
Learning Biological Algorithms of Playing Tic-Tac-Toe Game

on a Biological Computer

Weng-Long Chang
1
, Athanasios V. Vasilakos

2
, Ying-Chi Lin

3
,

Chun-Wei Tung
4
 and Chia-Chi Wang

5

1
Department of Computer Science and Information Engineering,

National Kaohsiung University of Applied Sciences

 No 415, Chien Kung Road, Kaohsiung 807, Taiwan, R. O. C.

E-mail: changwl@cc.kuas.edu.tw

2
Department of Computer Science, Electrical and Space Engineering

Luleå University of Technology

SE-931 87 Skellefteå, Sweden

E-mail: th.vasilakos@gmail.com

3, 4, 5

School of Pharmacy,

Kaohsiung Medical University

100 Shih-Chuan 1
st
 Road, Kaohsiung 807, Taiwan, R. O. C.

E-mail:
3
yclin@kmu.edu.tw,

4
cwtung@kmu.edu.tw and

5
chiachiwang@kmu.edu.tw

 1

Abstract

A tic-tac-toe is a two-person game in which there is a three-by-three array of blank

squares. Players occupy squares alternately, marking the square occupied by an O or

an X, respectively. The first player who attains a horizontal, vertical, or diagonal

sequence of three of his symbols wins. If the whole array is filled without either

player’s attaining such a sequence, the game is a draw. Newell and Simon in [1]

proposed the strategy of playing tic-tac-toe as a production system. In this paper, it is

demonstrated that biological operations can be used to learn how to implement the

strategy of playing tic-tac-toe proposed by Newell and Simon where each O and each

X are encoded as DNA strands. In order to achieve this goal, biological algorithms are

proposed to play a tic-tac-toe with one person. Furthermore, this work offers clear

evidence of the ability of molecular computing to learn human’s intelligence.

Keywords  Molecular Computing, Biological Algorithms, Tic-Tac-Toe

 2

I. INTRODUCTION

Playing games is the behavior of human’s intelligence. A tic-tac-toe in [1] is a

two-person game in which there is a three-by-three array of blank squares and players

occupy squares alternately, marking the square occupied by an O or an X, respectively.

The first player who attains a horizontal, vertical, or diagonal sequence of three of his

symbols wins. If the whole array is filled without either player’s attaining such a

sequence, the game is a draw.

Feynman [2] in 1961 first presented molecular computation, but his idea was not

implemented by experiment until a few decades later. In 1994 Adleman [3] succeeded

in solving an instance of the Hamiltonian path problem in a test tube, just by handling

DNA strands. Many famous biological algorithms have been proposed for solving

many difficult problems in [4-5]. An interesting open question is asking whether

bio-molecular operations and DNA strands are able to learn the behavior of human’s

intelligence (for example, playing tic-tac-toe that is the simplest game with human

together) or not.

Our major contributions in this paper are as follows.

 We show that biological operations and DNA strands are able to learn the

behavior of human’s intelligence.

 We also demonstrate that the proposed biological method that is made of

biological operations and DNA strands is able to play tic-tac-toe with human

together.

The rest of the paper is organized as follows: in Section II, DNA model of

computation is introduced. In Section III, the motivation of this work is given. In

Section IV, the development of molecular computing is illustrated. In Section V, the

strategy of playing tic-tac-toe as a production system proposed by Newell and Simon

in [1] is introduced. In Section VI, based on learning the Newell-Simon strategy, the

biological algorithms of playing tic-tac-toe with human together are proposed. In

Section VII, assessment of complexity to the proposed biological algorithms is given.

In Section VIII, a brief conclusion is given.

II. DNA MODEL OF COMPUTATION

The genetic information of cellular organisms is encoded by DNA

 3

(deoxyribonucleic acid) in [4, 5]. DNA includes polymer chains which are commonly

regarded as DNA strands. By means of an automated process, DNA strands may be

synthesized to order. Each strand may be made of a sequence of nucleotides, or bases,

attached to a sugar-phosphate “backbone”. The four DNA nucleotides are adenine,

guanine, cytosine and thymine, commonly abbreviated to A, G, C and T, respectively.

By chemical convention, each strand has a 5’ end and a 3’ end. Because one end of the

single strand has a free (i.e., unattached to another nucleotide) 5’ phosphate group,

and the other has a free 3’ deoxyribose hydroxyl group, therefore, any single strand

has a natural orientation, as described in [4].

The classical double helix of DNA is formed when two separate single strands

bond. Bonding occurs by the pairwise attraction of bases: A bonds with T and G bonds

with C. The pairs (A, T) and (G, C) are therefore known as complementary base pairs

in [4]. Double-stranded DNA may be denatured into single strands by heating the

solution to a temperature determined by the composition of the strand in [4]. Heating

breaks the hydrogen bonds between complementary strands (Figure 2-1) in [4]. Beca-

5’ G-G-A-T-A-G-C-T-G-G-T-A 3’

｜｜｜｜｜｜｜｜｜｜｜｜

3’ C-C-T-A-T-C-G-A-C-C-A-T 5’

Annealing promoted Denaturing promoted

by cooling solution by heating solution

5’ G-G-A-T-A-G-C-T-G-G-T-A 3’

3’ C-C-T-A-T-C-G-A-C-C-A-T 5’

Figure 2-1: DNA denaturing and annealing.

use a G − C pair is joined by three hydrogen bonds, the temperature required to break

it is slightly higher than that for an A − T pair, joined by only two hydrogen bonds in

[4]. This factor must be taken into account when designing sequences to represent

computational elements. Annealing is the reverse of melting, whereby a solution of

single strands is cooled, and allowing complementary strands to bind together (Figure

2-1) in [4]. In double-stranded DNA, if one of the single strands contains a

discontinuity (i.e., one nucleotide is not bonded to its neighbor) then this may be

 4

repaired by DNA ligase in [4]. This allows us to create a unified strand from several

bound together by their respective complements.

The following bio-molecular operations cited in [3, 5, 7, 8, 9] will be applied to

learn how human play a tic-tac-toe. From [4], the implementation of eight biological

operations that are denoted in Definition 2-1 through Definition 2-8 is described

below. Each implementation illustrates only one possible way to perform the

computational behavior of one biological operation. Future improvements in

laboratory techniques may well yield more efficient and error-resistant

implementations of biological operations, but this does not diminish the theoretical

power of the model. We simply offer descriptions of the implementation in order to

show the feasibility, in principle, of executing biological operations in vitro (that is to

say, every biological operation is completely feasible using existing laboratory

techniques). From a biological standpoint, all sequences generated to represent bits

must be checked to ensure that the DNA strands that they encode do not form

unwanted secondary structures with one another (i.e., strands remain separate at all

times, and only bind together when this is required). The problem of strand design for

DNA-based computing has been addressed at length, and we use the methods

described in [4] to minimize the possibility of unwanted binding.

Definition 2-1: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit

xj, the bio-molecular operation “Append-Head” appends xj onto the head of every

element in set X. The formal representation is written as Append-Head(X, xj) = {xj xn

xn  1  x2 x1  xd  {0, 1} for 1  d  n and xj  {0, 1}}.

Definition 2-2: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit

xj, the bio-molecular operation, “Append-Tail”, appends xj onto the end of every

element in set X. The formal representation is written as Append-Tail(X, xj) = {xn xn  1

 x2 x1 xj  xd  {0, 1} for 1  d  n and xj  {0, 1}}.

Two strands (labeled S and T in Figure 2-2) may be concatenated by the following

process: create a linker strand, which has a sequence that is the complement of S

followed by the complement of T. This linker strand is affixed to a surface with a

magnetic bead (Figure 2-2(a)). Strand S is then added to the solution, and anneals with

the linker strand in the appropriate position (Figure 2-2(b)). Strand T is then added to

the solution, and this also anneals with the linker strand, at a position immediately

adjacent to strand S (Figure 2-2(c)). The ligase enzyme is then added to the solution to

 5

seal the “nick” between S and T, forming a single strand which may be freed by

heating the solution to break its bonds with the linker strand (Figure 2-2(d)). The

implementation of the concatenate() operation defined above may easily be used to

append a specific sequence, s, to the head of each strand in a tube X. The sequence s

corresponds, in this case, to the strand S defined in Figure 2-2, and strand T in Figure

2-2 corresponds to the beginning sequence of every strand in the tube X. In this case,

only the beginning sequence of every strand anneals to the linker strand. Clearly, then,

after a series of append-head() operations denoted in Definition 2-1 has been

performed on a strand, its sequence will be made up of a number of sequences

representing bit-strings. A similar implementation can be used to complete the

append-tail() operation denoted in Definition 2-2.

Figure 2-2: Concatenation process: (a) Linker strand affixed to surface. (b) S anneals

to linker strand. (c) T anneals to linker strand, adjacent to S. (d) S and T ligated to

form a single strand, which is then freed by heating the solution.

Definition 2-3: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the

bio-molecular operation “Discard(X)” sets X to be an empty set and can be

represented as “X = ”.

The implementation of the Discard(X) operation denoted in Definition 2-3 is to

 6

discard the content of a tube X, and the tube X is replaced by a new, empty tube. Since

the number of tubes will generally be one, this is considered to be a constant-time

operation.

Definition 2-4: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the

bio-molecular operation “Amplify(X, {Xi})” creates a number of identical copies Xi of

set X, and then “Discard(X)”.

The implementation of the Amplify(X, {Xi}) operation denoted in Definition 2-4 is

that the polymerase chain reaction (PCR) is used with its initial input being a tube X.

This reaction is used to massively amplify (possibly small) amounts of DNA that

begin and end with specific primer sequences. As every strand in the tube X is

delimited by these sequences, they are all copied by the reaction. The result of the

PCR is then divided equally between the specified number of tubes (the number of

PCR cycles may therefore be adjusted to ensure a constant DNA volume per tube,

regardless of the number of tubes).

Definition 2-5: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n} and a bit,

xj, if the value of xj is equal to one, then the bio-molecular extract operation creates

two new sets, +(X, xj
1
) = {xn xn  1  xj

1
  x2 x1  xd  {0, 1} for 1  d  j  n}and

(X, xj
1
) = {xn xn  1  xj

0
  x2 x1  xd  {0, 1} for 1  d  j  n}. Otherwise, it

produces another two new sets, +(X, xj
0
) = {xn xn  1  xj

0
  x2 x1  xd  {0, 1} for 1

 d  j  n}and (X, xj
0
) = {xn xn  1  xj

1
  x2 x1  xd  {0, 1} for 1  d  j  n}.

The implementation of the extract operation denoted in Definition 2-5 is that

affinity purification is applied to extract any strands from a tube X containing a short

strand, s, that encodes the value of a bit, xj. This process applies a probe sequence,

which is complementary to the target sequence being searched for. Probes are fixed to

a surface, and capture strands through annealing any strands containing the target

sequence. Captured strands may then be separated from the rest of the population by

placing them in a separate solution, which is heated to break the bonds between the

probes and the target sequence. The probe used is therefore the complementary

sequence of s. Retained strands are placed in one new tube, U = +(X, s), and the

remainder are placed in another new tube, V = (X, s).

Definition 2-6: Given m sets X1  Xm, the bio-molecular merge operation, merge(X1,

, Xm) = (X1, , Xm) = X1    Xm.

 7

The implementation of the merge operation denoted in Definition 2-6 is that the

contents of tubes (sets) {Xi} are simply merged by pouring. The number of tubes will

generally be low, so this is considered to be a constant-time operation.

Definition 2-7: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the

bio-molecular operation “Detect(X)” returns true if X  . Otherwise, it returns false.

The implementation of the detect operation denoted in Definition 2-7 is that a

tube X is run through a gel electrophoresis process, which is generally used to sort

DNA strands on length. Any DNA present in X shows up as a visible band in the gel;

if DNA strands of the appropriate length are present, the operation returns true. If

there are no visible bands corresponding to DNA of the correct length, then the

operation returns false. The length criterion is used to ensure that the DNA fragments

present do not cause a false positive result. If the DNA in the band corresponding to

the contents of X is required in a subsequent processing step, the band may be excised

from the gel by cutting, and then is soaked to remove the strands for further use.

Definition 2-8: Given set X = {xn xn  1  x2 x1  xd  {0, 1} for 1  d  n}, the

bio-molecular operation “Read(X)” describes any element in X. Even if X contains

many different elements, the bio-molecular operation can give an explicit description

of exactly one of them.

