
A simple and general approach to parallelize loops
with arbitrary control flow and uniform data dependence distances

Weng-Long Chang a, Chih-Ping Chu b,*, Jia-Hwa Wu b

a Department of Information Management, Southern Taiwan University of Technology, Tainan 701, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC

Received 1 September 2000; received in revised form 1 February 2001; accepted 1 April 2001

Abstract

Loop distribution is applied to exploit the parallelism to loops. For loops with dependence cycle(s) involving all of the statements

embedded in control flow, previous methods have significant restrictions. In this paper, an algorithm is proposed to exploit the

parallelism for loops under arbitrary control flow and uniform dependence distances. Experiments with benchmark cited from

Vector loops, Parallel loops and Livermore loops showed that between 170 subroutines and 24 kernels tested 11 subroutines and

2 kernels had their parallelism exploited by our proposed method.

� 2001 Elsevier Science Inc. All rights reserved.

Keywords: Parallelizing and vectorizing compilers; Data dependence analysis; Control dependence analysis; Loop optimization; Supercomputing

1. Introduction

Loop distribution is applied to exploit the parallel-
ism to loops (Kuck et al., 1981) For loops with control
dependences one strategy to parallelize is to convert
all IF statements to conditional assignment statements.
The resulting loop thus can be distributed by consider-
ing only data dependence. This approach, called if-
conversion (Zima and Chapman, 1991; Mckinley and
Kennedy, 1991; Allen et al., 1983), has been used suc-
cessfully in a variety of vectorization systems (Zima and
Chapman, 1991). However, it has two drawbacks: (1) if
vectorization fails, it is not easy to reconstruct efficient
branching code and (2) if-conversion may cause signifi-
cant increases in the code space to hold conditions. For
these reasons, research in automatic parallelization has
concentrated on an alternative approach that uses con-
trol dependences to model control flow. Reconstructing
sequential code from a control dependence graph is not
trivial, but it is easier than reconstructing from code that
has been subject to if-conversion.

Kathryn et al. presented one method to distribute
loop in the presence of control flow based on control
dependence (Mckinley and Kennedy, 1991). Their method
is based on one control dependence graph, Gcd; and
execution variables having three possible values: true,
false, undefined. The execution variables are only nee-
ded for branch nodes with at least one successor in a
different partition. The execution variables are assigned
the value of the test at the branch, capturing the branch
decision. Later these variables will be tested to deter-
mine control flow in a subsequent partition. Hence, the
creation of an execution variable will replace control
dependences between partitions with data dependences.
Callahan et al. presented two methods for producing

loop distributions in the presence of control flows
(Callahan and Kalem, 1987). The first method, which
works for structured and unstructured control flow,
replicates the control flow of the original loop in each of
the new loops by using a data flow graph Gf : Branch
variables are inserted to record decisions made in one
loop and used in other loops. An additional pass then
trims the new loops of any empty control flow. This
approach has some of the same drawbacks as if-con-
version. The second method, which works only for
structured control flow, uses Gf ;Gcd; and Boolean exe-
cution variables. These execution variables indicate that

The Journal of Systems and Software 63 (2002) 91–98

www.elsevier.com/locate/jss

*Corresponding author. Tel: +886-6-27-57-575x62527; fax: +886-6-

27-470-76.

E-mail address: chucp@csie.ncku.edu.tw (C.-P. Chu).

0164-1212/01/$ - see front matter � 2001 Elsevier Science Inc. All rights reserved.
PII: S0164-1212 (01)00116-9

mail to: chucp@csie.ncku.edu.tw

if a particular node in Gf is reached and are created
for edges in Gcd that cross between partitions. These
execution variables are assigned true at the successor
indicating that the successor will execute, rather than
assigning the decision made at the predecessors. Also,
one execution variable may be needed for every suc-
cessor in the descendent partition. Because their code
generation algorithm is based on Gf ; rather than Gcd:
Towle et al. (Baxter and Bauer, 1989; Towle, 1976) use
similar approaches for inserting conditional arrays.
Ferrante et al. presented related algorithms whose

