about constant seconds to obtain the result of 

who wins the game. 

 

Bonnet et al. in [6] used intensity of green fluorescent protein to encode two values ‘0’ 

and ‘1’ of a bit and implemented AND, NAND, OR, XOR, NOR, and XNOR gates. 

This gives another very good choice for representing two values ‘0’ and ‘1’ of a bit. In 

the past two methods, we designed two kinds of plasmids and the required 

polymerases for generating green fluorescent protein and blue fluorescent protein 

encoding two marks ‘O’ and ‘X’. But after checking the fluorescent induction systems 

of E. coli, we realized that it would take more than 2 hours to get a detectable level of 

fluorescent proteins after chemical induction. This is to say that when one of two 

players selects his single move, after at least two hours his mark just can be encoded. 

This indicates that this will be a major limitation of the biological experiment. 
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