The implementation of the read operation denoted in Definition 2-8 is that gel

electrophoresis is used to sort DNA strands in a tube X by size. Electrophoresis is the

movement of charged molecules in an electric field. Since DNA molecules carry a

negative charge, when placed in an electric field they tend to migrate toward the

positive pole. The rate of migration of a molecule in an aqueous solution depends on

its shape and electric charge. Since DNA molecules have the same charge per unit

length, they all migrate at the same speed in an aqueous solution. However, if

electrophoresis is carried out in a gel (usually made of agarose, polyacrylamide, or a

combination of the two), the migration rate of a molecule is also affected by its size.

This is due to the fact that the gel is a dense network of pores through which the

molecules must travel. Smaller molecules therefore migrate faster through the gel,

thus sorting them according to size. DNA strands of the appropriate length in base

pairs are measured.

 8

III. MOTIVATION OF THIS WORK

After Adleman’s article in [3] that is a milestone was published in 1994, many

biological algorithms were proposed to solve many NP-Complete Problems with the

number of bits n that is the size of those problems. In those methods, the first phase is

to construct 2
n
 DNA strands as their solution space. Next, in the second phase, 2

n

DNA strands were filtered through biological operations. Next, in the third phase,

illegal solutions are removed and legal solutions are reserved. Finally, in the fourth

phase, reading the required answer(s) is completed. For a biological algorithm, the

first biggest challenge is to that the problem of DNA strand design has been addressed

at length. From a biological standpoint, all sequences generated to represent bits must

be checked to ensure that the DNA strands that they encode do not form unwanted

secondary structures with one another (i.e., strands remain separate at all times, and

only bind together when this is required). The second biggest challenge is to how 2
n

DNA strands are filtered through biological operations without occurring of errors.

Bonnet et al. in [6] used intensity of green fluorescent protein to encode two values ‘0’

and ‘1’ of a bit and implemented AND, NAND, OR, XOR, NOR, and XNOR gates.

This gives another very good choice for representing two values ‘0’ and ‘1’ of a bit.

An interesting open question is asking whether biological algorithms are able to learn

the behavior of human’s intelligence (for example, playing with human together a

tic-tac-toe that is the simplest game) or not. Our motivation is to find the answer of

the interesting open question.

IV. ILLUSTRATION OF RELATIVE WORKS ON MOLECULAR COMPUTING

From [10], Qian and Winfree showed that arbitrary chemical reaction networks

can in principle be implemented with DNA strand displacement cascades was a major

step toward proving the generality and universality of pure-DNA systems. From [11],

Velasco et al. presented transport spectroscopy measurements of Landau level gaps in

double-gated suspended bilayer graphene with high mobilities in the quantum Hall

regime. From [12], they investigated the possibility of constructing an exponentially

large number of sequences from a short initial sequence and simple replication rules,

including those resembling genomic replication processes. From [13], a

polynomial-time algorithm was proposed for that decides, given a matching that is

stable under the partial preference orderings, whether that matching is stable and

optimal for one side of the market under some refinement of the partial orders. From

[14], Cook et al. examined that the self-assembly of structures growing at

“temperature 1”, meaning that no cooperativity was needed for the bonding of new

elements – if a bond matched, the particle could stick. From [15], Sun et al.

 9

characterized methods to protect linear DNA strands from exonuclease degradation in

an Escherichia coli based transcription-translation cell-free system, as well as

mechanisms of degradation. From [16], Sadowski et al. demonstrated the

“developmental” self-assembly of a DNA tetrahedron.

From [17], Qian et al. proposed a chemical implementation of stack machines — a

Turing-universal model of computation similar to Turing machines — using DNA

strand displacement cascades as the underlying chemical primitive. From [18], their

results suggested that DNA strand displacement cascades could be used to endow

autonomous chemical systems with the capability of recognizing patterns of

molecular events, making decisions and responding to the environment. From [19],

using a simple DNA reaction mechanism based on a reversible strand displacement

process, they experimentally demonstrated several digital logic circuits, culminating

in a four-bit square root circuit that comprises 130 DNA strands. From [20], it was

reported that complex molecular circuits with reliable digital behavior can be created

using DNA strands. It was introduced from [21] that natural computing was

concerned with human-designed computing inspired by nature as well as with

computation taking place in nature. From [22], it is shown how the same principles

can be applied to breaking the Data Encryption Standard. From [23], molecular

algorithms of implementing bio-molecular databases on a biological computer were

proposed.

From [24], it is showed that the proposed quantum algorithm of implementing

Boolean circuits yielded from the DNA-based algorithm solving the vertex-cover

problem in [25, 26] of any graph G with m edges and n vertices is the optimal

quantum algorithm, and also is demonstrated that mathematical solutions of the same

bio-molecular solutions are represented in terms of a unit vector in the

finite-dimensional Hilbert space. It is indicated from the hidden variable theorem in

[27] which in the case of computing states that no classical computer can simulate a

quantum computer without suffering from an exponential slowdown. This also is to

say that any classical computer can simulate a quantum computer in term of

polynomial time is the violation of the hidden variable theorem. From [28], it is

shown that arithmetical operations of complex vectors can be implemented by means

of the proposed DNA-based algorithms.

V. ILLUSTRATION OF THE NEWELL-SIMON METHOD TO PLAY A

TIC-TAC-TOE

 10

A representation of a tic-tac-toe board is shown in Figure 5-1. Nine blank squares

on the tic-tac-toe board in Figure 5-1 are numbered as one through nine. The first

square, the third square, the seventh square and the ninth square are called corner

squares. The second square, the fourth square, the sixth square and the eighth square

are called side squares. The fifth square is called a center square. The first player who

attains a horizontal, vertical, or diagonal sequence of three of his symbols wins. If the

whole array is filled without either player’s attaining such a sequence, the game is a

draw.

1 2 3

4 5 6

7 8 9

Figure 5-1: The tic-tac-toe board

Newell and Simon in [1] proposed the good strategy of playing a tic-tac-toe.

Because the game is a draw when viewed from a game-theoretic standpoint, good

means here a strategy that will guarantee a draw and that will give the opponent as

many opportunities as possible of making a losing mistake. The Newell-Simon

method in [1] is described below. In the Newell-Simon method, it is assumed that own

is a computer with a mark (X) and its opponent is one person with a mark (O).

The Newell-Simon method: Select next moving from a tic-tac-toe board.

(1) If one player (a computer) finds that there is a line with two of the computer’s

marks and one blank, then an X is filled into the blank square and the

Newell-Simon method is terminated.

(2) If one player (a computer) checks that there is a line with two of the opponent’s

marks and one blank, then an X is filled into the blank square to protect that the

opponent wins the game and the Newell-Simon method is terminated.

(3) If one player (a computer) finds that there are two lines, each with one of the

computer’s mark and two blanks, intersecting in a single blank square, then an X

is filled into the single blank square to create two lines in which each line has two

computer’s marks and one blank, thus forking the opponent and the

Newell-Simon method is terminated.

(4) If one player (a computer) checks whether in the board the fifth square that is

called a center square is empty or not and the checked condition is satisfied, then

 11

an X is filled into the center square and the Newell-Simon method is terminated.

(5) If one player (a computer) checks whether in the board the second square, the

fourth square, the sixth square or the eighth square that are all called side squares

are occupied by the opponent or not and also simultaneously checks whether the

opposite of each side square is an empty square or not and the checked condition

is satisfied, then an X is filled into the opposite of the side square and the

Newell-Simon method is terminated.

(6) If one player (a computer) checks whether in the board the first square, the third

square, the seventh square or the ninth square that are all called corner squares are

occupied by the opponent or not and also simultaneously checks whether the

opposite of each corner square is an empty square or not and the checked

condition is satisfied, then an X is filled into the opposite of the corner square and

the Newell-Simon method is terminated.

Lemma 5-1: From the Newell-Simon method, next moving in a tic-tac-toe board is

selected.

Proof: Please refer to [1]. 

VI. BIOLOGICAL ALGORITHMS OF PLAYING A TIC-TAC-TOE

Biological operations and DNA strands will be used to learn how to use the

Newell-Simon method to together play a tic-tac-toe with human. Biological

algorithms are proposed in the following subsections.

A. Data Structures of Playing a Tic-tac-toe

First we will develop a representation for the tic-tac-toe board shown in Figure

5-1. We will number the blank squares on the tic-tac-toe board shown in Figure 5-1

this way: we will use nine tubes (sets) to encode nine squares (positions) and to store

the contents of each position (square) on the tic-tac-toe board shown in Figure 5-1. It

is assumed that tube (set) Sk for 1  k  9 is used to encode the k
th

 square (position)

and to store its contents. Each tube Sk for 1  k  9 is initialized as an empty tube. An

empty tube Sk for 1  k  9 means that the k
th

 square (position) is not occupied by

players.

Two distinct DNA strands (sequences) in [3-5, 7-9] are designed to minimize the

possibility of unwanted binding and their length is  base pairs. One represents the

value “0” for a binary variable with a bit b and the other represents the value “1” for it.

 12

For the sake of convenience in our presentation, it is assumed that b
1
 denotes the

value of b to be 1, b
0

 defines the value of b to be 0, and b defines the value of b to be 0

or 1. b
0
 is applied to encode an O that is one of two marked symbols, and b

1
 is

employed to encode an X that is also one of two marked symbols. If tube (set) Sk for 1

 k  9 contains b
0
 (DNA strands), then this means that the k

th
 square (position) is

occupied and is filled by an O. Similarly, if tube (set) Sk for 1  k  9 contains b
1

(DNA strands), then this means that the k
th

 square (position) is occupied and is filled

by an X. Of course, if tube (set) Sk for 1  k  9 does not have any DNA strand, then

this means that the k
th

 square (position) is empty. Players that include a biological

computer and his opponent can make a move by destructively changing one of the

board positions from an empty content to an O (b
0
) or an X (b

1
).

For selecting the best move, it must have some way of analyzing the configuration

of the board. It is very clear from tic-tac-toe that there are only eight ways to make

three-in-a-row: three horizontally, three vertically, and two diagonally. Three

horizontal triplets of making three-in-a-row are, respectively, (1 2 3), (4 5 6) and (7 8

9). Three vertical triplets are, respectively, (1 4 7), (2 5 8) and (3 6 9). Two diagonal

triplets are, respectively, (1 5 9) and (3 5 7). This is to say that one of two player wins

with that three of his symbols appear the same triplet. For example, the opponent wins

with that three Os appear in the right diagonal triplet is (3 5 7), indicating the contents

of elements three, five, and seven of a tic-tac-toe board are all Os.

Two distinct DNA strands (sequences) in [3-5, 7-9] are designed to minimize the

possibility of unwanted binding and their length is  base pairs. One represents the

value “0” for a binary variable with a bit r and the other represents the value “1” for it.

For the sake of convenience in our presentation, it is assumed that r
1
 denotes the value

of r to be 1, r
0

 defines the value of r to be 0, and r defines the value of r to be 0 or 1.

Bit r
0
 is used to encode the result that indicates that there are three Os to make

three-in-a-row, and bit r
1
 is applied to encode the result that is that there are three Xs

to make three-in-a-row. It is assumed that tube T0 is used to store the result that is

whether the contents of the board positions specified by eight triplets make

three-in-a-row or not. If tube (set) T0 contains r
0
 (DNA strands), then this indicates

that in the current configuration of the board there are no three Xs or three Os to make

three-in-a-row. Similarly, if tube (set) T0 contains r
1
 (DNA strands), then this

indicates that in the current configuration of the board there are three Xs or three Os

to make three-in-a-row.

B. System Architecture of Playing a Tic-tac-toe

 13

Now, let us look at the basic framework for playing the game. The function

Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) first offers to set a new, empty

board as appropriate input. Then, it also offers the opponent the choice to go first, and

then calls either Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) or

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to begin to play the game. In the

function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), the first parameter that

is tube T0 stores the result that is whether the contents of the board positions specified

by eight triplets make three-in-a-row or not. The second parameter to the tenth

parameter that are, subsequently, tubes S1 through S9 store respectively the contents of

nine squares (positions), and are all set to empty tubes in the function by means of

calling Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(2) Discard(T0).

(3) If (the opponent would like to go first) Then

(4) Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

Else

(5) Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

EndIf

EndFunction

Lemma 6-1: The function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers

beginning of playing a tic-tac-toe.

Proof:

On the first execution of Step (1), it calls the function Make-Board(S1, S2, S3, S4,

S5, S6, S7, S8, S9) to set nine tubes to empty tubes. After it is completed, a new and

empty board is obtained. Next, on the first execution of Step (2), it uses the discard

operation to set tube T0 to an empty tube. Next, from the execution of Step (3) if the

opponent would like to go first, then the function Opponent-Move(T0, S1, S2, S3, S4,

S5, S6, S7, S8, S9) is called by the execution of Step (4).