goals are to avoid replication and branch variables when
possible (Ferrante andMace, 1985; Ferrante et al., 1988).
They discuss three transformations that restructure
control flow: loop fusion, dead code elimination, and
branch deletion. Other research concerned with the def-
inition and use of the program dependence graph does
not address distribution. The PTRANproject, which also
performs code generation based on Gcd, does not address
distribution (Cytron et al., 1989; Allen et al., 1987).Work
in memory management and name space adjustment
(Porterfield, 1989) uses distribution, but only when no
control dependences are present. The Stardent compiler
(Mckinley and Kennedy, 1991) distributes loops with
structured control flow by keeping groups of statements
with the same control flow constraints together. For ex-
ample, all the statements in the true branch of a block IF
must stay together, so only the outer level of IF nests can
be considered. This limits effectiveness of distribution
because partitions are artificially made larger, possibly by
grouping parallel statements with sequential ones.
However, the above methods cannot resolve the

problem that dependence cycle(s) involve all of the
statements in loops embedded in control dependences.
In this paper, a method is proposed to exploit the par-
allelism to loops with dependence cycles and control
dependences. The approach is optimal in the sense that
it generates the fewest possible predicates. In particu-
lar, it introduces one logical array for each conditional
node upon which some nodes depend. In addition, the
proposed algorithm is shown to generate code for the
resulting loop without replicating statements or condi-
tions. In Section 2, we review the concept of data depen-
dence and control dependence. In Section 3, an algorithm
for exploitation of parallelism is discussed. In Section 4,
an experimental result is given. Finally, in Section 5,
conclusions and future work are addressed.

2. Data dependence and control dependence

The statement together with the iteration vector
represents an instance of a statement. For example, the
instance of a statement S1 during a iteration vector
~ii ¼ ði1; . . . ; inÞ is denoted S1ð~iiÞ; the instance of a state-
ment S2 during a iteration vector ~jj ¼ ðj1; . . . ; jnÞ is de-

noted S2ð~jjÞ: If a statement S2ð~jjÞ uses the array A defined
first by another statement S1ð~iiÞ; then S2ð~jjÞ is true-de-
pendent on S1ð~iiÞ: If a statement S2ð~jjÞ defines the array A
used first by another statement S1ð~iiÞ; then S2ð~jjÞ is anti-
dependent on S1ð~iiÞ: If a statement S2ð~jjÞ redefines the
array A defined first by another statement S1ð~iiÞ; then
S2ð~jjÞ is output-dependent on S1ð~iiÞ: These data depen-
dences may result in loop-independent and loop-carried
data dependence (Allen and Kennedy, 1987) when they
exist in statement(s) with indexed variables in loops.
Loop-independent dependence refers to the dependence
confined within each single iteration, while loop-carried
dependence implies the dependence occurring across the
iteration boundaries. The loop-carried data dependence
can be further distinguished as uniform loop-carried
data dependence and non-uniform loop-carried data
dependence, depending on whether the dependence is
consistent across the loop (Chu and Carver, 1991). In
this paper, we do not address non-uniform loop-carried
data dependence. The following, Definitions 2.1–2.7,
modified or cited from (Banerjee, 1993, 1994; Wolfe,
1996) will be used later.

Definition 2.1. Loop-independent dependence includes
loop-independent true-dependence (denoted dt), loop-
independent anti-dependence (denoted da) and loop-
independent output-dependence (denoted do). These
relations are represented by the set (denoted D),
i.e., D ¼ fdt; da; dog:

Definition 2.2. Uniform loop-carried dependence con-
tains uniform loop-carried true-dependence (denoted
½dt�), uniform loop-carried anti-dependence (denoted
½da�) and uniform loop-carried output-dependence (de-
noted ½do�). These relations are represented by the set
(denoted ½D�), i.e., ½D� ¼ f½dt�; ½da�; ½do�g:

Definition 2.3. The dependence graph of loops is a di-
rected graph where the nodes correspond to the state-
ments in loops, and there is an arc from a node S1 to
another node S2 iff S1 d S2;where d 2 D or d 2 ½D�:

Definition 2.4. The dependence distance vector from S1ð~iiÞ
to S2ð~jjÞ; is denoted by dist(~ii;~jjÞ ¼ ðj1 	 i1; . . . ; jn 	 inÞ:

Definition 2.5. The dependence distance matrix of nested
loops is a matrix whose columns are the distance vectors
of all the dependences in nested loops.

