NH
E PARALLEL
e COMPUTING

ELSEVIER Parallel Computing 27 (2001) 1783-1799

www.elsevier.com/locate/parco

A multi-dimensional version of the I test
Weng-Long Chang *, Chih-Ping Chu **, Jia-Hwa Wu °

& Department of Information Management, Kung Shan Institute of Technology,
Tainan 701, Taiwan, ROC
® Department of Computer Science and Information Engineering, National Cheng Kung University,
Tainan 701, Taiwan, ROC

Received 11 January 2001; received in revised form 13 April 2001; accepted 30 April 2001

Abstract

Two-dimensional arrays with linear subscripts occur quite frequently in real programs. In
general, for multi-dimensional linear arrays under constant bounds the Lambda test is an ef-
ficient data dependence method to check whether there exist real solutions. In this paper, we
propose a multi-dimensional version of the I test, the multi-dimensional I test, that can be
applied to testing whether there are integer solutions for multi-dimensional linear arrays under
constant limits. Experiments with benchmark showing the effects of the multi-dimensional I
test on testing precision and testing efficiency are also presented. © 2001 Elsevier Science B.V.
All rights reserved.

Keywords.: Parallelizing/vectorizing compilers; Data dependence analysis; Loop parallelization; Loop
vectorization

1. Introduction

The question of whether multi-dimensional array references with linear subscripts
may be parallelized/vectorized depends upon the resolution of these multi-dimen-
sional array aliases. The resolution of multi-dimensional array aliases is to ascertain
whether two references to the same multi-dimensional array within a general loop
may refer to the same element of this multi-dimensional array. This problem in
general case can be reduced to that of checking whether a system of m linear
equations with » unknown variables has a simultaneous integer solution, which

* Corresponding author. Tel.: +886-6-2757575x62527; fax: +886-6-2747076.
E-mail address: chucp@csie.ncku.edu.tw (C.-P. Chu).

0167-8191/01/$ - see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0167-8191(01)00108-9

1784 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

satisfies the constraints for each variable in the system. It is assumed that m linear
equations in a system are written as

a Xy + a1 pXo + - + a1 Xm + X, = apy,

(1.1)

am,le + am,ZXZ + -+ am‘nlenfl + am.ﬁXn = am,O;

where each «;; is a constant integer for 1 <i<m and 1 <j<n. It is postulated that
the constraints to each variable in (1.1) are represented as

r—1 r—1
Pr,() + Z PrA,er ng g Qr,() + Z Qr,SXs‘7 (1 2)
s=1 s=1

where Py, O.¢, B, and O, are the constant integers for 1 <r<n. That is, the
bounds for each variable X, are variable.
If each of P, and Q,, is zero in the limits of (1.2), then (1.2) will be reduced to

Po<X,<Q,9, wherel<r<n. (1.3)

That is, the bounds for each variable X, are constants.

There are several well-known data dependence analysis algorithms applicable to
multi-dimensional linear arrays under constant bounds: the Lambda test [2], an effi-
cient method to check whether there exist real solutions; the Power test, a combi-
nation of Fourier-Motzkin variable elimination with an extension of Euclid’s GCD
algorithm [6]; the Omega test, which combines new methods for eliminating equality
constraints with an extension of Fourier—Motzkin variable elimination to integer
programming [3].

In this paper, the I test [1] and the Lambda test are integrated to check whether m
linear equations (1.1) under constant bounds have integer solutions. (A dependence
testing method determining if there exist integer-valued solutions is more precise than
that determining if there exist real-valued solutions.) A theoretical analysis explains
that we take advantage of the rectangular shape of the convex sets derived from m
linear equations under constant limits in a data dependence testing. An algorithm
called the multi-dimensional I test has been implemented and several measurements
have also been performed.

The rest of this paper is proffered as follows. In Section 2, the summary accounts
of the I test and the Lambda test are presented. In Section 3, the theoretical aspects
and the worst-case time complexity of the multi-dimensional I test are described.
Experimental results showing the advantages of the multi-dimensional I test are
given in Section 4. Finally, brief conclusions are drawn in Section 5.

2. Background

The summary accounts of the I test and the Lambda test are introduced briefly in
this section.

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1785
2.1. The I test

A linear equation with the bounds of (1.3) will be said to be integer solvable if the
equation has an integer solution satisfying the bounds of each variable. The I test
deals with a linear equation by first transforming it to an interval equation. Defi-
nitions 2.1 and 2.2 define integer intervals and interval equations [1].

Definition 2.1. Let [0, ap] represent the integer intervals from o to oy, i.e., the set of
all integers between o and o,.

Definition 2.2. Let ay,...,a,_1,a,, L, and U be integers. A linear equation
a1X1 + a2X2 + -+ anlenfl + aan = [L, U], (21)

which is referred to as an interval equation, will be used to denote the set of ordinary
equations consisting of

aXi+aXo+ - a1 X +aX, =L,
aXi+aXs+ ta X +aX, =L+ 1,

aXi+aXo+ - + a1 X +a, X, =U.