When the opponent goes first, the function Opponent-Move(T0, S1, S2, S3, S4, S5,

S6, S7, S8, S9) asks the opponent to type in a move and checks that the move is legal.

The content of the board is updated by it and then the function Computer-Move(T0,

 14

S1, S2, S3, S4, S5, S6, S7, S8, S9) is called. However, there are two special cases to cause

not to call the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). The first

special case is that if the opponent’s move makes a three-in-a-row, the opponent has

won and the game is over. The second special case is that if there are no empty spaces

left on the board, the game has ended in a tie.

If the opponent does not want to go first, then the function Computer-Move(T0,

S1, S2, S3, S4, S5, S6, S7, S8, S9) is called from the execution of Step (5). When the

computer goes first, the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

selects the best move. The content of the board is also updated by it and then the

function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is called. Similarly, there

are two special cases to cause not to call the function Opponent-Move(T0, S1, S2, S3,

S4, S5, S6, S7, S8, S9). The first special case is that if the computer’s move makes a

three-in-a-row, the computer has won and the game is over. The second special case is

that if there are no empty spaces left on the board, the game has ended in a tie.

Therefore, it is at once inferred that the function Play-Tic-Tac-Toe(T0, S1, S2, S3, S4,

S5, S6, S7, S8, S9) offers to beginning of playing a tic-tac-toe. 

C. Creating a New Tic-tac-toe Board for Playing a Tic-tac-toe

The following function (algorithm), Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9),

is used to create a new tic-tac-toe board. The first parameter to the ninth parameter

that are, subsequently, tubes S1 through S9 store respectively the contents of nine

squares (positions), and are all set to empty tubes after the function Make-Board(S1,

S2, S3, S4, S5, S6, S7, S8, S9) is completed.

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For k = 1 to 9 Step 1

(1a) Discard(Sk).

EndFor

EndFunction

Lemma 6-2: A new tic-tac-toe board can be created from the function

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

Proof:

The function, Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9), is implemented by

means of using the discard operation. It consists of one single loop. The single loop is

 15

applied to set the content of each square (position) to be empty. Mathematical

induction is applied to complete the proof. When the value of the loop index variable,

k, is equal to one, on the first execution of Step (1a) embedded in the loop, it uses the

discard operation to set the content of the first square (position) to be empty. This is to

say that the first square (position) on a new tic-tac-toe board is not occupied by

players. Next, when the value of the loop index variable, k, is equal to l for 2  l  9 

1, on the l
th

 execution of Step (1a) embedded in the loop, it employs the discard

operation to set the content of the l
th

 square (position) to be empty. This indicates that

the l
th

 square (position) on a new tic-tac-toe board is not occupied by players. Next,

when the value of the loop index variable, k, is equal to (l + 1) for 2  l  9  1, on the

(l + 1)
th

 execution of Step (1a) embedded in the loop, it applies the discard operation

to set the content of the (l + 1)
th

 square (position) to be empty. This is to say that the (l

+ 1)
th

 square (position) on a new tic-tac-toe board is not occupied by players. Hence,

it is at once inferred that a new tic-tac-toe board can be created from the function

Make-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9). ■

D. The Strategy of the Move of the Opponent to Play a Tic-tac-toe

The following function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers

the strategy of the move of the opponent to play a tic-tac-toe, calls the function

Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) that asks the opponent to type in

a move, and checks that the move is legal and updates the board. Next, the function

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls the function

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). But there are two special cases

where the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) should not be

called. First, if the opponent’s move makes a three-in-a-row, then the opponent has

won and the game is over. Second, if there are no empty spaces left on the board, the

game has ended in a tie. In the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9), the first parameter T0 contains DNA strands encoding the result of predicating

whether there is any a three-in-a-row or not. Tubes S1 through S9 that are,

subsequently, the second parameter through the tenth parameter are used to store the

contents of nine squares (positions).

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(2) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(3) Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

(4) If (Detect(T0) == true) then

(5) A string with ‘You (the opponent) wins’ is printed out.

 16

(6) The execution of the function is terminated.

Else

(7) If ((Detect(S1) == true) AND (Detect(S2) == true) AND (Detect(S3) == true)

AND (Detect(S4) == true) AND (Detect(S5) == true) AND (Detect(S6) ==

true) AND (Detect(S7) == true) AND (Detect(S8) == true) AND (Detect(S9)

== true)) then

(8) A string with ‘The game has ended in a tie’ is printed out.

(9) The execution of the function is terminated.

Else

(10) Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

EndIf

EndIf

EndFunction

Lemma 6-3: The function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers

the opponent to play the game.

Proof:

On the execution of Step (1), it calls the function Read-A-Legal-Move(S1, S2, S3,

S4, S5, S6, S7, S8, S9) that fills an O into the position selected by the opponent. Next, on

the execution of Step (2), it calls the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8,

S9) that prints out the current configuration of the board after the opponent selected

his move. Next, on the execution of Step (3), it calls the function

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) that decides

whether there are three Os to make a three-in-a-row or not. If there are three Os to

make a three-in-a-row, then tube T0 contains DNA sequences encoding r
1
 that

indicates that the condition is true. Otherwise, tube T0 is an empty tube.

Next, on the execution of Step (4), if a true is returned, then a string with ‘You

(the opponent) wins’ is printed out from the execution of Step (5) and the execution of

the function is terminated from the execution of Step (6). Otherwise, if nine detect

operations all returns a true from the execution of Step (7), then a string with ‘The

game has ended in a tie’ is printed out from the execution of Step (8) and the

execution of the function is terminated from the execution of Step (9). Otherwise, on

the execution of Step (10) it calls the function Computer-Move(T0, S1, S2, S3, S4, S5,

S6, S7, S8, S9) that offers the computer to play the game. Therefore, it is at once

 17

inferred that the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) offers

the opponent to play the game. 

E. Reading a Legal Move from the Opponent to Play a Tic-tac-toe

Because nine positions in a board are subsequently numbered as one through nine,

a legal move is an integer between one and nine such that the corresponding position

in the board is empty. Therefore, the opponent can select one through nine as his

move. The following function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9)

reads a value from the opponent’s selection (input) and judges whether it is a legal

move or not. If not, the function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9)

asks again that the opponent gives his new selection (move) and again reads another

move. The opponent’s selection is stored in one of tubes S1 through S9 that are

subsequently the first parameter through the ninth parameter.

Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For j = 1 to 9 Step 1

(2) The opponent’s selection is read and is stored into an index variable k.

(3) If (Detect(Sk) == true) then

(4) Append-Tail(Sk, b
0
).

(5) The execution of the function is terminated.

EndIf

EndFor

EndFunction

Lemma 6-4: The function Read-A-Legal-Move(S1, S2, S3, S4, S5, S6, S7, S8, S9) reads

a legal move from the opponent’s selection (input).

Proof:

Step (1) is a single loop and at most allows that the opponent selects his move

nine times. On each execution of Step (2), the opponent’s selection is read and is

stored into an index variable k. Next, on each execution of Step (3), it uses the detect

operation to judge whether the position selected by the opponent is not occupied or

not. If a true is returned, then on each execution of Step (4) it appends a DNA

sequence, encoding the value b
0
, onto the end of every strand in tube Sk and this is to

say that the corresponding square is occupied by the opponent and is filled by an O.

Next, each execution of Step (5), the execution of the function is terminated.

 18

Therefore, it is at once inferred that the function Read-A-Legal-Move(S1, S2, S3, S4,

S5, S6, S7, S8, S9) reads a legal move from the opponent’s selection (input). 

F. Printing out the Configuration of the Board for Playing a Tic-tac-toe

Displaying the configuration of the board for playing a tic-tac-toe is a part of any

tic-tac-toe, and also is a function to take a list of nine elements as input. Each element

will be an X, an O, or an empty content. The following function, Print-Board(S1, S2,

S3, S4, S5, S6, S7, S8, S9), is used to print out the configuration of the board. Tubes S1

through S9 are subsequently the first parameter through the ninth parameter, and are

used to store the content of nine elements.

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For j = 1 to 9 Step 3

(2) For k = j to j + 2 Step 1

(2a) If (Detect(Sk) == false) then

(2b) A space and a string with ‘ | ‘ are printed out.

Else

(2c) Sk
ON

 = +(Sk, b
1
) and Sk

OFF
 = (Sk, b

1
).

(2d) If (Detect(Sk
ON

) == true) then

(2e) An X and a string with ‘ | ‘ are printed out.

(2f) Sk = (Sk, Sk
ON

).

Else

(2g) An O and a string with ‘ | ‘ are printed out.

(2h) Sk = (Sk, Sk
OFF

).

EndIf

EndIf

EndFor

(3) A string with ‘------------’ is printed out if the value of k is less than seven.

(4) A new line is printed out.

EndFor

EndFunction

Lemma 6-5: The new configuration of the board in a tic-tac-toe can be printed out

from the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

Proof:

The function, Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9), is implemented by

 19

means of using the discard operation, the exact operation and the merge operation. It

consists of one nested loop. The nested loop is employed to print out the content of

each square on a tic-tac-toe board. Mathematical induction is used to complete the

proof. When the values of the two loop index variable, j and k, are, respectively, equal

to one and j (one), on the first execution of Step (2a) embedded in the loop, it applies

the detect operation to check whether the content of the first square (position) is

empty or not. If a false is returned from the first execution of Step (2a), then a space

and a string with ‘ | ‘ are printed out from the first execution of Step (2b). Otherwise,

Step (2c) through Step (2h) is implemented.

Next, on the first execution of Step (2c), it uses the extract operation to form two

test tubes, S1
ON

 and S1
OFF

 so that tube S1 is an empty tube. The value encoded by DNA

strands in tube S1
ON

 is equal to b
1
. The value encoded by DNA strands in tube S1

OFF
 is

equal to b
0
. Next, on the first execution of Step (2d), it uses the detect operation to

check whether the content of the first square (position) is an X or not. If a true is

returned from the first execution of Step (2d), then from the first execution of Step (2e)

an X and a string with ‘ | ‘ are printed out and from the first execution of Step (2f) the

merge operation is used to pour the content of tube S1
ON

 into tube S1 so that tube S1
ON

is an empty tube. Otherwise, from the first execution of Step (2g) an O and a string

with ‘ | ‘ are printed out and from the first execution of Step (2h) the merge operation

is used to pour the content of tube S1
OFF

 into tube S1 so that tube S1
OFF

 is an empty

tube.

Next, when the values of the two loop index variable, j and k, are, respectively,

equal to one and j + 2 (3), the content of the third square (position) is printed and from

the first execution of Step (3) and Step (4) a string with ‘------------’ is printed out and

a new line is also printed out. Similarly, when the values of the two loop index

variable, j and k, are, respectively, equal to seven and j + 2 (9), the content of the nine

square (position) is printed and from the third execution of Step (3) and Step (4) a

new line is printed out. Therefore, it is at once derived that the new configuration of

the board in a tic-tac-toe can be printed out from the function Print-Board(S1, S2, S3,

S4, S5, S6, S7, S8, S9). ■

G. Checking Whether the Contents of Eight Triplets Make Three-in-a-row

For fully analyzing a board we must look at all eight triplets. The following

function, Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is

employed to test whether in the contents of the board positions specified by all eight

triplets there are three Xs or three Os to make three-in-a-row or not. Tube T0 that is

the first parameter is initialized to an empty tube. Other nine parameters store the

 20

content of each square. Notice that if player O (the opponent) ever gets three in a row,

from the function Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9) r
1
 that is encoded by DNA strands in tube T0 is obtained. Similarly, if player X

(the computer) manages to get three in a row, from the function

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) r
1
 that is

encoded by DNA strands in tube T0 is also obtained.

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For k = 1 to 9 Step 3

(1a) Check-One-Triplet(T0, Sk, Sk + 1, Sk + 2).

(1b) If (Detect(T0) == true) Then

(1c) The execution of the function is terminated.

EndIf

EndFor

(2) For k = 1 to 3 Step 1

(2a) Check-One-Triplet(T0, Sk, Sk + 3, Sk + 6).

(2b) If (Detect(T0) == true) Then

(2c) The execution of the function is terminated.

EndIf

EndFor

(3) Check-One-Triplet(T0, S1, S5, S9).

(4) If (Detect(T0) == true) Then

(5) The execution of the function is terminated.