Definition 2.6. S1 is post-dominated by S2 in a control
flow graph Gcf if every path from S1 to the exit node of
Gcf contains S2:

Definition 2.7. Given two statements S1 and S2 in a
control flow graph Gcf ; S2 is control dependent on S1 if
and only if:

92 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98

1. 9 a non-null path P, S1 ! S2; post-dominates every
node between S1 and S2 on P, and

2. S2 does not post-dominate S1:

Based on Definitions 2.6 and 2.7, a control depen-
dence graph Gcd can be built with the control depen-
dence edges ðS1; S2Þl; where l is the label of the first edge
on path S1 ! S2 (Ferrante et al., 1987). Intuitively,
control dependence between two statements, S1 and S2;
indicates that the source statement S1 in the control
dependence directly determines whether the sink state-
ment S2 will execute.

3. Exploitation of parallelism

Consider the loop in Fig. 1. The corresponding data
and control dependence graphs for the loop are shown
in Fig. 2. The data dependence graph in Fig. 2(a) shows
two main dependence cycles. One dependence cycle in-
cludes five statements: S1; S2; S3; S4 and S5: Another de-
pendence cycle consists of three statements: S6; S7 and
S8: Because the loop simultaneously owns control de-
pendences and data dependence cycles, previous meth-
ods cannot make the loop executable in either parallel
mode or vector mode. In this paper, we propose an al-
gorithm, which can handle this condition. Our proposed
method is separated into a three-stage processing: (1) the
maximum independent iterations are determined from
loop iterations, (2) the corresponding execution variable
for each branch node is produced and (3) an equivalent
loop is generated based on the control dependence
graph. It is clear that the distinct instances of all of the
statements in maximum independent iterations deter-
mined from loop iterations do not form dependence
relations. This is to say that a loop-carried dependence

for statements does not exist in the maximum indepen-
dent iterations. Therefore, the execution of any state-
ment in a control dependence graph may be determined
solely from the execution of its predecessor. Execution
variables are applied to compute and store decisions for
branch nodes. If control dependence successors need
only to test the value of the branch for their predeces-
sors, then it is more efficient to run in parallel/vector
machine that nested if-statements are transformed into
many single if-statements. The details of the proposed
algorithm will be described in Section 3.2.

3.1. Basic concept

Any node in a control dependence graph that has a
successor must be a branch node. Because branch nodes
correspond to control decisions in the original program,
execution variables are only needed for branch nodes.
The execution variable is allocated to the value of the test
at the branch, capturing the branch decision. ExecutionFig. 1. An example of loop with data and control dependences.

(a)

(b)

Fig. 2. The data and control dependence Gcd graphs for the code
shown in Fig. 1.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98 93

variables will be tested to determine control flow. The
creation of an execution variable will thus replace con-
trol dependences. Execution variables are logical arrays
with one value to each iteration of loops, because each
iteration can give rise to a different control decision. The
following Definition, cited from (Mckinley and Ken-
nedy, 1991) is required for further explanation.

Definition 3.1. Let EV denote an execution variable. An
execution variable EV has three possible values: true,
false and W; where W denotes an undefined value.

For each branch node a unique execution variable
is generated. Because the condition of the first branch
node is evaluated at execution time, the corresponding
execution variable will not be assigned to an undefined
value. For each of the other branch nodes the execution
variable is given in advance an undefined value at the
outside of loops, indicating that the branch has not yet
been executed. If there exists a ‘‘not executed’’ value,
then control dependence successors need only to test the
value of the execution variable for their specific prede-
cessors. They do not need to test the value of the exe-
cution variable to their control dependence ancestors
in the entire path.