An interval equation (2.1) will be said to be integer solvable if one of the equations
in the set, which it defines, is integer solvable. The immediate way to determine this is
to test if an integer in between L and U is divisible by the GCD of the coefficients of
the left-hand-side terms. If L > U in an interval equation (2.1), then there are no
integer solutions for the interval equation. If the expression on the left-hand side of
an interval equation (2.1) is reduced to zero items, in the processing of testing, then
the interval equation will be said to be integer solvable if and only if U > 0 > L. The
following definition and theorems, cited from [1], state how the I test determines
integer solutions of an interval equation under constant bounds.

Definition 2.3. Let a variable a; be an integer for 1 <i < n. The positive part a;” and
the negative part a; of an integer a; are defined by o = MAX{a;0} and
a; = MAX{—a;,0}.

Theorem 2.1. Given a linear equation subject to the constraints of (1.3). Let
a,as, . ..,a,, L, and U be integers. For each r, 1 <r<n—1, let each of P,y and O,
be either an integer or an unknown limit, where P, < O, if both P,y and Q. are in-
tegers. Let P,y and Q,o be integers, where P,o < Quo. If |a,|<U — L+ 1, then the
interval equation

a1X1 +azX2 + -+ a,,X,, = [L, U}
is (Bo <X <Q,0; 1 <r<n)-integer solvable if and only if the interval equation
aXi+aXo+ -+ a1 X = [L—a, Ono+a, P, U—a,Po+a, Ol

is (Bo <X, <Q0; 1<r<n—1)-integer solvable.

1786 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

Theorem 2.2. Given a linear equation subject to the constraints of (1.3). Let
ay,as, . ..,a,, L, and U be integers. For each r, 1 <r<n, let each of P,y and Q,, be
either an integer or an unknown limit, where P,y < O, if both P, and Q. are integers.
Let g = ged(ay, ... ,a,1,a,). The interval equation

alXi +axXo + -+ a1 X + anX, = [L, U]
is (Bo <X, < Q,0; 1<r<n)-integer solvable if and only if the interval equation

(ar1/g)X1 + (a2/g)Xa + - + (an1/8) X1 + (an/2) X, = [[L/g], [U/2]]

is (Bo <X, < Q0; 1 <r<n)-integer solvable.

2.2. The Lambda test

Coupled references are groups of reference positions sharing one or more index
variables [2,6]. Geometrically, each linear equation in (1.1) defines a hyperplane 7 in
R" spaces. The intersection S of m hyperplanes corresponds to the common solu-
tions to all linear equations in (1.1). Obviously, if S is empty then there is no data
dependence. Inspecting whether S is empty is trivial in linear algebra [§]. The
bounds of (1.3) define a bounded convex set V' in R". If any of the hyperplanes in
(1.1) does not intersect V, then obviously S cannot intersect V. However, even if
every hyperplane in (1.1) intersects V, it is still possible that S and 7 are disjoint. If
S and V are disjoint, then there exists a hyperplane which contains S and is disjoint
from V. Furthermore, this hyperplane is a linear combination of hyperplanes in
(1.1). On the other hand, if S and V intersect, then no such linear combination exists
[2]. In general, the Banerjee inequalities [5] are first applied to test each hyperplane
in (1.1). If every hyperplane intersects V, then the Lambda test is employed to si-
multaneously check every hyperplane.The Lambda test is an efficient data depen-
dence method to deal with (1.1) beneath V. The Lambda test is actually equivalent
to the multi-dimensional Banerjee inequality because it can determine simultaneous
constrained real-valued solutions. The test forms linear combinations of coupled
references that eliminate one or more instances of index variables when direction
vectors are not considered. Simultaneous constrained real-valued solutions exist if
and only if the Banerjee inequalities find solutions in all the linear combinations
generated [2].

3. The multi-dimensional I test

Given the data dependence problem of multi-dimensional arrays with linear
subscripts and constant bounds, we propose a multi-dimensional version of the I test
— the multi-dimensional I test. The multi-dimensional I test examines a system of
linear equations and deduces whether the system has integer-valued solutions. The
linear equations have to be first transformed by the multi-dimensional I to their
corresponding interval equations. That is, the interval equations

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1787

ai Xy + a1 2Xo + - Fay X + a, X, = lang, aig),

am.le + am,ZXZ +- + am,nlenfl + am,an = [am,Oa amAO}

have to be obtained from the linear equations (1.1). It is straightforward that the
linear equations are integer solvable if and only if its corresponding interval equa-
tions are integer solvable. In this section, the theoretical aspects and the worst-case
time complexity of the multi-dimensional I test are provided.