EndIf

(6) Check-One-Triplet(T0, S3, S5, S7).

(7) If (Detect(T0) == true) Then

(8) The execution of the function is terminated.

EndIf

EndFunction

Lemma 6-6: Testing whether in the contents of the board positions specified by all

eight triplets there are three Xs or three Os to make three-in-a-row or not can be done

from the function Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9).

Proof:

The function, Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7,

 21

S8, S9), is implemented by means of using the extract operation, the detect operation,

the append-tail operation and the merge operation. Mathematical induction is used to

complete the proof. Step (1) consists of one single loop, and is used to test whether in

the contents of the board positions specified by three horizontal triplets with positions

(1 2 3), (4 5 6) and (7 8 9) there are three Xs or three Os to make three-in-a-row or not.

When the value of the loop index variable, k, is equal to one, on the first execution of

Step (1a), it calls the function, Check-One-Triplet(T0, S1, S2, S3). After the first

execution of Step (1a) is implemented, if the contents of the board positions specified

by the first horizontal triplet with positions (1 2 3) make three-in-a-row, then tube T0

contains DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on

the first execution of Step (1b), if a true is returned from the detect operation, then the

execution of the function is terminated from the first execution of Step (1c) and the

contents of the board positions specified by the first horizontal triplet with positions

(1 2 3) make three-in-a-row. Otherwise, the resting operations will continue to be

executed.

Similarly, when the value of the loop index variable, k, is equal to four, from the

second execution of Step (1a), the function, Check-One-Triplet(T0, S4, S5, S6) is

called and implemented. If the contents of the board positions specified by the second

horizontal triplet with positions (4 5 6) make three-in-a-row, then tube T0 contains

DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on the

second execution of Step (1b), if a true is returned from the detect operation, then the

execution of the function is terminated from the second execution of Step (1c) and the

contents of the board positions specified by the second horizontal triplet with

positions (4 5 6) make three-in-a-row. Otherwise, the resting operations will continue

to be executed.

Next, when the value of the loop index variable, k, is equal to seven, from the

third execution of Step (1a), the function, Check-One-Triplet(T0, S7, S8, S9) is called

and implemented. If the contents of the board positions specified by the third

horizontal triplet with positions (7 8 9) make three-in-a-row, then tube T0 contains

DNA strands encoding r
1
. Otherwise, tube T0 still is an empty tube. Next, on the third

execution of Step (1b), if a true is returned from the detect operation, then the

execution of the function is terminated from the third execution of Step (1c) and the

contents of the board positions specified by the third horizontal triplet with positions

(7 8 9) make three-in-a-row. Otherwise, the resting operations will continue to be

executed.

 22

Next, the same operations that are implemented by the first execution through the

third execution of Step (2a) through Step (2c) judge whether the contents of the board

positions specified by three vertical triplets with positions (1 4 7), (2 5 8) and (3 6 9)

make three-in-a-row or not. If one of three vertical triplets makes three-in-a-row, then

the execution of the function is terminated. Otherwise, the resting operations will

continue to be executed.

Next, the same operations that are implemented by the first execution of Step (3)

through Step (8) judge whether the contents of the board positions specified by two

diagonal triplets with positions (1 5 9) and (3 5 7) make three-in-a-row or not. If one

of two diagonal triplets makes three-in-a-row, then the execution of the function is

terminated and one player wins the game. Otherwise, the game will continue to be

played. Therefore, it is at once derived that testing whether in the contents of the

board positions specified by all eight triplets there are three Xs or three Os to make

three-in-a-row or not can be done from the function

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). 

H. Testing Whether the Contents of One of Eight Triplets Make Three-in-a-row

The following function, Check-One-Triplet(T0, U0, V0, W0) is used to check

whether the contents of the board positions specified by that triplet make

three-in-a-row or not. Tube T0 that is the first parameter is used to store the result that

indicates whether there are three Xs or three Os to make three-in-a-row or not. The

second, third and fourth parameters U0, V0 and W0 are all empty tubes, and they are

used to subsequently store the contents of three elements in that triplet.

Check-One-Triplet(T0, U0, V0, W0)

(1) U0
ON

 = +(U0, b
1
) and U0

OFF
 = (U0, b

1
).

(2) V0
ON

 = +(V0, b
1
) and V0

OFF
 = (V0, b

1
).

(3) W0
ON

 = +(W0, b
1
) and W0

OFF
 = (W0, b

1
).

(4) If ((Detect(U0
ON

) == true) AND (Detect(V0
ON

) == true) AND (Detect(W0
ON

) ==

true)) Then

(5) Append-Tail(T0, r
1
).

(6) ElseIf ((Detect(U0
OFF

) == true) AND (Detect(V0
OFF

) == true) AND (Detect(W0
OFF

)

== true)) Then

(7) Append-Tail(T0, r
0
).

EndIf

EndFunction

Lemma 6-7: Checking whether the contents of the board positions specified by that

 23

triplet make three-in-a-row or not can be done from the function

Check-One-Triplet(T0, U0, V0, W0).

Proof:

The function, Check-One-Triplet(T0, U0, V0, W0), is implemented by means of

using the exact operation and the detect operation. On each execution of Step (1), it

uses the extract operation to form two test tubes, U0
ON

 and U0
OFF

 so that tube U0 is an

empty tube. The value encoded by DNA strands in tube U0
ON

 is equal to b
1
. The value

encoded by DNA strands in tube U0
OFF

 is equal to b
0
. This is to say that an X in the

first element of that triplet appears in tube U0
ON

 or an O in the first element of that

triplet appears in tube U0
OFF

.

Next, on each execution of Step (2), it also applies the extract operation to form

two test tubes, V0
ON

 and V0
OFF

 so that tube V0 is an empty tube. The value encoded by

DNA strands in tube V0
ON

 is equal to b
1
. The value encoded by DNA strands in tube

V0
OFF

 is equal to b
0
. This indicates that an X in the second element of that triplet

appears in tube V0
ON

 or an O in the second element of that triplet appears in tube

V0
OFF

. Next, on each execution of Step (3), it also employs the extract operation to

form two test tubes, W0
ON

 and W0
OFF

 so that tube W0 is an empty tube. The value

encoded by DNA strands in tube W0
ON

 is equal to b
1
. The value encoded by DNA

strands in tube W0
OFF

 is equal to b
0
. This implies that an X in the third element of that

triplet appears in tube W0
ON

 or an O in the third element of that triplet appears in tube

W0
OFF

.

Next, on each execution of Step (4), it uses six detect operations to check whether

the content of each element in that triplet is an X, an O or empty or not. If the front

three detect operations all return true, then this is to say that three Xs make

three-in-a-row. If the last three detect operations all return true, then this indicates that

three Os make three-in-a-row. Hence, on each execution of Step (5), it appends a

DNA sequence, encoding the value r
1
, onto the end of every strand in tube T0 and this

indicates that the contents of three elements in that triplet make three-in-a-row.

Therefore, it is at once derived that checking whether the contents of the board

positions specified by that triplet make three-in-a-row or not can be done from the

function Check-One-Triplet(T0, U0, V0, W0). 

I. The Strategies of the Movement of the Computer

Because the analysis of selecting the best move to two players is more complex,

we shall use biological operations and DNA strands to learn how to make use of the

 24

Newell-Simon method in which the very good strategies are provided. The function

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is similar to that function

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), except the player is X instead of

O, and instead of reading a move from the opponent’s selection (input), how learning

a good strategy in the Newell-Simon method to the computer is proposed. Because the

game is a draw when viewed from a game-theoretic standpoint, good means here a

strategy that will guarantee a draw and that will give the opponent as many

opportunities as possible of making a losing mistake. The function

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls several other functions to

choose the best move and to update the configuration of the board. Next, the function

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) calls the function

Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). But there are two special cases

where the function Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) should not be

called. First, if the computer’s move makes a three-in-a-row, then the computer has

won and the game is over. Second, if there are no empty spaces left on the board, the

game has ended in a tie. In the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9), the first parameter T0 contains DNA strands encoding the result of predicating

whether there is any a three-in-a-row or not. Tubes S1 through S9 that are,

subsequently, the second parameter through the tenth parameter are used to store the

contents of nine squares (positions).

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) If (Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(1a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(2) Else If (Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(2a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(3) Else If (Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(3a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(4) Else If (Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(4a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(5) Else If (Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(5a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

(6) Else If (Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)) then

(6a) Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9).

EndIf

(7) Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

(8) If (Detect(T0) == true) then

 25

(8a) A string with ‘I (the computer) wins’ is printed out.

(8b) The execution of the function is terminated.

Else

(9) If ((Detect(S1) == true) AND (Detect(S2) == true) AND (Detect(S3) == true)

AND (Detect(S4) == true) AND (Detect(S5) == true) AND (Detect(S6) ==

true) AND (Detect(S7) == true) AND (Detect(S8) == true) AND (Detect(S9)

== true)) then

(9a) A string with ‘The game has ended in a tie’ is printed out.

(9b) The execution of the function is terminated.

Else

(9c) Opponent-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

EndIf

EndIf

EndFunction

Lemma 6-8: The function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns

how to make use of the good strategies in the Newell-Simon method for winning the

game.

Proof:

On the first execution of Step (1), it calls the function

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to find whether there

is a line with two of the computer’s marks and one blank or not. If the condition is

satisfied, then an X is filled into the blank square and a true is returned. If a true is

returned, then on the first execution of Step (1a) it calls the function Print-Board(S1,

S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of the board after

the computer selected his move. Otherwise, on the first execution of Step (2) it

invokes the function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

to check whether there is a line with two of the opponent’s marks and one blank or not.

If the condition is satisfied, then an X is filled into the blank square to protect that the

opponent wins the game, and a true is returned.

If a true is returned, then on the first execution of Step (2a) it calls the function

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of

the board after the computer selected his move. Otherwise, on the first execution of

Step (3) it calls the function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to

 26

find whether there are two lines, each with one of the computer’s mark and two

blanks, intersecting in a single blank square. If the condition is satisfied, then an X is

filled into the single blank square to create two lines in which each line has two

computer’s marks and one blank, thus forking the opponent, and a true is returned.

If a true is returned, then on the first execution of Step (3a) it calls the function

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of

the board after the computer selected his move. Otherwise, on the first execution of

Step (4) it calls the function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to test

whether in the board the fifth square that is called a center square is empty or not. If

the condition is satisfied, then an X is filled into the center square and a true is

returned.

If a true is returned, then on the first execution of Step (4a) it calls the function

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of

the board after the computer selected his move. Otherwise, on the first execution of

Step (5) it calls the function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to

check whether in the board the second square, the fourth square, the sixth square or

the eighth square that are all called side squares are occupied by the opponent or not

and to check whether the eighth square, the sixth square, the fourth square or the

second square are empty or not. If the condition is satisfied, then an X is filled into the

opposite of each side square and a true is returned.

If a true is returned, then on the first execution of Step (5a) it calls the function

Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the current configuration of

the board after the computer selected his move. Otherwise, on the first execution of

Step (6) it calls the function Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

to check whether in the board the first square, the third square, the seventh square or

the ninth square are occupied by the opponent or not and to find whether the opposite

of the first square, the third square, the seventh square or the ninth position is empty

or not. If the condition is satisfied, then an X is filled into the opposite of the corner

square and a true is returned. If a true is returned, then on the first execution of Step

(6a) it calls the function Print-Board(S1, S2, S3, S4, S5, S6, S7, S8, S9) that prints out the

current configuration of the board after the computer selected his move.

Next, on the first execution of Step (7), it calls the function

Test-three-in-a-row-for-eight-triplets(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) to decide

 27

whether there are three Xs to make a three-in-a-row or not. If there are three Xs to

make a three-in-a-row, then tube T0 contains DNA sequences encoding r
1
 that

indicates that the condition is true. Otherwise, tube T0 is an empty tube. Next, on the

first execution of Step (8), if a true is returned, then a string with ‘I (the computer)

wins’ is printed out from the first execution of Step (8a) and the execution of the

function is terminated from the first execution of Step (8b). Otherwise, if nine detect

operations all returns a true from the first execution of Step (9), then a string with

‘The game has ended in a tie’ is printed out from the first execution of Step (9a) and

the execution of the function is terminated from the first execution of Step (9b).

Otherwise, on the first execution of Step (9c) it calls the function Opponent-Move(T0,

S1, S2, S3, S4, S5, S6, S7, S8, S9) that offers the opponent to play the game. Therefore, it

is at once inferred that the function Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

learns how to make use of the good strategies in the Newell-Simon method for

winning the game. 