3.2. The algorithm

Each of the maximum independent iterations deter-
mined from loop iterations, as is a task, can execute in
parallel/vector machines. The instance of every statement
in a task does not form dependence relations. If loop-
independent dependences do not exist for the same in-
stance of every statement in maximum independent
iterations, then Breadth First Search is applied to trim
statements’ orders and generate the minimum number of
assignments of execution variables to tests of nodes and
the minimum number of guards on the values of an ex-
ecution variable required to correctly determine execu-
tion. Otherwise, Depth First Search is used to preserve
statement’ orders and generate the minimum number
of execution variables and guards under such a con-
straint.
We extend the algorithm in (Mckinley and Kennedy,

1991) to generate the minimal number of execution vari-
ables and to produce codes for the resulting loop with-
out replicating statements or conditions. The extended
algorithm mainly includes three functions: the parallel-
izable-loop detector, the execution variable generator
and the loop transformer. The task of the parallelizable-
loop detector principally figures out maximum inde-
pendent iterations, MII, from loop iterations. It is to
compute minimal dependence distance of each common
loop from one dependent distance matrix, Dn�p; where p
is the number of dependence relations and n is the
number of common loops. It is assumed that the num-

ber of iteration for the ith common loop is Mi, where
16 i6 n: Let Bi and Ci, respectively, denote independent
iteration and minimal dependence distance of each
common loop, where 16 i6 n. It is at once derived that
independent iteration of each common loop, Bi, is equal
to Ci

Qn
k¼1Mk, where k 6¼ i. Maximum independent

iteration is determined from Bi. If the maximum value is
equal to zero, then the loop cannot be parallelized and
will be preserved. Otherwise, the execution variable
generator and the loop transformer will be invoked.
The execution variable generator is mainly used to

generate execution variables and assign an initial Bool-
ean value (true, false or undefined) to each execution
variable. This function applies Depth First Search
to traverse the control dependence graph Gcd: It is
normally divided into two parts. First, for each of DO-
statements in loops the corresponding DOALL-state-
ment with the original index bounds is created and the
initial conditions for Depth First Search are set. Then,
all of the branch nodes will be found by traversing Gcd.
For each branch node a unique execution variable is
generated. Because the condition of the first branch
node is evaluated at execution time, the corresponding
execution variable will not be given an initial value. For
each of the other branch nodes the execution variable
will be assigned an undefined value.
The loop transformer is applied to produce code for

the resulting loops without replicating statements or
conditions. It involves three phases to generate the re-
structured loop. At the first phase, a parallelizable-code
for DO-statements in loops is produced, its initial con-
ditions for the code generator are set and an assignment
of the execution variable to a test of the root in Gcd is
created. At the second phase, the features of control
dependences are determined between a branch node n
and its suns. If the left sibling for its sun is one branch
node, then the number of if-statements is added one,
and its conditional branch is changed to test the exe-
cution variable (this is that IF-THEN is generated,
where the tested condition is its branch). If there is a true
branch between n and its suns and the true test of the
execution variable to n has not yet been produced, then
its true branch is changed to test the execution variable
(this is that IF-THEN is generated, where the condition
is its true branch). If there is one false edge between n
and its suns and the false branch of the corresponding
execution variable to n has not yet been produced, then
ELSE-IF-THEN is generated, where the condition is its
false branch. At the third phase, it is determined whether
each of the successors to n is a branch node. If it is, then
an assignment of the execution variable for a test of the
successor is inserted in the restructuring loop. Other-
wise, the original statements will be preserved. Repeat
phases 2 and 3 until all of the nodes in Gcd have been
processed. The proposed algorithm and its time com-
plexity are explained as follows.

94 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98

The parallelizable-loop detector contains four main
steps applied to figure out maximum independent iter-
ations. The time complexity to the four steps is
Oðp
 nÞ;OðnÞ;OðnÞ; and OðyÞ; respectively, where p, n
and y are, subsequently, the number of the row (i.e., the
number of dependence relations), the number of the
column (i.e., the number of common loops), and one
constant value. Therefore, it is at once concluded that
the time complexity to the parallelizable-loop detector is
Oðp
 nþ 2
 nþ yÞ: A control dependence graph de-
noted in general is a tree. The feature of a tree will make
the processing of traversing a control dependence graph
to become simple. The time complexity to Depth First
Search applied to traverse each node in a control de-
pendence graph is OðeÞ, where e is the number of edges
in a control dependence graph. Because e is equal to
k 	 1, where k is the number of nodes in a control de-
pendence graph. Hence, its time complexity is also equal
to Oðk 	 1Þ: The execution variable generator uses
Depth First Search to determine which nodes in a con-
trol dependence graph are branch nodes. It is thus
concluded that the time complexity of the execution
variable generator is OðkÞ: The loop transformer simi-
larly applies Depth First Search to generate an assign-
ment of an execution variable to a test of each of
the branch nodes and guards on the values of each ex-
ecution variable required. It is similarly derived that the
time complexity to the loop transformer is OðkÞ:
Therefore, the time complexity to the proposed algo-
rithm is right away derived to be Oðp
 nþ nþ kÞ:
Consider the loop in Fig. 1. The dependent distance