Assume that there are m interval equations written as:

apXi +ainXo+ - + a1 X +aX, = [L, U,

: (3.1)
am,le + am‘ZXZ +-- + am,n—l)(n—l + amﬁn)(n = [Lma Um]v

where each «;; is a constant integer for 1 <i<m and 1< j<n. The constraints to
each variable in (3.1) are postulated to be

R‘,O <Xr < Qr,Ov (32)

where P, and Q,(are constant integers for 1<r<n. Let F; be the ith interval
equation in (3.1). Geometrically, F; consists of U; — L; + 1 linear equations in which
each linear equation is parallel each other. Hence, F; contains U; — L; + 1 hyper-
planes in which each hyperplane is parallel each other. The intersection S of m in-
terval equations corresponds to the common solutions to all interval equations in
(3.1). Obviously, if S is empty then there is no data dependence. The bounds of (3.2)
define a bounded convex set V'in R". If any of the interval equations in (3.1) does not
intersect V, then obviously S cannot intersect V. However, even if every interval
equation in (3.1) intersects V, it is still possible that S and V" are disjoint. It is as-
sumed that two interval equations in (3.1), respectively, intersect V. But the inter-
section of them is outside of V. If one can find a new interval equation which
contains S but is disjoint from V, then it immediately follows that S and 7" do not
intersect. The following theorem is an extension of Theorem 1 in [2] and guarantees
that if S and V are disjoint, then there must be an interval equation which consists of
S and is disjoint from V. Furthermore, this interval equation is a linear combination
of equations in (3.1). On the other hand, if S and V intersect, then no such linear
combination exists.

Theorem 3.1. SNV = (if and only if there exists an interval equation, 3, only con-
sisting of one linear equation, which corresponds to a linear combination of equations in

3.1):

m m m
E Aixdi, X) = E Ai % @i, E Aixa |,
i=1 i=1 i=1

where L; < a;o < U, for 1 <i<m such that BNV = (. (Zii,)?> denotes the inner product
of i = (a;y,...,a;,) and X = (X1,...,X,).

1788 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

Proof. (<) The interval equation, f, contains S and is disjoint from V. So we can
immediately derive that S is disjoint from V.

(=) For the convenience of the proof, (3.1) are rewritten as A4 * Y = O, where

1
—aip dip o Aig
. X
A= , Y= ,
—Apo Am1 Ap.n mx (n+1) X
n

(n+1)x1

O is an mx1 zero matrix, and L;<a;o<U; for 1<i<m. We can let
S:{(Xl,...,Xn) AYZO}, V:{(Xl,...,X”) :P,.)OSX,QQ,‘O for lgl"gi’l}, S =

{(L,X1,....X,) :V(X1,...,X,) €S}, and V' ={(1,X1,...,X,) : V(X1,...,X,) € V}.
Because SNV = (), we can infer that §'N V" = 0. .
We let o = Span(bh...,bm), where b —(a0, ;- - - ,a;,). For all C € « and

D e §', we can obtain the inner product of C and D as follows:

(D) = < > e b,,D>
=Mh(—ao+a X1+ +a,X,)+- -
+ ;”m(_am,o + am,le + -+ am,an)

=(0)+ -+ 2,(0)

=0.
Therefore, we can at once derive that « is the orthogonal complementary space of S'.
For any Z in V', consider P, the projection of Z on §'. Since ||P; — Z|| is a continuous
function on V' and V' is bounded, there must exist Z, in V' such that
|Pz, — Zo|| = ming_,, ||[P; — Z||. This is the minimum distance between S’ and V.
Since Zy — Pz is orthogonal to §', it must be in «. Hence, the equation

<Zo on,) =0 is a linear combination of equations in (3.1), ie.,
Zo — on = * b1 + «+++ An * b,,. The equation <Z PZO,) = (is actually equal to

<ZA,*LI” > Z;*alo

Therefore, the equation

m m m
E ;L[* ZZ’[,X = E)\,l' *da;o, E /1[* o -
i i=1 i=1

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1789

Let f be the new interval equation. Hence, we can immediately conclude that the new
interval equation, f3, contains S. Since (Zy — P, Z) > 0 for any Z in V' (refer to [2]),
so each element X in V satisfies

<§:ii * Zz'l,)_('> > Xm:)ﬂ- * ;.

i=1

Therefore, we can at once derive SNV =0. O

An array (4,...,4,) in Theorem 3.1 determines an interval equation that con-
tains S. There are infinite number of such interval equations. The tricky part in the
multi-dimensional I test is to examine as few interval equations as necessary to de-
termine whether S and V intersect. We start from the case of m = 2, both for con-
venience of presentation and for practical importance of two-dimensional arrays [9].