J. Biological Algorithms of the Winning Strategies to the Movement of the Computer

In the Newell-Simon method the first strategy is if one player (a computer) finds

that there is a line with two of the computer’s marks and one blank, then an X is filled

into the blank square and a three-in-a-row is made. Therefore, the following function

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is applied to find

whether there is a line with two of the computer’s marks and one blank or not. If the

condition above is satisfied, then an X is filled into the blank square and a true is

returned. Otherwise, a false is returned. The first parameter T0 contains DNA strands

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes

S1 through S9 that are, subsequently, the second parameter through the tenth parameter

are used to store the contents of nine squares (positions).

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For k = 1 to 9 Step 3

(1a) If (Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 1, Sk + 2)) Then

(1b) Return a true to the caller and terminate the execution of the function.

EndIf

EndFor

(2) For k = 1 to 3 Step 1

(2a) If (Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 3, Sk + 6)) Then

(2b) Return a true to the caller and terminate the execution of the function.

EndIf

EndFor

 28

(3) If (Find-A-Line-With-Two-Xs-One-Blank(T0, S1, S5, S9)) Then

(3a) Return a true to the caller and terminate the execution of the function.

EndIf

(4) If (Find-A-Line-With-Two-Xs-One-Blank(T0, S3, S5, S7)) Then

(4a) Return a true to the caller and terminate the execution of the function.

EndIf

(5) Return a false to the caller and terminate the execution of the function.

EndFunction

Lemma 6-9: The function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9) learns how to make use of the first strategy in the Newell-Simon method to

select one movement of winning the game.

Proof:

Step (1) is one single loop and is used to test whether three horizontal lines (1 2 3),

(4 5 6) and (7 8 9) contain two of the computer’s marks and one blank or not. On the

first execution of Step (1a), it calls the function

Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 1, Sk + 2) to check whether the first

horizontal line (1 2 3) contains two of the computer’s marks and one blank or not. If

the condition above is satisfied, then an X is filled into the blank square and a true is

returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

If a true is returned, then on the first execution of Step (1b) it returns a true to the

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is

terminated. Otherwise, a false is returned to the caller

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same

processing from the second execution through the third execution of Steps (1a) and

(1b) is used to check whether the second horizontal line (4 5 6) and the third

horizontal line (7 8 9) include two of the computer’s marks and one blank or not.

Next, Step (2) is one single loop and is employed to judge whether three vertical

lines (1 4 7), (2 5 8) and (3 6 9) contain two of the computer’s marks and one blank or

not. On the first execution of Step (2a), it calls the function

Find-A-Line-With-Two-Xs-One-Blank(T0, Sk, Sk + 3, Sk + 6) to decide whether the

first vertical line (1 4 7) contains two of the computer’s marks and one blank or not. If

the condition above is satisfied, then an X is filled into the blank square and a true is

 29

returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

If a true is returned, then on the first execution of Step (2b) it returns a true to the

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is

terminated. Otherwise, a false is returned to the caller

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same

processing from the second execution through the third execution of Steps (2a) and

(2b) is used to check whether the second vertical line (2 5 8) and the third vertical line

(3 6 9) include two of the computer’s marks and one blank or not.

Next, On the first execution of Step (3), it calls the function

Find-A-Line-With-Two-Xs-One-Blank(T0, S1, S5, S9) to judge whether the first

diagonal line (1 5 9) contains two of the computer’s marks and one blank or not. If

the condition above is satisfied, then an X is filled into the blank square and a true is

returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9).

If a true is returned, then on the first execution of Step (3a) it returns a true to the

caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the

function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is

terminated. Otherwise, a false is returned to the caller

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the same

processing from the first execution of Steps (4) and (4a) is used to check whether the

second diagonal line (3 5 7) includes two of the computer’s marks and one blank or

not. If the condition above is not satisfied, then from the first execution of Step (5) a

false is returned to the caller Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and

the execution of the function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9) is terminated. Therefore, it is at once inferred from the statements above that

the function Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns

how to make use of the first strategy in the Newell-Simon method to select one

movement of winning the game. 

K. Biological Algorithms of Finding a Line with Two of the Computer’s Marks and

One Blank

The following function, Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf),

learns how to find a line with two of the computer’s Marks and one blank. If the line

satisfying the condition above is found, then an X is filled into the blank square and a

true is returned to the caller Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9). Because eight lines (triplets) are respectively (1 2 3), (4 5 6), (7 8 9), (1 4 7),

 30

(2 5 8), (3 6 9), (1 5 9) and (3 5 7), the first parameter through the three parameter (d,

e, f) is respectively the first element, the second element and the third element in one

of eight lines. Tube T0 that is the fourth parameter contains DNA strands encoding the

result of predicating whether there is any a three-in-a-row or not. Tubes (Sd, Se, Sf)

that are the fifth parameter through the seventh parameter are subsequently used to

store the contents of three squares in one of eight lines.

Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf)

(1) Sd
ON

 = +(Sd, b
1
) and Sd

 OFF
 = (Sd, b

1
).

(2) Se
ON

 = +(Se, b
1
) and Se

OFF
 = (Se, b

1
).

(3) Sf
 ON

 = +(Sf, b
1
) and Sf

 OFF
 = (Sf, b

1
).

(4) If ((Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == true) AND (Detect(Sf
 ON

) ==

false) AND (Detect(Sf
 OFF

) == false)) Then

(4a) Append-Tail(Sf, b
1
).

(4b) Sd = (Sd
ON

, Sd
OFF

) and Se = (Se
ON

, Se
OFF

).

(4c) Return a true to the caller and terminate the execution of the function.

(5) Else If ((Detect(Sd
ON

) == true) AND (Detect(Sf
 ON

) == true) AND (Detect(Se
ON

)

== false) AND (Detect(Se
OFF

) == false)) Then

(5a) Append-Tail(Se, b
1
).

(5b) Sd = (Sd
ON

, Sd
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(5c) Return a true to the caller and terminate the execution of the function.

(6) Else If ((Detect(Se
ON

) == true) AND (Detect(Sf
ON

) == true) AND (Detect(Sd
ON

) ==

false) AND (Detect(Sd
OFF

) == false)) Then

(6a) Append-Tail(Sd, b
1
).

(6b) Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(6c) Return a true to the caller and terminate the execution of the function.

(7) Else

(7a) Sd = (Sd
ON

, Sd
OFF

), Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(7b) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-10: The function Find-A-Line-With-Two-Xs-One-Blank(T0, Sd, Se, Sf)

learns how to find a line with two of the computer’s Marks and one blank.

Proof:

On each execution of Step (1) through Step (3), they respectively use three extract

 31

operations to form six test tubes, Sd
ON

, Sd
OFF

, Se
ON

, Se
OFF

, Sf
ON

 and Sf
OFF

. DNA strands

in tubes Sd
ON

, Se
ON

 and Sf
ON

 encodes b
1
 representing an X, and DNA strands in tubes

Sd
OFF

, Se
OFF

 and Sf
OFF

 encodes b
0
 representing an O. Next, on each execution of Step

(4), it uses four detect operations to test whether the first square, the second square

and the third square in a line that is one of eight triplets are subsequently an X, an X

and a blank or not. If the condition above is satisfied by each detect operation, then an

X is filled into the blank square from each execution of Step (4a), tubes Sd
ON

 and Sd
OFF

are poured into tube Sd from each execution of Step (4b), tubes Se
ON

 and Se
OFF

 are

poured into tube Se from each execution of Step (4b) and from each execution of Step

(4c) it returns a true to the caller and the execution of the function is terminated.

Otherwise, next, on each execution of Step (5), it also applies four detect

operations to check whether the first square, the second square and the third square in

a line that is one of eight triplets are subsequently an X, a blank and an X or not. If the

condition above is satisfied by each detect operation, then an X is filled into the blank

square from each execution of Step (5a), tubes Sd
ON

 and Sd
OFF

 are poured into tube Sd

from each execution of Step (5b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from

each execution of Step (5b) and from each execution of Step (5c) it returns a true to

the caller and the execution of the function is terminated.

Otherwise, next, on each execution of Step (6), it uses four detect operations to

check whether the first square, the second square and the third square in a line that is

one of eight triplets are subsequently a blank, an X and an X or not. If the condition

above is satisfied by each detect operation, then an X is filled into the blank square

from each execution of Step (6a), tubes Se
ON

 and Se
OFF

 are poured into tube Se from

each execution of Step (6b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from each

execution of Step (6b) and from each execution of Step (6c) it returns a true to the

caller and the execution of the function is terminated.

Otherwise, next, on each execution of Step (7a), tubes Sd
ON

 and Sd
OFF

 are poured

into tube Sd, tubes Se
ON

 and Se
OFF

 are poured into tube Se, tubes Sf
ON

 and Sf
OFF

 are

poured into tube Sf and from each execution of Step (7b) it returns a false to the caller

and the execution of the function is terminated. Therefore, it is at once inferred from

the statements above that the function Find-A-Line-With-Two-Xs-One-Blank(T0, Sd,

Se, Sf) learns how to find a line with two of the computer’s Marks and one blank. 

M. Biological Algorithms of Protecting the Opponent That Wins the Game

 32

In the Newell-Simon method the second strategy is if one player (a computer)

checks that there is a line with two of the opponent’s marks and one blank, then an X

is filled into the blank square to protect that the opponent wins the game. Therefore,

the following function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8,

S9) is used to find whether there is a line with two of the opponent’s marks and one

blank or not. If the condition above is satisfied, then an X is filled into the blank

square to protect that the opponent wins the game and a true is returned. Otherwise, a

false is returned. The first parameter T0 contains DNA strands encoding the result of

predicating whether there is any a three-in-a-row or not. Tubes S1 through S9 that are,

subsequently, the second parameter through the tenth parameter are used to store the

contents of nine squares (positions).

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For k = 1 to 9 Step 3

(1a) If (Find-A-Line-With-Two-Os-One-Blank(k, k + 1, k + 2, T0, Sk, Sk + 1, Sk +

2)) Then

(1b) Return a true to the caller and terminate the execution of the function.

EndIf

EndFor

(2) For k = 1 to 3 Step 1

(2a) If (Find-A-Line-With-Two-Os-One-Blank(k, k + 3, k + 6, T0, Sk, Sk + 3, Sk +

6)) Then

(2b) Return a true to the caller and terminate the execution of the function.

EndIf

EndFor

(3) If (Find-A-Line-With-Two-Os-One-Blank(1, 5, 9, T0, S1, S5, S9)) Then

(3a) Return a true to the caller and terminate the execution of the function.

EndIf

(4) If (Find-A-Line-With-Two-Os-One-Blank(3, 5, 7, T0, S3, S5, S7)) Then

(4a) Return a true to the caller and terminate the execution of the function.

EndIf

(5) Return a false to the caller and terminate the execution of the function.

EndFunction

Lemma 6-11: The function Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7,

S8, S9) learns how to protect that the opponent wins the game.

Proof:

 33

Step (1) is one single loop and is employed to judge whether three horizontal lines

(1 2 3), (4 5 6) and (7 8 9) consists of two of the opponent’s marks and one blank or

not. On the first execution of Step (1a), it calls the function

Find-A-Line-With-Two-Os-One-Blank(k, k + 1, k + 2, T0, Sk, Sk + 1, Sk + 2) to test

whether the first horizontal line (1 2 3) includes two of the opponent’s marks and one

blank or not. If the condition above is satisfied, then an X is filled into the blank

square to protect that the opponent wins the game and a true is returned to the caller

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned,

then on the first execution of Step (1b) it returns a true to the caller

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated.

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3,

S4, S5, S6, S7, S8, S9) and the same processing from the second execution through the

third execution of Steps (1a) and (1b) is applied to decide whether the second

horizontal line (4 5 6) and the third horizontal line (7 8 9) include two of the

opponent’s marks and one blank or not.

Next, Step (2) is one single loop and is used to test whether three vertical lines (1

4 7), (2 5 8) and (3 6 9) contain two of the opponent’s marks and one blank or not. On

the first execution of Step (2a), it calls the function

Find-A-Line-With-Two-Os-One-Blank(k, k + 3, k + 6, T0, Sk, Sk + 3, Sk + 6) to judge

whether the first vertical line (1 4 7) consists of two of the opponent’s marks and one

blank or not. If the condition above is satisfied, then an X is filled into the blank

square to protect that the opponent wins the game and a true is returned to the caller

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned,

then on the first execution of Step (2b) it returns a true to the caller

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated.