matrix for the loop is

1 1 1 1 1 1 1 1 2 3 1
1 1 1 1 1 1 1 1 2 3 1

� �
2
11

:

The parallelizable-loop detector is used to figure out the
maximum independent iterations not to be zero and
indicate that the loop is parallelizable. The execution
variable generator is applied to determine two branch
nodes S1 and S6: Since the branch node S1 is the root, the
initialization of its execution variable is not created.
However, the execution variable for the branch node S6
is assigned an undefined value. The loop transformer is
employed to restructure this loop without replicating
statements or conditions. An assignment of the execu-
tion variable for the test of S1 is ‘‘EV1ðI ; JÞ ¼ test’’,
where test is the branch condition in S1: The assignment
statement is inserted in the restructuring loop. Since
ðS1; S2Þ and ðS1; S4Þ are on the first true edge and false
edge, the true test and the false test are generated as ‘‘if
(EV1ðI ; JÞ .eq. .true.) then’’ and ‘‘else if (EV1ðI ; JÞ .eq.
.false.) then’’, respectively. Similar processing is also
applied to S6; S7 and S8. For other nodes their original
statements will be preserved. The restructured loop is
shown in Fig. 3.

Algorithm: Loop Parallelization

Input: A loop L with a control dependence graph Gcd
and one dependent distance matrix Dn
p; where p is the
number of dependence relations and n is the number of
common loops.

Output: A restructured loop L1:

Step 1. Call the parallelizable-loop detector. If the
parallelizable-loop detector indicates that L is parallel-
izable, then the execution variable generator and the
loop transformer are, subsequently, invoked to output
L1: Otherwise, the original loop, L, is preserved.

Function: The parallelizable-loop detector

Input: The number of iteration to the ith common loop
Mi for 16 i6 n:

Output: Decide whether a loop L is parallelizable.

Step 1. The minimal dependence distance for the ith
common loop, Ci; is Ci ¼ UðDn�p; iÞ; where the sub-
routine UðDn�p; iÞ returns the minimal absolute value for
the ith common loop for 16 i6 n:

Step 2. The independent iteration for the ith com-
mon loop, Bi; is equal to Ci

Qn
k¼1Mk; where Mi is the

(a)

(b)

Fig. 3. Loop transformation for the code shown in Fig. 1. The code

produced by: (a) the execution variable generator, (b) the loop trans-

former.

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98 95

number of iteration to the ith common loop and k 6¼ i
for 16 i6 n:

Step 3. The maximum independent iteration, MII, is
equal to MAXðBiÞ; where the subroutine MAX() re-
turns the maximum value of arguments for 16 i6 n:

Step 4. IfMII is not equal to zero, then returns that a
loop L is parallelizable. Otherwise returns that it must
be preserved.

Function: The execution variable generator.

Input: The root, U, in control dependence graph, Gcd;
and one stack, X:

Output: Generate undefined values to the execution
variables of branch nodes.

Step 1. Set the initial conditions for Depth First
Search and push the root, U, into the stack X:

Step 2. Terminate the execution variable generator if
the stack X is empty.

Step 3. If there is one nodeW in Gcd is adjacent to the
top element in the stack X and the node W is not tra-
versed, then go to Step 5. Otherwise, go to Step 4.

Step 4. Pop the top element from the stack X and go
to Step 2.

Step 5. Push the node W into the stack X: If there is
one edge in Gcd to connect the nodes W and X, then
generate one undefined value to the corresponding exe-
cution variable. Go to Step 3.