3.1. The case of two-dimensional array references

In the case of two-dimensional array references, two interval equations in (3.1) are
Fy = [L1,U)] and B>, = [L,, Us], where F; = a;1.X; + - - - + a;,X, for 1 <i<2. An ar-
bitrary linear combination of the two interval equations can be written as

MF 4 B = [l a0+ A x a2, 4 * a1 + A2 * azyg),

where L; < a9 < U, and L, < ap9 < U,. The domain of (44, 4;) is the whole R? space.
Let

Fy 50 = MF 4+ P = [l xa1g+ Ay x arg, At * a1 + Ay x asg],
that is
Fy 5 = —(hiarg + Aasrg) + (Aiary + ax)Xy + -+ + (hiar, + Aas,)X, = 0.

By [2], F}, ;, is viewed in two ways. With (m,}) fixed, F}, ,, is a linear function of
(X1,...,X,) in R". With (Xj,...,X,) fixed, it is a linear function of (1;,/,) in R%.
Furthermore, the coefficient of each variable in F;, ;, is a linear function of (4, /,) in
R?, ie., YV = diay; + Jay, for 1 <i<n. The equation ¥ =0, 1 <i<n,is called a
¥ equation. Each ¥ equation corresponds to a line in R?, which is called a ¥ line.
Each ¥ line separates the whole space into two closed halfspaces
P = {(J1,4) | P =0} and ¥, = {(/y, 2 2) | P <0} that intersect at the ¥ line.
A nonempty set C C R” is a cone if ¢4 € C for each /€ C and ¢ >0 [8]. It is
obvious that each cone contains the zero vector. Moreover, a cone that includes at
least one nonzero vector 4 must consist of the ray of /, namely {SA|S > 0}. Such
cones can clearly be viewed as the union of rays. There are at most n ¥ lines which
together divide R? into at most 2n regions. Each region contains the zero vector. Any
one nonzero element J and the zero vector 1n the region form the ray of 7/, namely

obvious from the definition of cone that each region is a cone [8].

1790 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

In the following, Lemmas 3.1-3.3 are extended from [1,2]. Definitions 3.1 and 3.2
are cited from [2] directly.

Lemma 3.1. Suppose that a bounded convex set V is defined simply by the limits of
(3.2). (The dependence directions will not be taken account of.) If

F;.l sy = [7~1 *app+ Jo ¥ Qr0, A1 ¥ a1p 4 Ay * az,o]
is (Bo <X, < Q,)-integer solvable for every (11, 2) in every ¥ line, then
Fy =M *aig+ 2% axg, A *arg + A * azp)

is also (P.o <X, < Q,)-integer solvable for every (41,2;) in R

Proof.
1. From the I test in [1], because

F';Vl‘,{2 = [;L] *xayg+ Ay a, Aq % ajo+ Ay * azv()]

is (P, <X, < O,p)-integer solvable for every (1, /4,) in every ¥ line, there must be at
least one element in ¥ such that F}, ;, — (4 * a1 + /2 * azg) = 0.

2. We have that F, ;, — (A4 * a19 + 42 * az9) = 0 for any point (4, 4,) on every ¥ line
according to the assumption of the lemma. It is immediately concluded that

F';VIJL2 = [/Ll *djp +),2 * dp),)vl *dpo+ Ay * azno]

is (P.o <X, < O,)-integer solvable for every point (4;, 4,) on the boundaries of each
cone.

3. Every point in each cone can be expressed as a linear combination of some points
on the boundary of the same cone, as being a well-known fact in the convex theory.
Any point (4s,4¢) in a cone is assumed to be capable of being represented as
(ed1 + 13, €4y + T/4), Where (41, 4,) and (43, 44) are points in the boundary of the
cone and ¢ > 0 and 7 > 0. Because

F X, ., X,) — (Asarp + Aearp)
= Foytiigeiptoig Xy oo, X)) — (6d + 1A3)arg — (642 + Tha)ang
= &* (Exl,)-z(Xh A 7Xn) — (Xlal,o +)yzaz,o)) + T % (F}.g,).4(le e ,Xn>
— (Asai o + Jaazp))
=ex0+1tx0=0,
we thus secure that
Fy 5 = [As @10+ Ag * ang, As * a1 9 + Ag * azy)

is (P.o < X, < O,)-integer solvable for any point (4s, 4¢) in each cone. Of course it is
also true in the whole R? space. Therefore, for any point (4, 4,) in R* space,

Fy 5, =AM xaio+ Jo* arg, Ay % arg+ Ay * azy)

is (B0 <X, < O,p)-integer solvable in R” space. [

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1791

It is indicated from Lemma 3.1 and Theorem 2.1 that variables in an interval
equation can be moved to the right if the coefficients of variables have small enough
values to justify the movement. If all coefficients for variables in an interval equation
have no sufficiently small values to justify the movements, then Lemma 3.1 and
Theorem 2.1 cannot be applied. While every variable in an interval equation cannot
be moved to the right, Lemma 3.2 describes a transformation using the GCD test
which may enable additional variables to be moved.