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3,

S4, S5, S6, S7, S8, S9) and the same processing from the second execution through the

third execution of Steps (2a) and (2b) is used to check whether the second vertical

line (2 5 8) and the third vertical line (3 6 9) contain two of the opponent’s marks and

one blank or not.

Next, On the first execution of Step (3), it calls the function

Find-A-Line-With-Two-Os-One-Blank(1, 5, 9, T0, S1, S5, S9) to judge whether the

 34

first diagonal line (1 5 9) includes two of the opponent’s marks and one blank or not.

If the condition above is satisfied, then an X is filled into the blank square to protect

that the opponent wins the game and a true is returned to the caller

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). If a true is returned,

then on the first execution of Step (3a) it returns a true to the caller

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated.

Otherwise, a false is returned to the caller Opponent-Winning-Strategy(T0, S1, S2, S3,

S4, S5, S6, S7, S8, S9) and the same processing from the first execution of Steps (4) and

(4a) is used to check whether the second diagonal line (3 5 7) includes two of the

opponent’s marks and one blank or not. If the condition above is not satisfied, then

from the first execution of Step (5) a false is returned to the caller

Computer-Move(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) and the execution of the function

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) is terminated.

Therefore, it is at once inferred from the statements above that the function

Opponent-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to protect

that the opponent wins the game. 

N. Biological Algorithms of Finding a Line with Two of the Opponent’s Marks and

One Blank

The following function, Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se,

Sf), learns how to find a line with two of the opponent’s Marks and one blank. If the

line satisfying the condition above is found, then an X is filled into the blank square to

protect that the opponent wins the game and a true is returned to the caller

Computer-Winning-Strategy(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9). Since eight lines

(triplets) are respectively (1 2 3), (4 5 6), (7 8 9), (1 4 7), (2 5 8), (3 6 9), (1 5 9) and

(3 5 7), the first parameter through the three parameter (d, e, f) is respectively the first

element, the second element and the third element in one of eight lines. DNA strands

in tube T0 that is the fourth parameter encode the result of predicating whether there is

any a three-in-a-row or not. Tubes (Sd, Se, Sf) that are the fifth parameter through the

seventh parameter are subsequently used to store the contents of three squares in one

of eight lines.

Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se, Sf)

(1) Sd
ON

 = +(Sd, b
0
) and Sd

 OFF
 = (Sd, b

0
).

(2) Se
ON

 = +(Se, b
0
) and Se

OFF
 = (Se, b

0
).

(3) Sf
 ON

 = +(Sf, b
0
) and Sf

 OFF
 = (Sf, b

0
).

 35

(4) If ((Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == true) AND (Detect(Sf
 ON

) ==

false) AND (Detect(Sf
 OFF

) == false)) Then

(4a) Append-Tail(Sf, b
1
).

(4b) Sd = (Sd
ON

, Sd
OFF

) and Se = (Se
ON

, Se
OFF

).

(4c) Return a true to the caller and terminate the execution of the function.

(5) Else If ((Detect(Sd
ON

) == true) AND (Detect(Sf
 ON

) == true) AND (Detect(Se
ON

)

== false) AND (Detect(Se
OFF

) == false)) Then

(5a) Append-Tail(Se, b
1
).

(5b) Sd = (Sd
ON

, Sd
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(5c) Return a true to the caller and terminate the execution of the function.

(6) Else If ((Detect(Se
ON

) == true) AND (Detect(Sf
ON

) == true) AND (Detect(Sd
ON

) ==

false) AND (Detect(Sd
OFF

) == false)) Then

(6a) Append-Tail(Sd, b
1
).

(6b) Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(6c) Return a true to the caller and terminate the execution of the function.

(7) Else

(7a) Sd = (Sd
ON

, Sd
OFF

), Se = (Se
ON

, Se
OFF

) and Sf = (Sf
ON

, Sf
OFF

).

(7b) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-12: The function Find-A-Line-With-Two-Os-One-Blank(d, e, f, T0, Sd, Se,

Sf) learns how to find a line with two of the opponent’s Marks and one blank to

protect that the opponent wins the game.

Proof:

On each execution of Step (1) through Step (3), they respectively use three extract

operations to form six test tubes, Sd
ON

, Sd
OFF

, Se
ON

, Se
OFF

, Sf
ON

 and Sf
OFF

. DNA strands

in tubes Sd
ON

, Se
ON

 and Sf
ON

 encodes b
0
 representing an O, and DNA strands in tubes

Sd
OFF

, Se
OFF

 and Sf
OFF

 encodes b
1
 representing an X. Next, on each execution of Step

(4), it uses four detect operations to test whether the first square, the second square

and the third square in a line that is one of eight triplets are subsequently an O, an O

and a blank or not. If the condition above is satisfied by each detect operation, then an

X is filled into the blank square from each execution of Step (4a), tubes Sd
ON

 and Sd
OFF

are poured into tube Sd from each execution of Step (4b), tubes Se
ON

 and Se
OFF

 are

poured into tube Se from each execution of Step (4b) and from each execution of Step

(4c) it returns a true to the caller and the execution of the function is terminated.

 36

Otherwise, next, on each execution of Step (5), it also applies four detect

operations to check whether the first square, the second square and the third square in

a line that is one of eight triplets are subsequently an O, a blank and an O or not. If the

condition above is satisfied by each detect operation, then an X is filled into the blank

square from each execution of Step (5a), tubes Sd
ON

 and Sd
OFF

 are poured into tube Sd

from each execution of Step (5b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from

each execution of Step (5b) and from each execution of Step (5c) it returns a true to

the caller and the execution of the function is terminated.

Otherwise, next, on each execution of Step (6), it applies four detect operations to

check whether the first square, the second square and the third square in a line that is

one of eight triplets are subsequently a blank, an O and an O or not. If the condition

above is satisfied by each detect operation, then an X is filled into the blank square

from each execution of Step (6a), tubes Se
ON

 and Se
OFF

 are poured into tube Se from

each execution of Step (6b), tubes Sf
ON

 and Sf
OFF

 are poured into tube Sf from each

execution of Step (6b) and from each execution of Step (6c) it returns a true to the

caller and the execution of the function is terminated.

Otherwise, next, on each execution of Step (7a), tubes Sd
ON

 and Sd
OFF

 are poured

into tube Sd, tubes Se
ON

 and Se
OFF

 are poured into tube Se, tubes Sf
ON

 and Sf
OFF

 are

poured into tube Sf and from each execution of Step (7b) it returns a false to the caller

and the execution of the function is terminated. Therefore, it is at once inferred from

the statements above that the function Find-A-Line-With-Two-Os-One-Blank(d, e, f,

T0, Sd, Se, Sf) learns how to find a line with two of the opponent’s marks and one blank

to protect that the opponent wins the game. 

O. Biological Algorithms of Finding That There Are Two Lines with One of the

Computer’s Marks and Two Blank and Intersecting in a Single Blank Square

The following function, Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is

used to check whether there are two lines, each with one of the computer’s mark and

two blanks, intersecting in a single blank square or not. If the condition is satisfied,

then an X is filled into the single blank square to create two lines in which each line

has two computer’s marks and one blank, thus forking the opponent and a true is

returned. Otherwise, a false is returned. The first parameter T0 contains DNA strands

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes

S1 through S9 that are, subsequently, the second parameter through the tenth parameter

 37

are used to store the contents of nine squares (positions).

Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) If (Intersection-In-Two-Lines(S1, S2, S3, S4, S7)) Then

(1a) Return a true to the caller and terminate the execution of the function.

(2) If (Intersection-In-Two-Lines(S1, S2, S3, S5, S9)) Then

(2a) Return a true to the caller and terminate the execution of the function.

(3) If (Intersection-In-Two-Lines(S1, S4, S7, S5, S9)) Then

(3a) Return a true to the caller and terminate the execution of the function.

(4) ElseIf (Intersection-In-Two-Lines(S3, S1, S2, S6, S9)) Then

(4a) Return a true to the caller and terminate the execution of the function.

(5) ElseIf (Intersection-In-Two-Lines(S3, S1, S2, S5, S7)) Then

(5a) Return a true to the caller and terminate the execution of the function.

(6) ElseIf (Intersection-In-Two-Lines(S3, S6, S9, S5, S7)) Then

(6a) Return a true to the caller and terminate the execution of the function.

(7) ElseIf (Intersection-In-Two-Lines(S7, S8, S9, S1, S4)) Then

(7a) Return a true to the caller and terminate the execution of the function.

(8) ElseIf (Intersection-In-Two-Lines(S7, S8, S9, S3, S5)) Then

(8a) Return a true to the caller and terminate the execution of the function.

(9) ElseIf (Intersection-In-Two-Lines(S7, S1, S4, S3, S5)) Then

(9a) Return a true to the caller and terminate the execution of the function.

(10) ElseIf (Intersection-In-Two-Lines(S9, S7, S8, S3, S6)) Then

(10a) Return a true to the caller and terminate the execution of the function.

(11) ElseIf (Intersection-In-Two-Lines(S9, S7, S8, S1, S5)) Then

(11a) Return a true to the caller and terminate the execution of the function.

(12) ElseIf (Intersection-In-Two-Lines(S9, S3, S6, S1, S5)) Then

(11a) Return a true to the caller and terminate the execution of the function.

(13) ElseIf (Intersection-In-Two-Lines(S2, S1, S3, S5, S8)) Then

(13a) Return a true to the caller and terminate the execution of the function.

(14) ElseIf (Intersection-In-Two-Lines(S4, S5, S6, S1, S7)) Then

(14a) Return a true to the caller and terminate the execution of the function.

(15) ElseIf (Intersection-In-Two-Lines(S6, S4, S5, S3, S9)) Then

(15a) Return a true to the caller and terminate the execution of the function.

(16) ElseIf (Intersection-In-Two-Lines(S8, S7, S9, S2, S5)) Then

(16a) Return a true to the caller and terminate the execution of the function.

(17) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S2, S8)) Then

(17a) Return a true to the caller and terminate the execution of the function.

 38

(18) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S1, S9)) Then

(18a) Return a true to the caller and terminate the execution of the function.

(19) ElseIf (Intersection-In-Two-Lines(S5, S4, S6, S3, S7)) Then

(19a) Return a true to the caller and terminate the execution of the function.

(20) ElseIf (Intersection-In-Two-Lines(S5, S2, S8, S1, S9)) Then

(20a) Return a true to the caller and terminate the execution of the function.

(21) ElseIf (Intersection-In-Two-Lines(S5, S2, S8, S3, S7)) Then

(21a) Return a true to the caller and terminate the execution of the function.

(22) Else

(22a) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-13: The function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

learns how to find that there are two lines, each with one of the computer’s mark and

two blanks, intersecting in a single blank square.

Proof:

Each execution of Step(1) through Step (21) subsequently checks twenty-one pairs

of two lines: (1 2 3) and (1 4 7), (1 2 3) and (1 5 9), (1 4 7) and (1 5 9), (1 2 3) and (3

6 9), (1 2 3) and (3 5 7), (3 6 9) and (3 5 7), (7 8 9) and (1 4 7), (7 8 9) and (3 5 7), (1

4 7) and (3 5 7), (7 8 9) and (3 6 9), (7 8 9) and (1 5 9), (3 6 9) and (1 5 9), (1 2 3) and

(2 5 8), (4 5 6) and (1 4 7), (4 5 6) and (3 6 9), (7 8 9) and (2 5 8), (4 5 6) and (2 5 8),

(4 5 6) and (1 5 9), (4 5 6) and (3 5 7), (2 5 8) and (1 5 9), and (2 5 8) and (3 5 7). If

the condition is satisfied, then an X is filled into the single blank square to create two

lines in which each line has two computer’s marks and one blank, thus forking the

opponent and a true is subsequently returned to the caller and the execution of the

function is terminated from each execution of Step(1a) through Step (21a). Otherwise,

on each execution of Step (22a), a false is returned to the caller and the execution of

the function is terminated. Therefore, it is inferred at once from the statements above

that the function Finding-Intersetion(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to

find that there are two lines, each with one of the computer’s mark and two blanks,

intersecting in a single blank square.

P. Biological Algorithms of Checking Whether One of Twenty-One Pairs of Two Lines

Has One of the Computer’s Marks and Two Blank and Intersecting in a Single Blank

Square

 39

The following function, Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se), is applied

to test whether for one of twenty-one pairs in which each pair contains two lines the

two lines have one of the computer’s marks and two blank and intersecting in a single

blank square or not. If the condition is satisfied, then an X is filled into the single

blank square to create two lines in which each line has two computer’s marks and one

blank, thus forking the opponent and a true is returned to the caller. Otherwise, a false

is returned to the caller. Tube Sa is used to store the content of an intersectional empty

square, and tubes Sb, Sc, Sd and Se are subsequently used to store the content of other

four squares.

Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se)

(1) Sb
ON

 = +(Sb, b
1
) and Sb

OFF
 = (Sb, b

1
), and Sc

ON
 = +(Sc, b

1
) and Sc

OFF
 = (Sc, b

1
).

(2) Sd
ON

 = +(Sd, b
1
) and Sd

OFF
 = (Sd, b

1
), and Se

ON
 = +(Se, b

1
) and Se

OFF
 = (Se, b

1
).

(3) If (Detect(Sa) == false) Then

(4) If ((Detect(Sb
ON

) == true) AND (Detect(Sc
ON

) == false) AND (Detect(Sc
OFF

) ==

false) AND (Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == false) AND

(Detect(Se
OFF

) == false)) Then

(4a) Append-Tail(Sa, b
1
).

(4b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(4c) Return a true to the caller and terminate the execution of the function.

(5) Else If ((Detect(Sb
ON

) == true) AND (Detect(Sc
ON

) == false) AND (Detect(Sc
OFF

)

== false) AND (Detect(Se
ON

) == true) AND (Detect(Sd
ON

) == false) AND

(Detect(Sd
OFF

) == false)) Then

(5a) Append-Tail(Sa, b
1
).

(5b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(5c) Return a true to the caller and terminate the execution of the function.

(6) Else If ((Detect(Sc
ON

) == true) AND (Detect(Sb
ON

) == false) AND (Detect(Sb
OFF

)

== false) AND (Detect(Sd
ON

) == true) AND (Detect(Se
ON

) == false) AND

(Detect(Se
OFF

) == false)) Then

(6a) Append-Tail(Sa, b
1
).

(6b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(6c) Return a true to the caller and terminate the execution of the function.

(7) Else If ((Detect(Sc
ON

) == true) AND (Detect(Sb
ON

) == false) AND (Detect(Sb
OFF

)

== false) AND (Detect(Se
ON

) == true) AND (Detect(Sd
ON

) == false) AND

(Detect(Sd
OFF

) == false)) Then

(7a) Append-Tail(Sa, b
1
).

(7b) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(7c) Return a true to the caller and terminate the execution of the function.

 40

(8) Else

(8a) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(8b) Return a false to the caller and terminate the execution of the function.

EndIf

(9) Else

(9a) Sb=(Sb
ON

, Sb
OFF

), Sc=(Sc
ON

, Sc
OFF

), Sd =(Sd
ON

, Sd
OFF

), Se =(Se
ON

, Se
OFF

).

(9b) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-14: For one of twenty-one pairs in which each pair contains two lines, the

function Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se) learns how to decide whether

the two lines have one of the computer’s mark and two blanks, intersecting in a single

blank square or not.

Proof:

On each execution of Step (1) and Step (2), four extract operations are used to

separate tubes Sb, Sc, Sd and Se to generate tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

,

Se
ON

 and Se
OFF

. DNA strands in tubes Sb
ON

, Sc
ON

, Sd
ON

, and Se
ON

 all encodes an X, and

DNA strands in tubes Sb
OFF

, Sc
OFF

, Sd
OFF

, and Se
OFF

 also all encodes an O. If a false is

returned from each execution of Step (3), then the intersectional square is an empty

square and Step (4) through Step (8b) will be executed. Otherwise, there is no empty

intersectional square, tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are

subsequently poured into tubes Sb, Sc, Sd and Se from each execution of Step (9a) and

a false is return to the caller and the execution of the function is terminated from each

execution of Step (9b).

On each execution of Step (4), Step (5), Step (6) or Step (7), six detect operations

are used to check whether other two squares of each line are one empty square and

one of the computer’s mark or not. If the condition above is satisfied, then from each

execution of Step (4a) through Step (4c), each execution of Step (5a) through Step

(5c), each execution of Step (6a) through Step (6c), or each execution of Step (7a)

through Step (7c) an X is filled into tube Sa (an intersectional empty square), tubes

Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are subsequently poured into tubes

Sb, Sc, Sd and Se and a true is return to the caller and the execution of the function is

terminated. Otherwise, tubes Sb
ON

, Sb
OFF

, Sc
ON

, Sc
OFF

, Sd
ON

, Sd
OFF

, Se
ON

 and Se
OFF

 are

 41

subsequently poured into tubes Sb, Sc, Sd and Se from each execution of Step (8a) and

a false is return to the caller and the execution of the function is terminated from each

execution of Step (8b). Therefore, it is at once inferred from the statements above that

for one of twenty-one pairs in which each pair contains two lines, the function

Intersection-In-Two-Lines(Sa, Sb, Sc, Sd, Se) learns how to decide whether the two

lines have one of the computer’s mark and two blanks, intersecting in a single blank

square or not. 

Q. Biological Algorithms of Testing Whether in the Board A Center Square Is Empty

The following function, Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is

applied to test whether in the board the fifth square that is called a center square is

empty or not. If the condition above is satisfied, then an X is filled into the center

square. The first parameter T0 contains DNA strands encoding the result of

predicating whether there is any a three-in-a-row or not. Tubes S1 through S9 that are,

subsequently, the second parameter through the tenth parameter are used to store the

contents of nine squares.

Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) S5
ON

 = +(S5, b
1
) and S5

OFF
 = (S5, b

1
).

(2) If ((Detect(S5
ON

) == false) AND (Detect(S5
OFF

) == false)) Then

(2a) Append-Tail(S5, b
1
).

(2b) Return a true to the caller and terminate the execution of the function.

(3) Else

(3a) S5 = (S5
ON

, S5
OFF

).

(3b) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-15: The function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns

how to decide whether in the board the fifth square that is called a center square is

empty or not.

Proof:

On each execution of Step (1), it uses the extract operation to generate that tube

S5
ON

 contains DNA strands encoding an X and tube S5
OFF

 includes DNA strands

encoding an O. Next, on each execution of Step (2), it applies two detect operations to

 42

check whether the fifth square in the board is not occupied by any player or not. If

both of them returns a false, then an X is filled into the center square from each

execution of Step (2a), and from each execution of Step (2b) a true is returned to the

caller and the execution of the function is terminated. Otherwise, on each execution of

Step (3a) it uses one merge operation to pour tubes S5
ON

 and S5
OFF

 into tube S5 and

from each execution of Step (3b) a false is returned to the caller and the execution of

the function is terminated. Therefore, it is at once derived from the statements above

that the function Finding-Center(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to

decide whether in the board the fifth square that is called a center square is empty or

not. 

R. Biological Algorithms of Judging Whether Side Squares Are Occupied by the

Opponent and the Opposite of Each Side Square Is an Empty Square

The following function, Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9), is

applied to check whether in the board the second square, the fourth square, the sixth

square or the eighth square that are all called side squares are occupied by the

opponent or not and to also simultaneously check whether the opposite of each side

square is an empty square or not. If the condition above is satisfied, then an X is filled

into the opposite of the side square. The first parameter T0 contains DNA strands

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes

S1 through S9 that are, subsequently, the second parameter through the tenth parameter

are used to store the contents of nine squares.

Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) For k = 2 to 8 Step 2

(2) Sk
ON

 = +(Sk, b
0
) and Sk

OFF
 = (Sk, b

0
).

(3) S10  k
ON

 = +(S10  k, b
1
) and S10  k

OFF
 = (S10  k, b

1
).

(4) If ((Detect(Sk
ON

) == true) AND (Detect(S10  k
ON

) == false) AND

(Detect(S10  k
OFF

) == false)) Then

(4a) Append-Tail(S10  k, b
1
).

(4b) Sk = (Sk
ON

, Sk
OFF

).

(4c) Return a true to the caller and terminate the execution of the function.

(5) Else

(5a) Sk = (Sk
ON

, Sk
OFF

) and S10  k = (S10  k
ON

, S10  k
OFF

).

EndIf

EndFor

(6) Return a false to the caller and terminate the execution of the function.

EndFunction

 43

Lemma 6-16: The function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

learns how to check whether in the board the second square, the fourth square, the

sixth square or the eighth square that are all called side squares are occupied by the

opponent or not and how to also check whether the opposite of each side square is an

empty square or not.

Proof:

Step (1) is a single loop and is used to check whether each side square is occupied

by the opponent and the opposite of each side square is an empty square or not. On

each execution of Step (2) and Step (3), they use two extract operations to generate

tubes Sk
ON

, Sk
OFF

, S10  k
ON

 and S10  k
OFF

. In tubes Sk
ON

 and S10  k
ON

, DNA strands

respectively encode an O and an X, and in tubes Sk
OFF

 and S10  k
OFF

, DNA strands

respectively encode an X and an O. Next, on each execution of Step (4), it uses three

detect operations to check whether the kth square (tube Sk
ON

) that is a side square is

occupied by the opponent and the (10  k)th square (tubes S10  k
ON

 and S10  k
OFF

) that

is the opposite of the side square is an empty square or not. If a true and two false are

returned, then an X is filled into the opposite of the side square from each execution of

Step (4a), tubes Sk
ON

 and Sk
OFF

 are poured into tube Sk from each execution of Step

(4b) and from each execution of Step (4c) a true is returned to the caller and the

execution of the function is terminated. Otherwise, from each execution of Step (5a),

tubes Sk
ON

 and Sk
OFF

 are poured into tube Sk and tubes S10  k
ON

 and S10  k
OFF

 are

poured into tube S10  k. After each operation from Step (2) through Step (5a) is all

implemented, if no X is filled into the opposite of any side square, then from each

execution of Step (6) a false is returned to the caller and the execution of the function

is terminated. Therefore, it is at once inferred from the statements above that the

function Opponent-on-Side(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9) learns how to check

whether in the board the second square, the fourth square, the sixth square or the

eighth square that are all called side squares are occupied by the opponent or not and

how to also check whether the opposite of each side square is an empty square or not.



S. Biological Algorithms of Deciding Whether Corner Squares Are Occupied by the

Opponent and the Opposite of Each Corner Square Is an Empty Square

The following function, Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9),

is used to decide whether in the board the first square, the third square, the seventh

square or the ninth square that are all called corner squares are occupied by the

opponent or not and to also simultaneously check whether the opposite of each corner

 44

square is an empty square or not. If the condition above is satisfied, then an X is filled

into the opposite of the corner square. The first parameter T0 consists of DNA strands

encoding the result of predicating whether there is any a three-in-a-row or not. Tubes

S1 through S9 that are, subsequently, the second parameter through the tenth parameter

are employed to store the contents of nine squares.

Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

(1) If (Checking-Opponent-on-Corner(S1, S9)) Then

(1a) Return a true to the caller and terminate the execution of the function.

(2) ElseIf (Checking-Opponent-on-Corner(S3, S7)) Then

(2a) Return a true to the caller and terminate the execution of the function.

(3) ElseIf (Checking-Opponent-on-Corner(S7, S3)) Then

(3a) Return a true to the caller and terminate the execution of the function.

(4) ElseIf (Checking-Opponent-on-Corner(S9, S1)) Then

(4a) Return a true to the caller and terminate the execution of the function.

(5) Else

(5a) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-17: The function Opponent-on-Corner(T0, S1, S2, S3, S4, S5, S6, S7, S8, S9)

learns how to decide whether in the board the first square, the third square, the

seventh square or the ninth square that are all called corner squares are occupied by

the opponent or not and also learns how to decide whether the opposite of each corner

square is an empty square or not.

Proof:

On each execution of Step (1) through Step (4), they respectively call the function

Checking-Opponent-on-Corner(Sa, Sb) to test whether tubes (four corner square) S1,

S3, S7, or S9 are occupied by the opponent or not and also simultaneously test whether

tubes (the opposite of each corner square) S9, S7, S3, or S1 are an empty square or not.

If a true is returned from the function Checking-Opponent-on-Corner(Sa, Sb), then

from each execution of Step (1a), Step (2a), Step (3a) or Step (4a) a true is returned to

the caller and the execution of the function is terminated. Otherwise, from each

execution of Step (5a) a false is returned to the caller and the execution of the function

is terminated. 

 45

T. Biological Algorithms of Deciding Whether One of Corner Squares Is Occupied by

the Opponent and Its Opposite Is an Empty Square

The following function, Checking-Opponent-on-Corner(Sa, Sb), is employed to

check whether one of four corner squares is occupied by the opponent and its opposite

is an empty square or not. Tube Sa that is the first parameter is used to store the

content for one of four corner squares (S1, S3, S7, or S9), and tube Sb that is the second

parameter is applied to store the content for its opposite (S9, S7, S3, or S1).

Checking-Opponent-on-Corner(Sa, Sb)

(1) Sa
ON

 = +(Sa, b
0
) and Sa

OFF
 = (Sa, b

0
) and Sb

ON
 = +(Sb, b

1
) and Sb

OFF
 = (Sb, b

1
).

(2) If ((Detect(Sa
ON

) == true) AND (Detect(Sb
ON

) == false) AND

(Detect(Sb
OFF

) == false)) Then

(2a) Append-Tail(Sb, b
1
).

(2b) Sa = (Sa
ON

, Sa
OFF

).

(2c) Return a true to the caller and terminate the execution of the function.

(3) Else

(3a) Sa = (Sa
ON

, Sa
OFF

) and Sb = (Sb
ON

, Sb
OFF

).

(3b) Return a false to the caller and terminate the execution of the function.

EndIf

EndFunction

Lemma 6-18: The function Checking-Opponent-on-Corner(Sa, Sb) learns how to

decide whether in the board the first square, the third square, the seventh square or the

ninth square that are all called corner squares are occupied by the opponent or not and

also learns how to decide whether the opposite of each corner square is an empty

square or not.

Proof:

On each execution of Step (1), it applies two extract operations to generate tubes

Sa
ON

, Sa
OFF

, Sb
ON

 and Sb
OFF

. In tubes Sa
ON

 and Sb
ON

, DNA strands respectively encode

an O and an X, and in tubes Sa
OFF

 and Sb
OFF

, DNA strands respectively encode an X

and an O. Next, on each execution of Step (2), it uses three detect operations to check

whether tube Sa
ON

 that is a corner square is occupied by the opponent and tubes Sb
ON

and Sb
OFF

 that is the opposite of the corner square is an empty square or not. If a true

and two false are returned, then an X is filled into the opposite of the corner square

from each execution of Step (2a), tubes Sa
ON

 and Sa
OFF

 are poured into tube Sa from

 46

each execution of Step (2b) and from each execution of Step (2c) a true is returned to

the caller and the execution of the function is terminated. Otherwise, from each

execution of Step (3a), tubes Sa
ON

 and Sa
OFF

 are poured into tube Sa, tubes Sb
ON

 and

Sb
OFF

 are poured into tube Sb and from each execution of Step (3b) a false is returned

to the caller and the execution of the function is terminated. 

VII. ASSESSMENT OF COMPLEXITY TO THE PROPOSED

BIOLOGICAL ALGORITHMS

The following lemma is used to show volume complexity and time complexity of

the proposed biological algorithms to play a tic-tac-toe.

Lemma 7-1: Playing a tic-tac-toe with human together can be completed with O(1)

biological operations, O(1) DNA strands, O(1) tubes and the number of the base pairs

of the longest DNA strand O(1).

Proof:

From the execution of Step (1) and Step (2) in Play-Tic-Tac-Toe(T0, S1, S2, S3, S4,

S5, S6, S7, S8, S9), it takes constant biological operations and constant tubes. Because

the execution of Step (3) only gives one selection who go first to play it, no biological

operation are implemented. Next on the execution of Step (4), it completes one

moving of the opponent with constant biological operations and constant tubes. Next,

on the execution of Step (5), it completes one moving of the computer with constant

biological operations and constant tubes. The opponent and the computer at most only

give their five selections which can be completed with constant biological operations

and constant tubes, and the contents of nine squares are encoded by constant DNA

strands with constant length. Therefore, it is at once inferred from the statements

above that playing a tic-tac-toe with human together can be completed with O(1)

biological operations, O(1) DNA strands, O(1) tubes and the number of the base pairs

of the longest DNA strand O(1). 

VIII. CONCLUSIONS

Playing games is the behavior of human’s intelligence, and a tic-tac-toe is one of

the simplest games. Nine tubes S1 through S9 can be regarded nine variables that are

used to store an O or an X of each square. Tube T0 also can be regarded as a variable

storing r
0
 that predicates that there are no three Os or three Xs to make three-in-a-row

or storing r
1
 that predicates that there are three Os or three Xs to make three-in-a-row.

 47

From a biological standpoint, all sequences generated to represent each bit must be

checked to ensure that the DNA strands that they encode do not form unwanted

secondary structures with one another (i.e., strands remain separate at all times, and

only bind together when this is required). The biggest challenge of implementing the

proposed method is actually to the problem of strand design that has been addressed at

length to minimize the possibility of unwanted binding. However, from the

implementation of the proposed method, O(1) DNA strands, O(1) tubes and the

number of the base pairs of the longest DNA strand O(1) are needed. This is to say

that the problem of strand design can be easily overcome.

From Lemma 7-1, playing a tic-tac-toe with human together can be implemented

with O(1) biological operations that are a constant time. This is a very useful

algorithm for consideration in a DNA implementation. With current biotechnology,

the time for each operation is at least one second. Realistically, steps like gel

electrophoresis take much longer, but for the sake of argument say each biological

operation takes one second. Because from the proposed algorithm constant biological

operations are implemented, it takes about constant seconds to obtain the result of

who wins the game.

Bonnet et al. in [6] used intensity of green fluorescent protein to encode two values ‘0’

and ‘1’ of a bit and implemented AND, NAND, OR, XOR, NOR, and XNOR gates.

This gives another very good choice for representing two values ‘0’ and ‘1’ of a bit. In

the past two methods, we designed two kinds of plasmids and the required

polymerases for generating green fluorescent protein and blue fluorescent protein

encoding two marks ‘O’ and ‘X’. But after checking the fluorescent induction systems

of E. coli, we realized that it would take more than 2 hours to get a detectable level of

fluorescent proteins after chemical induction. This is to say that when one of two

players selects his single move, after at least two hours his mark just can be encoded.

This indicates that this will be a major limitation of the biological experiment.

REFERENCES

[1] A. Newell and H. A. Simon. Human Problem Solving. Englewood Cliffs, N.J., Prentice-Hall, ISBN-13: 978-0134454030

ISBN-10: 0134454030, 1972.

[2] R. P. Feynman. “In Minaturization”. D.H. Gilbert, Ed., Reinhold Publishing Corporation, New York, 1961, pp. 282-296.

[3] L. Adleman. “Molecular Computation of Solutions to Combinatorial Problems”. Science, 266: 1021-1024, Nov. 11, 1994.

[4] M. Amos. Theoretical and Experimental DNA Computation. Springer, ISBN-13 978-3-540-65773-6, 2005.

[5] W.-L. Chang and A. V. Vasilakos. Molecular Computing: Towards a Novel Computing Architecture for Complex Problem

Solving, Springer, ISBN-10: 3319051210 | ISBN-13: 978-3319051215, 2014.

 48

[6] J. Bonnet, P. Yin, M. E. Ortiz, P. Subsoontorn, D. Endy. “Amplifying Genetic Logic Gates”. Science: Volume 340, No.

6132, pp. 599-603, May 2013.

[7] R. S. Braich, C. Johnson, P. W.K. Rothemund, D. Hwang, N. Chelyapov and L. M. Adleman. “Solution of a Satisfiability

Problem on a Gel-based DNA Computer”. Proceedings of the 6th International Conference on DNA Computation in the

Springer-Verlag Lecture Notes in Computer Science series, pp. 27-42, 2000.

[8] Ravinderjit S. Braich, Clifford Johnson, Paul W.K. Rothemund, Darryl Hwang, Nickolas Chelyapov and Leonard M.

Adleman. “Solution of a 20-Variable 3-SAT Problem on a DNA Computer”. Science, Volume 296, Issue 5567, 499-502, 19

April, 2002.

[9] Leonard Adleman, Paul W. K. Rothemund, Sam Roweis, and Erik Winfree. “On applying molecular computation to the Data

Encryption Standard”. The 2nd annual workshop on DNA Computing, Princeton University, DIMACS: series in Discrete

Mathematics and Theoretical Computer Science, American Mathematical Society, pp. 31-44, 1999.

[10] L. L. Qian and E. Winfree. “Parallel and Scalable Computation and Spatial Dynamics with DNA-based Chemical Reaction

Networks on a Surface”. DNA Computing and Molecular Programming (DNA20), Lecture Notes in Computer Science

(LNCS), Volume 8727, pp 114-131, 2014.

[11] J. Velasco, Y. Lee, Z. Zhao, L Jing, P. Kratz, M. Bockrath, C. N. Lau. “Transport Measurement of Landau Level Gaps in

Bilayer Graphene with Layer Polarization Control”. Nano Letter 14, 1324, 2014.

[12] F. Farnoud (Hassanzadeh), M. Schwartz and J. Bruck. “The Capacity of String-Replication Systems”. Paradise, ETR126

(Electronic Technical Reports), pp. 1-9, January, 2014 (http://arxiv.org/abs/1401.4634).

[13] B. Rastegari, A. Condon, N. Immorlica, R. Irving, and K. Leyton-Brown. “Reasoning about Optimal Stable Matchings

under Partial Information”. The Fifteenth ACM Conference on Electronic Commerce, pp. 431-448, 2014.

[14] M. Cook, Y. Fu, and Robert T. “SchwellerTemperature 1 Self-Assembly: Deterministic Assembly in 3d and Probabilistic

Assembly in 2d”. SIAM Symposium on Discrete Algorithms, pp. 1-40, 2011.

[15] Z. Z. Sun, E. Yeung, C. A. Hayes, V. Noireaux, and R. M. Murray. “Linear DNA for Rapid Prototyping of Synthetic

Biological Circuits in an Escherichia Coli Based TX-TL Cell-free System”. ACS Synthetic Biology, 3(6), pp. 387–397

2013

[16] J. P. Sadowski, C.R. Calvert, D.Y. Zhang, N.A. Pierce, and P. Yin. “Developmental Self-Assembly of a DNA Tetrahedron”.

ACS Nano, 8(4): 3251-3259, 2014.

[17] L. L. Qian, D. Soloveichik, and E. Winfree. "Efficient Turing-Universal Computation with DNA Polymers". DNA

Computing and Molecular Programming, LNCS 6518: 123-140, 2011.

[18] L. L. Qian, E. Winfree, and J. Bruck. “Neural Network Computation with DNA Strand Displacement Cascades”. Nature,

475: 368-372, 2011.

[19] L. L. Qian and E. Winfree. “Scaling up Digital Circuit Computation with DNA Strand Displacement Cascades”. Science,

332: 1196-1201, 2011.

[20] Y. Benenson. “DNA Computes a Square Root”. Nature Nanotechnology, 6: 465-467, 2011.

[21] A. Ehrenfeucht, and G. Rozenberg. “Processes Inspired by the Functioning of Living Cells: Natural Computing Approach”.

Proceedings Nature of Computation Logic, Algorithms, Applications - 9th Conference on Computability in Europe (CiE

2013), Lecture Notes in Computer Science, Volume 7921, pp. 120-122, 2013.

http://arxiv.org/abs/1401.4634

 49

[22] D. Boneh, C. Dunworth, and R. J. Lipton. “Breaking DES Using a Molecular Computer”. In Proceedings of the 1st

DIMACS Workshop on DNA Based Computers, 1995 and also in DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, Volume 27, pp. 1-14, 1995.

[23] W.-L. Chang, and A. V. Vasilakos, “Molecular Algorithms of Implementing Bio-molecular Databases on a Biological

Computer”. IEEE Transactions on Nanobioscience, Volume 14, NO. 1, pp. 104-111, January 2015.

[24] W.-L. Chang, T.-T. Ren, and M. Feng. “Quantum Algorithms and Mathematical Formulations of Bio-molecular Solutions of

the Vertex Cover Problem in the Finite-dimensional Hilbert Space”. IEEE Transactions on NanoBioscience, Volume 14,

NO. 1, pp 121-128, January 2015.

[25] M. R. Garey, and D. S. Johnson. Computer and intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman

Company, New York, 1979.

[26] R. Karp. “On the Computational Complexity of Combinatorial Problems”. Networks, Volume 5, pp. 45-68, 1975.

[27] Tenn., Memphis. Hidden variable theory: Bell’s theorem, Kochen-Specker theorem, Spekkens toy model, local hidden

variable theory. L. L. C., ISBN-9781155784854, 2010.

[28] W.-L. Chang, A. V. Vasilakos and M. S.-H. Ho. “The DNA-Based Algorithms of Implementing Arithmetical Operations of

Complex Vectors on a Biological Computer”. IEEE Transactions on NanoBioscience, Volume 14, NO. 8, pp 907-914,

December 2015.