Function: The loop transformer.

Input: A loop L, the root U in Gcd and one stack X:

Output: A restructured loop L1:

Step 1. Reorder DO-statements in an original loop L
to a sequence such that the loop selected with the
maximum independent iterations is the outermost loop
and the order of other loops is preserved.

Step 2. Generate one new DO-statement outside of
the outermost loop with the new indexed variable, the
same lower and upper bounds as the loop selected with
the maximum independent iterations and the different
increment denoted to be the minimal dependent dis-
tance.

Step 3. Let a; b; and c represent, respectively, the in-
dexed variable and the upper bound of the new DO-
statement and the minimal dependent distance. Output
one new DOALL-statement to replace the original loop
selected with the maximum independent iterations with
the same indexed variable and increment as the original
loop. The lower and upper bounds of the new DOALL-
statement are, respectively, a and minða þ c 	 1; bÞ;
where the subroutine min() returns the smallest value
of arguments.

Step 4. Generate DOALL-statements to replace the
other loops with the same indexed variable, lower
bound, upper bound and increment.

Step 5. Set the number of if-statements to zero, push
the root U into the stack X and create one assignment
of the execution variable to a test of the root.

Step 6. Go to Step 13 if the stack X is empty.
Step 7. If there is one node W is adjacent to the top

element in the stack X and the node W is not traversed,
then go to Step 9. Otherwise, go to Step 8.

Step 8. If the top element in the stack X is one branch
node and the number of if-statements is greater than
zero, then generate END-IF and decrease one to the
number of if-statements. Pop the top element from the
stack X and then go to Step 6.

Step 9. Push the node W into the stack X: If the left
sibling for the node W is one branch node, then the
number of if-statements is added one, its conditional
branch is changed to test the execution variable (this is
that IF-THEN is generated, where the tested condition
is its branch), and then go to Step12. Otherwise, go to
Step 10.

Step 10. If there is one true edge in Gcd to connect the
nodes V and W and the true branch of the corre-
sponding execution variable has not yet been produced,
then the number of if-statements is added one, its true
branch is changed to test the execution variable (this is
that IF-THEN is generated, where the condition is its
true branch), and then go to Step12. Otherwise, go to
Step 11.

Step 11. If there is one false edge in Gcd to connect the
nodes V and W and the false branch of the corre-
sponding execution variable has not yet been produced,
then ELSE-IF-THEN is generated, where the condition
is its false branch. Go to Step 12.

Step 12. If there is one edge in Gcd to connect the
nodes W and X, then an assignment of the execution
variable for a test of the nodeW is generated, END-IF is
generated and the number of if-statements is decreased
one. Otherwise, the original statement for the nodeW is
preserved. Go to Step 7.

Step 13. Generate the corresponding ENDDO-state-
ment(s).

Step 14. Terminate the loop transformer.

3.3. Optimality

This section proves that the proposed algorithm
creates the minimal number of execution variable nee-
ded to track control decisions affecting statement exe-
cution in the reconstructed loop. It also establishes that
the algorithm produces the minimal number of guards
on the values of an execution variable required to cor-
rectly execute the produced code. Therefore, our algo-
rithm is optimal for loops with arbitrary control
flow and uniform dependence distance. The following
lemmas is extended from (Mckinley and Kennedy,
1991).

96 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98

Lemma 3.1. Each execution variable represents a unique
decision that must be communicated between a branch
node and its successor(s).

Proof. When a decision in one statement directly affects
the execution of another statement, as specified by Gcd;
the corresponding execution variable is created. Ac-
cording to the definition of Gcd; it is very obvious that no
decision node includes another, and hence any decisions
represented by execution variables are unique. �

The restructuring algorithm creates the minimal
number of guards on the values of an execution variable
required to correctly determine execution. Let m be the
number of distinct branch labels that contain successors
of node n. There are at most k tests on the values of an
execution variable EVn: If all of the n0s successors are not
branch nodes, then k is possibly one or two. If all of
distinct branch labels are the same true branch labels,
then k is equal to one. Otherwise, k is equal to two. If
all of the n’s successors are branch nodes, then k is equal
to m. It is concluded that k is bounded by the number of
n’s successors that are branch nodes. We thus get
16 k6m:

Lemma 3.2. The number of guards that test an execution
variable is the minimal required to preserve correctness for
the proposed code.