Lemma 3.2. Suppose that a bounded convex set V is defined simply by the limits of
(3.2). Let

g=gced(haiy + Aazy, ..., Mar, + haa,).

If
(1/g) % Fy, 5y = [[(A1 * a0 + A2 % a2p) /g1, [(A1 * 1o + /2 % az)/g]]

is (Bo <X, < Q0; 1 <r<n)-integer solvable for every (11, 42) in every ¥ line, then
(1/8) * Fyy iy = [[(A1 % @19 + Ao % a20) /g, [(A1 * @10 + 22 % azp) /g]]

is also (Pro <X, < Q.0; 1<r<n)-integer solvable for every (11,2,) in R*.
Proof. Similar to Lemma 3.1. O

Lemma 3.3. Suppose that a bounded convex set V is denoted by the limit of (3.2). Let
g =ged(hiary + hazy, ..., Mar, + Aasy).

Given a line in R* corresponding to an equation al + bly =0, if
Fy =M *aig+ la*xaxg, A *aig+ A * azg)

or
(1/8) * Fyozy = [[(21 % @10 + 72 % a20) /&1, [(41 * aro + A2 % a20) /g]]

is (Po<X <Q,0; | <r<n)-integer solvable in R" space for any fixed point
(29,29) # (0,0) in the line, then for every (i1, ;) in the line,

Fy 5 = [l *aig+ Ao % asg, by % a1 g+ Ay * azy)
or

(1/g) * Fy iy = [[(A % a0+ A2 % az0) /g1, [(41 % aro + 2z * az)/g]]

is also (P <X, < Q,0; 1 <r<n)-integer solvable in R" space.
Proof. Similar to Lemma 3.1. [

Definition 3.1. Given an equation of the form al, + b4, = 0 where a, b are not zero
simultaneously, a canonical solution of the equation is defined as follows:

1792 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

(A1,72) = (1,0) if a = 0;
(A1, 4) =(0,1) if b=0;
(A1, 42) = (b, —a) if neither of a, b is zero;
(A1,22) = (1,1) if both of a and b are zero.

Definition 3.2. The A set is denoted to be the set of all canonical solutions to ¥
equations. Each element, (4;,/,), in the A set corresponds to one interval equation

Fp o, =[A*aig+daxayy, i xaig+ A * azg).

There are at most n ¥ equations if V' is denoted by the bounds of (3.2). Each of
the ¥ equations generates a canonical solution according to Definition 3.1. Each
canonical solution forms a new interval equation, only containing the only linear
equation in light of Definition 3.2. Obviously, new interval equations tested are at
most n if V' is defined by the constraints of (3.2).

The multi-dimensional I test is employed to simultaneously check every interval
equation. It examines the subscripts from two dimensions, and then figures out the A
set from ¥ equations. Each element in the A set determines a new interval equation.
The new interval equation is tested to see if it intersects V, by moving variables in
one interval equation as done in the I test for testing each single dimension.

We now use an example to explain how the multi-dimensional I test works.
Consider the following equations:

X] - X4 == 0,
— X2 +X3 - 0
subject to the constant bounds 1 < X, X5, X3, X3 < 100.

According to Definition 3.1, the ¥ equations have two canonical solutions (0, 1)
and (1,0). According to Definition 3.2, canonical solutions (0,1) and (1,0), re-
spectively, yield the following interval equations:

- X>+X; =10,0], (Exl)
X1 —X4 = [070] (EX2)

Now the multi-dimensional I test applies Lemma 3.1 and Theorem 2.1 to resolve
the interval equation (Exla), and the term —X; in the interval equation is moved to
the right-hand side to gain the new interval equation

X; =[1,100]. (Exla)

Now the length of the right-hand side interval has been increased to 100, so Lemma
3.1 and Theorem 2.1 are again employed to move the term X; in the interval equation
(Ex1la) to the right-hand side to acquire the new interval equation

0 =1[-99,99]. (Ex1b)

Because —99<0<99, it is at once derived that the interval equation (Ex1) is
integer solvable. Next, the multi-dimensional I test applies Lemma 3.1 and Theorem

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1793

2.1 to resolve the interval equation (Ex2), and the term —X, in the interval equation
(Ex2) is moved to the right-hand side to gain the new interval equation

X, = [1,100]. (Ex2a)
Now the length of the right-hand side interval has been increased to 100, so Lemma

3.1 and Theorem 2.1 are again employed to move the term X] in the interval equation
(Ex2a) to the right-hand side to acquire the new interval equation

0 =1[-99,99]. (Ex2b)

Because —99 <0<99, it is right away inferred that the interval equation (Ex2) is
integer solvable. Therefore, the multi-dimensional I test in light of Lemmas 3.1-3.3
infers that there is integer-valued solution.