Proof. Using contradiction. Guards would be created
that were either unnecessary or redundant if there is a
version of the method with fewer guards. Lemma 3.1
would be disturbed if there were redundant guards. If
there were unnecessary guards, then would be multiple
guards for nodes with the same label. However, the
method generated at most one guard per label. �

4. Experimental results

Both the original and transformed versions of the
program were tested to evaluate the performance of
the proposed scheme. For the test machine, we choose
the DECmpp model 12,000 which has 1024 data pro-
cessors in our environment. Livermore Loop, Parallel
Loop and Vector Loop were used as benchmarks (Le-
vine et al., 1991; Dongarra et al., 1991; Arnold, 1982).
Some loops in the two benchmarks were modified to
become structured loops without go-to statements. The
original programs tested in the two benchmarks were
executed in scalar mode (sequence mode). The trans-
formed versions of the same original program tested
were run in parallel mode.
Suppose that kSM and kPM are the execution time of

the original programs and the transformed programs,
subsequently. The speed-up in Table 1 is defined to be

the set of kSM=kPM. Each row in Table 1 shows how
many times the execution time of the original program
took longer than the execution time of the transformed
program. For example, the first row shows that there
was one subroutine, called S277, in which the execution
time of the original codes took 61.2 times longer than
that of the transformed codes. For all of the subroutines
in our experiments, the execution time of the original
programs was indicated to take from 1.9 to 61.2 times
longer than the execution time of the transformed pro-
grams. This indicates that that the proposed scheme
is very significant in term of speed-up, ranging from 1.9
to 61.2.

5. Conclusions and future works

We have presented a very general and optimal algo-
rithm for loops with control flow and uniform depen-
dence distances. The algorithm can be used to enhance
the effectiveness of vectorizers, parallelizers and pro-
gramming environments, alike. The future research will
focus on discovering dependence distance algorithms
that are effective in deciding whether loops with control
flow and non-uniform dependence distances can be re-
constructed.

Acknowledgements

This work was partially supported by the National
Science Council of Republic of China under grant
NSC89-2213-E-168-013.

References

Allen, F., Burke, M., Charles, P., Cytron, R., Ferrante, J., 1987.

An overview of the PTRAN analysis for multiprocessing. In:

Proceedings of the First International Conference on Supercom-

puting.

Table 1

The performance of the proposed scheme to loops in two benchmarks

Benchmark Loop name Speed-up

Vector loop S277 61.2

Vector loop S274 50.3

Vector loop S273 42.5

Parallel loop DO_3000 26.3

Parallel loop DO_3100 24.6

Vector loop S279 22.4

Parallel loop DO_3800 20.5

Livermore loop Kernel 22 18.6

Vector loop S253 12.3

Parallel loop DO_3500 10.7

Parallel loop DO_3600 8.6

Livermore loop Kernel 15 7.4

Vector loop S2710 1.9

W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98 97

Allen, R., Kennedy, K., 1987. Automatic translation of fortran

program to vector form. ACM Trans. Programming Languages

Syst. 9 (4), 491–542.

Allen, R., Kennedy, K., Porterfield, C., Warren, J., 1983. Conversion

of control dependence to data dependence. In: Conf. Rec. 10th

ACM Symposium Principles of Programming Languages (POPL),

pp. 177–189.

Arnold, C.N., 1982. Performance evaluation of three automatic

vectorization packages. In: Proceedings of the 1982 International

Conference on Parallel Processing, pp. 235–242.

Banerjee, U., 1993. Loop Transformation for Restructuring Compil-

ers: The Foundations. Kluwer Academic Publishers, Dordrecht,

ISBN 0-7923-9318-X.

Banerjee, U., 1994. Loop Parallelization. Kluwer Academic Publishers,

Dordrecht.

Baxter, W., Bauer, H.R., 1989. The program dependence graph and

vectorization. In: Proceedings of the 16th Annual ACM Sympo-

sium on the Principles of Programming Languages, Austin, TX.

Callahan, D., Kalem, M., 1987. Control Dependence Supercomputer

Software. Newsletter 15, Department of Computer Science, Rice

University.

Chu, C.-P., Carver, D.L., 1991. An analysis of recurrence relation in

Fortran Do-loops for vector processing. In: Proceedings of the

Fifth Parallel Processing Symposium. IEEE CS Press, Los Alam-

ities, CA, pp. 619–625.

Cytron, R., Ferrante, J., Sarker, V., 1989. Experiences using control

dependence in PTRAN. In: Proceeding of the Second Workshop

on Languages and Compilers for Parallel Computing.

Dongarra, J., Furtney, M., Reinhardt, S., Russell, J., 1991. Parallel

loops – a test suite for parallelizing compilers: description and

example results. Parallel Computing 17, 1247–1255.

Ferrante, J., Mace, M., 1985. On linearizing parallel code. In:

Conference Record of the 12th Annual ACM Symposium on the

Principles of Programming Languages, New ORLEANS,

LA.

Ferrante, J., Mace, M., Simons, B., 1988. Generating sequential code

from parallel code. In: Proceedings of the Second International

Conference on Supercomputing, St. Malo, France.

Ferrante, J., Ottenstein, K., Warren, J., 1987. The program depen-

dence graph and its use in optimization. ACM Trans. Program-

ming Languages Syst. 9 (3), 319–349.

Kuck, D.J., Kuhn, R.H., Padua, D.A., Leasure, B., Wolfe, M., 1981.

Dependence graphs and compile optimizations. In: Conf. Rec. of

8th ACM Symposium on Princ. of Programming Language.

Levine, D., Callahan, D., Dongarra, J., 1991. A comparative study of

automatic vectorizing compilers. Parallel Computing 17, 1223–

1244.

Mckinley, K., Kennedy, K., 1991. Loop Distribution with Arbitrary

Control Flow. International Conference on Super-computing.

Porterfield, A., 1989. Software Methods for improvement of Cache

performance. Ph.D. Thesis, Department of Computer Science, Rice

University.

Towle, R.A., 1976. Control and data dependence for program

transformation. Ph.D. Thesis, Department of Computer Science,

University of Illinois at Urbana-Champaign.

Wolfe, W., 1996. High Performance Computer for Parallel Comput-

ing. Addison-Wesley, Reading, MA, ISBN 0-8053-2730-4.

Zima, H., Chapman, B., 1991. Supercompilers for Parallel and Vector

Computers. Addision-Wesley, Reading, MA, ISBN 0-201-17560-6.

Weng-Long Chang received his BS degree in computer science and
information engineering from Feng China University, Taiwan, in 1988
and MS and PhD degrees in computer Science and information engi-
neering from the National Cheng Kung University, Taiwan, in 1994
and 1998, respectively. He is currently an Assistant Professor in the
Department of Information Management of Southern Taiwan Uni-
versity of Technology, Taiwan. His research interests include lan-
guages, tools and compilers for parallel computing.

Chih-Ping Chu received a BS degree in agricultural chemistry from
National Chung Hsing University, Taiwan, and MS degree in com-
puter science from the University of California, Riverside, and a PhD
degree in computer science from Louisiana State University. He is
currently a professor in the Department of Computer Science and
Information Engineering of National Cheng Kung University, Taiwan.
His research interests include parallel computing, parallel processing,
component-based software development, and internet computing.

Jia-Hwa Wu received his BS degree in mechanical engineering from
Feng Chia University, Taiwan, in 1981 and MBA degree in industrial
management from National Cheng Kung University, Taiwan, in 1986.
He is currently a doctoral candidate in computer science and infor-
mation engineering at the National Cheng Kung University, Taiwan.
His research interests include parallelizing compilers, data mining, and
internet computing.

98 W.-L. Chang et al. / The Journal of Systems and Software 63 (2002) 91–98

	A simple and general approach to parallelize loops with arbitrary control flow and uniform data dependence distances
	Introduction
	Data dependence and control dependence
	Exploitation of parallelism
	Basic concept
	The algorithm
	Optimality

	Experimental results
	Conclusions and future works
	Acknowledgements
	References