3.2. The case of multi-dimensional array references

We take account of m interval equations in (3.1) with m > 2 for generalizing the
multi-dimensional I test. All m interval equations are assumed to be connected;
otherwise they can be partitioned into smaller systems. As stated before, we can
hypothesize that there are no redundant equations. An arbitrary linear combination
of m interval equations in (3.1) can be written as

m m m
Fﬂ,l,“.M = E Jixdn, X) = E A * Ao, E Ai % aio |,
i=1 i=1 i=1

where L;<a;o<U; for 1<i<m and (Zz’,,)?) denotes the inner product of
d; = (a;y,...,a;,) and X = (X1,...,X,).
Assume that

g =gcd (iii*a;ﬁl,...,i)ﬁ*aiﬂn>.
=1 =1

It is to be determined whether

m m
F).l I — E Ap ¥ ajo, E Ai * aio
i=1 i=1

o[()

is (P <X, < Q,9)-integer solvable in R" space for arbitrary (4y,...,4,). By [2], the
coefficient of each variable in F; _,, is a linear function of (44, ..., 4,) in R”, which
is

or

m
lIl(l) = Z/’{jaﬁi fOI‘ 1 §l< n.

J=1

1794 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

The equation P =0, 1<i<n, is called a ¥ equation. A ¥ equation corresponds
to a hyperplane in R”, called a ¥ plane. Each ¥ plane divides the whole space into

two closed halfspaces
QF ={(A,-.) [P >0} and @ ={(A,...,4)|PY <0}

1

If V is defined by the constraints of (3.2), then a nonempty set (_, 2;, where
Q, € {Q7,Q7}, is called a / region. Every A region is a cone in R” space [8]. The 4
regions in R™ space have several lines as the frame of their boundaries. Each line
(called a A line) is the intersection of some ¥ equations.

The following lemmas are extended from [1,2].

Lemma 3.4. Suppose that a bounded convex set V is defined simply by the limits of
(3.2). Let

g=gcd (i/h*aiil,...,zm:)ﬁ*a,-,,,)
i=1 i=1

If

or

owen o[£ ())

is (P.o <X, < Q,)-integer solvable for every (Ay,...,Ay) in every A line, then

m m
Fyin = E Ai ¥ @0, E Ai ¥ @i
i=1 i=1

own e [(Sren) ()]

is also (P.o <X, < Q,)-integer solvable for every (4i,...,A,) in R" space.

or

Proof. Similar to Lemma 3.1. O

Lemma 3.5. Given a line in R"™ which crosses the origin of the coordinates and let

g = gcd <iii*aiil,...,i)ﬁ*am)
i=1 i=1

If

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1795

e [[(Sae) [(S)

is (P.oX, < Q,9)-integer solvable in R" space for any fixed point (1,...,2)) #
(0,...,0) in the line, then for every (11,...,A,) in the line,

m m
Fyogn = E Ai * @i, E Ai % Qg
P =1

onn (o) ()]

is also (P.o <X, < Q,)-integer solvable in R" space.

or

or

Proof. Similar to Lemma 3.3. O

The details of the multi-dimensional I test in the general case are not considered
here since the discussion is similar to the case of m = 2.

3.3. Time complexity

The main phases for the multi-dimensional I test include (1) calculating A values
and (2) examining each interval equation. 4 Values are easily determined according
to ¥ equations and Definition 3.1. It is clear that the time complexity to compute a 4
value is O(y) from Definition 3.1, where y is a constant. Each A value corresponds to
an interval equation. Each interval equation is tested to see if it intersects V, by
moving variables in left-hand side of one interval equation to the right-hand side of
the interval equation as done in the I test for one single dimension. The worst-case
time complexity of the I test is O(n? x y 4+ n * y) [1], where n is the number of vari-
ables in interval equations. Hence, the time complexity of for the multi-dimensional I
test examining an interval equation is derived to be O(n? * y + n*y + y). The number
of interval equations checked in the multi-dimensional I test is at most

ﬁ(lJi—Li+1)*(m’il>,

where m is the number of original linear references and L; and U; are the lower and
upper bounds in the right-hand side of original interval equations for 1 <i<m, in
light of statements in Sections 3.1 and 3.2 and [2]. Therefore, the worst-case time
complexity for the multi-dimensional I test is immediately inferred to be

0([,%'11} * (W xy+nxy+y)x (]ﬂ[(Ui—L,-Jrl)))-

i=1

1796 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

Two-dimensional arrays with linear subscripts appear quite frequently in real pro-
grams [9]. As the lower and upper bounds are initially the same in the right-hand side
of an initial interval equations in linear references in real programs, therefore, the
number of interval equations examined in each two-dimensional array tested is at
most n according to statements in Section 3.1. If the multi-dimensional I test is
applied to deal with two-dimensional arrays, then their worst-case time complexity is
O(nx (M +xy+nxy+y)). The worst-case time complexity for the Lambda test
dealing with the same array is O((3n/2) * (n + y)). However, in general, the efficiency
of the multi-dimensional I test is only slightly poorer than that of the Lambda test
and the I test because the number of variables, n, in the interval equation tested is
generally very small.

4. Experimental results

We tested the multi-dimensional I test and performed experiments for the
benchmark codes cited from one numerical package SPEC77 in Perfect Benchmark
[4,7]. There are totally 276 pairs of multi-dimensional array references found in the
tested package. Of the 276 pairs of multi-dimensional array references, 220, 7, and 49
pairs were observed to have constant bounds, variable constraints, and symbolic
(unknown) limits, subsequently. The multi-dimensional I test is only applied to test
220 arrays with constant bounds.

The results obtained (Table 1) reveal the multi-dimensional I test determined that
there were integer-valued solutions for 188 pairs of multi-dimensional arrays with
constant bounds. The ““accuracy rate” in Table 1 refers to, when given a set of multi-
dimensional arrays with constant bounds, how often the multi-dimensional I test
detects a case where there is an integer-valued solution. Let b be the number of multi-
dimensional arrays with constant bounds found in our experiments, and ¢ be the
number that is detected to have integer-valued solutions. Thus the accuracy rate is
denoted to be equal to ¢/b. In our experiments, 220 pairs of array references were
found to have constant limits, and 188 of them were found to have integer-valued
solutions. So the accuracy rate for the multi-dimensional I test was about 85.4%.
Similarly, the “improvement rate” refers to how often the multi-dimensional I test

Table 1
Testing capability of the multi-dimensional I test for 276 pairs of multi-dimensional array references from
Perfect Benchmark

Loop Pairs of multi- Testing results (pairs) Accuracy Improvement
bounds dimensional arrays Definitive Maybe rate rate
Constant 220 188 32 85.4% 68.1%
bounds

Variable 7 - - - -

bounds

Symbolic 49 - - - -

bounds

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1797

gives a definitive (yes/no) result for a set of multi-dimensional arrays with constant,
variable and symbolic bounds. Let d be the number of multi-dimensional arrays with
constant, variable, and symbolic bounds found in our experiments. Thus the im-
provement rate is denoted to be equal to ¢/d. In our experiments, 276 pairs of array
references were found to have multi-dimensional linear references, and 188 of them
were found to have definite (yes or no) results. So the improvement rate for the multi-
dimensional I test was equal to 68.1%.

We also implemented the Omega test and the Power test based on [3,6] to com-
pare their effects with those of the multi-dimensional I test. The Omega test and
Power test were applied to resolve 220 pairs of multi-dimensional arrays with con-
stant bounds. These two tests were found to obtain the same accurate results as the
multi-dimensional I test. Let kyp, kp, and ko be the execution time to treat data
dependence problem of a multi-dimensional array for the multi-dimensional I test,
the Power test, and the Omega test, subsequently. The speed-up in Table 2 is defined
to be the set of kp/km; and ko /kmi. Each row in Table 2 shows how many times the
execution time of the Power test and the Omega test took longer than that of the
multi-dimensional I test. For example, the first row shows that there are 10 sub-
routines in which the execution time of the Power test took from 5.3 to 8.9 times
longer than that of the multi-dimensional I test. This table indicates that for multi-
dimensional arrays with constant bounds the efficiency of the multi-dimensional I
test is much better than that of the Power test and the Omega test.

The superiority of testing efficiency of the multi-dimensional I test over that of the
Omega test for the stated dependence problem can also be deduced from time
complexity analysis. The Omega test based on the least remainder algorithm, a
variation of Euclid’s algorithm, and Fourier’s elimination method [3,10] consists of
three major computations: eliminating equality constraints, eliminating variables in
inequality constraints, and finding integer solutions (that is an integer programming
problem). The time complexities for these steps are O(mnlog |c|+ mnp + mn),
O(n*s?), and O(k") [3,10,11], respectively, where m, n, ¢, p, s, and k denote the
number of equality constraints, the number of variables, the coefficient with the
largest absolute value in equality constraints, the number of passes to eliminate
all the variables that become unbound, the number of inequality constraints, and
the absolute value of coefficient of variable in inequality constraints, subsequently.
So the overall time complexity of the Omega test is O(mnlog |c| + mnp +
mn + n*s*> + k"). Obviously, compared with the time complexity analysis shown in

Table 2
The speed-up of the multi-dimensional I test to the Power test and the Omega test for 188 pairs of
multi-dimensional arrays with constant bounds from Perfect Benchmark

Speed-up Total number of subroutines involved
ke /knun 5.3-8.9 10
kp /kait 10.5-14.8 13
ko ki 6.1-9.9 9

ko /kwi 13.1-19.2 14

1798 W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799

Section 3, the multi-dimensional I test is significantly superior to that of the Omega
test in terms of testing efficiency. In [3] it is reported that the Omega test has ex-
ponential worst-case time complexity. Wolfe and Tseng [6] and Triolet et al. [12] also
found that Fourier—Motzkin variable elimination for dependence testing takes from
22 to 28 times longer than the Banerjee method, that is a part of the multi-dimen-
sional I test.

The study in [3] stated that: (1) the cost of scanning array subscripts and loop
bounds to build a dependence problem was typically 2-4 times of the copying cost
(the cost of building a system of dependence equations) for the problem, and (2) the
dependence analysis cost for more than half of simple arrays tested was typically 24
times of the copying cost, but the dependence analysis cost for other simple arrays
and all of the regular, convex, and complex arrays tested was more than 4 times of the
copying cost. Based on such results we can figure out that, for simple arrays, the
analysis cost of data dependence for parallelizing/vectorizing compilation occupies
generally about 29-57% of total compiling time. But, for complex arrays the analysis
cost of dependence testing takes more than 57% of total compiling time. Therefore,
enhancing dependence testing performance may result in a significant improvement
in the compiling performance of a parallelizing/vectorizing compiler.

5. Conclusions

When testing array references with multi-dimensional linear subscripts and con-
stant bounds, the Lambda test can determine whether real-valued solutions exist. As
we know in dependence analysis a testing strategy concluding the existence of real-
valued solutions may sometimes lose the accuracy and results in false dependency. In
this paper we propose the multi-dimensional I test. The multi-dimensional I test can
ascertain whether integer-valued solutions exist for multi-dimensional array refer-
ences with linear subscripts and constant bounds. Obviously, the significance of the
multi-dimensional I test lies in that it enhances the testing precision, eliminates
the possible false dependency and exploits the degree of loop parallelization and
vectorization.

The Power test is a combination of Fourier—Motzkin variable elimination with an
extension of Euclid’s GCD algorithm [6]. The Omega test combines new methods for
eliminating equality constraints with an extension of Fourier-Motzkin variable
elimination [3]. The two tests currently have the highest precision and the widest
applicable range in the field of data dependence analysis for arrays with linear
subscripts. Such a fact is also reflected in our experimental results. However, the cost
of the two tests is very expensive [3,6]. It is found in our experiment that the Power
test takes 5.3—14.8 times longer in execution than the multi-dimensional I test and the
Omega test takes 6.1-19.2 times longer in execution than the multi-dimensional I test
when testing the dependence of multi-dimensional arrays.

According to the time complexity analysis, the multi-dimensional I test performs
slightly poorer than that of the Lambda test. Therefore, it is suggested that de-
pending on the application domains, the multi-dimensional I test can be applied

W.-L. Chang et al. | Parallel Computing 27 (2001) 1783-1799 1799

independently or together with the Power test or the Omega test to analyze data
dependence for multi-dimensional array references.

Acknowledgements

This work was partially supported by the National Science Council of the

Republic of China under grant NSC89-2213-E-168-013.

References

(1
(2]
(3]
4
(5]
(6]
(]
(8]
]

[10]
(1]

(2]

X. Kong, D. Klappholz, K. Psarris, The I test, IEEE Transaction on Parallel and Distributed Systems
2 (3) (1991) 342-359.

Z. Li, P.-C. Yew, C.-Q. Zhu, An efficient data dependence analysis for parallelizing compilers, IEEE
Transaction on Parallel and Distributed Systems 1 (1) (1990) 26-34.

W. Pugh, A practical algorithm for exact array dependence analysis, Communication of the ACM 35
(8) (1992) 102-114.

R. Eigenmann, J. Hoeflinger, D. Padua, On the automatic parallelization of the Perfect Benchmarks,
IEEE Transactions on Parallel and Distributed Systems 9 (1) (1998) 5-23.

U. Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic Publishers, Norwell, MA,
1988.

M. Wolfe, C.W. Tseng, The power test for data dependence, IEEE Transaction on Parallel and
Distributed Systems 3 (5) (1992) 591-601.

Y. Paek, J. Hoeflinger, D. Padua, Simplification of array access patterns for compiler optimizations,
ACM SIGPLAN’98, Conference on Programming Languages Design and Implementation (PLDI).
Vaughan, W. Jeffrey, A Residuals Management Model of the Iron and Steel Industry: A Linear
Programming Approach, Mich.: Univ. Microfilms International, Ann Arbor, 1986.

Z. Shen, Z. Li, P.-C. Yew, An empirical study of Fortran programs for parallelizing compilers, IEEE
Transaction on Parallel and Distributed Systems 1 (3) (1992) 356-364.

U. Banerjee, Dependence Analysis, Kluwer Academic Publishers, Norwell, MA, 1997.

U. Banerjee, Loop Transformations for Restructuring Compilers: The Foundations, Kluwer
Academic Publishers, Dordrecht, 1993.

R. Triolet, F. Irigoin, P. Feautrier, Direct parallelization of call statements, in: Proc. SIGPLAN
Symp. Compiler Construction, Palo Alto, CA, 1986, pp. 176-185.

