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Abstract. Bau et al. proposed an efficient and precise data alignment method to ascertain whether there
is communication-free alignment of array reference function with linear subscripts in one loop index
variable. Chu et al. presented an efficient and precise data alignment method to determine whether
there is communication-free alignment of array reference function with linear subscripts in two loop
index variables or quadratic subscripts �ai2 + bi+ d�. However, for array reference function with linear
subscripts in three loop index variables or quadratic subscripts �ai2 + bi+ cj + d�, their methods cannot
be applied. In this paper, we propose two new alignment functions for loop iteration space and array
elements. The new alignment functions can be applied towards checking whether there is communication-
free alignment of array reference function with linear subscripts in three loop index variables or quadratic
subscripts. Experiments with benchmarks taken from Parallel loop and Vector loop showed that among
the 7 nested loops tested, three of them had their data alignment improved by the method proposed.
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1. Introduction

Distributed memory multiprocessors and shared memory multiprocessors are the
two most popular parallel computational models in high speed computing. However,
distributed memory multiprocessors are superior to shared memory multiprocessors
in scalability and latency tolerance and increasingly have been used for scientific and
engineering applications. The major shortcoming of distributed memory multipro-
cessors is the difficulty in programming due to the lack of a shared memory space
[5, 6]. Hence, programmers or compilers are responsible for distributing code and
data over processors, and managing communication among tasks.
Over the last decade, many researchers have paid attention to maximizing paral-

lelism and minimizing communication for a given program executed on a parallel
machine [4, 7–14]. Kandemir et al. [8, 9, 12] proposed a linear algebra framework to
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automatically determine the optimal data layouts expressed as hyper-planes for each
array referenced in a program. Lim et al. [10, 13] presented approaches to analyzing
data reference patterns of a program with structure of nested loops so that the par-
allelized program is running on parallel machines in a communication-free manner
with some constraints. Boudet et al. [11] proposed a method to solving the align-
ment problem by considering how to distribute and how to align data arrays while
at the same time considering how to preserve parallelism on a given program. Shih
et al. [14] took account of communication-free partitioning of statement-iteration
spaces and data spaces along hyperplanes for multi-statements in perfect and imper-
fect loops. They offered the necessary and sufficient conditions for the feasibility of
communication-free hyperplane partitions.
Bau et al. [4] employed elementary matrix methods to determine communication-

free alignment of code and data and to solve the problem of replicating read-
only data for eliminating communication. Their method is an efficient and precise
data alignment method for checking whether there is communication-free alignment
of array reference function with linear subscripts in one loop index variable. Chu
et al. [7] presented an efficient and precise data alignment method to determine
whether there is communication-free alignment of array reference function with
linear subscripts in two loop index variables or quadratic subscripts �ai2 + bi + d�.
However, for array reference function with linear subscripts in three loop index
variables or quadratic subscripts �ai2 + bi + cj + d�, the two methods cannot be
applied to manipulate them.
In this paper, we propose two alignment functions for loop iteration space and

array elements. These alignment functions can be applied towards determining
whether there is communication-free alignment of array reference function with
linear subscripts in three loop index variables or quadratic subscripts. A theoretical
analysis presented below explains that we take advantage of elementary linear alge-
bra to determine communication-free alignment of array reference function with
linear subscripts in three loop index variables or quadratic subscripts. The proposed
alignment functions have been implemented and several benchmark experiments
have also been performed. Quantitative results from these tests will be presented.
The rest of this paper is organized as follows. In Section 2, the problem of data

communication and data computation is reviewed. In Section 3, the theoretical
aspects and the worst-case time complexity of the presented method are described.
Experimental results showing the advantages of the proposed method are given in
Section 4. Finally, brief conclusions are drawn in Section 5.

2. Data communication and data computation

Data and computation placement is one important problem for generating code in
distributed memory multiprocessors. It is obvious that the problem is to check what
task each processor must finish and what data must be stored in local memory.
It is well-known that the goal of placement is to determine parallelism by spreading
the task across the processors, and to exploit locality by distributing data among
processors so that memory accesses are local whenever possible. The problem of
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checking a good placement for a program is usually solved in two phases called
alignment and distribution. The alignment phase maps data and computations to a set
of virtual processors organized as a Cartesian grid of some dimension (a template in
HPF Fortran terminology). The distribution phase folds the virtual processors into
the physical processors. The advantage of separating alignment from distribution
is that we can focus on the allocation problem (determining which iterations and
data should be mapped to the same processor) without worrying about the load
balancing problem. Our focus in this paper is alignment.

3. The new alignment functions proposed

The presented method contains three main steps. The first step is to ascertain the
constraints on data and computation placement. The second step is to check which
constraints should be left unsatisfied. The third step is to solve the remaining system
of constraints for determining data and computation placement. In the first step,
data accesses in the program are examined to ascertain a system of linear equations
or a system of quadratic equations in which the unknowns are functions repre-
senting data and computation placement. Any solution to the system determines a
so-called communication-free alignment. This is to say that all data required by a
processor that executes the iterations mapped to it must reside in its local memory.
Very often, the only communication-free alignment for a program is the trivial one
where every iteration and data is mapped to a single processor. Intuitively, each
equation in the system is a constraint on data and computation placement, and it
is possible to over-constrain the system so that the trivial solution is the only one.
If so, the second step ascertains which constraints must be left unsatisfied to retain
parallelism in execution. The cost of leaving a constraint unsatisfied is that it intro-
duces communication; therefore, the constraints left unsatisfied should be those that
introduce as little communication as possible. In the last step, the remaining con-
straints are solved to determine data and computation placement. The proposed
method can reduce the problem of solving remaining constraints to the standard
linear algebra problem of determining a basis for the null space of a matrix. The
presented method applies integer preserving Gaussian elimination to resolve this
linear algebra problem [1]. In the following sections, the theoretical aspects and the
worst-case time complexity of the proposed method are presented.

3.1. Array reference function with linear subscripts

It is assumed that there are m statements and q arrays with linear references in
a general loop. The general loop is assumed to contain 3 common loops. A ref-
erence function to an array Ae for 1 ≤ e ≤ q in a general loop is Fe = ae� 1I +
be� 1J + ce� 1K + de� 1, where I, J, and K are index variables of the general loop and
ae� 1� be� 1� ce� 1 and de� 1 are all coefficients. It is postulated that M is a 4-component
column vector and M is represented as �I� J�K� 1�T , where T is transposition opera-
tor. If i is an iteration vector in the iteration space of a general loop, the alignment
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constraints require that the processor performing iteration i must own Ae�FeM� for
1 ≤ e ≤ q. The alignment constraint for the iteration space of a general loop can
be expressed formally as

[ �C]4×4�M	4×1 =



c1� 1 c1� 2 c1� 3 c1� 4
c2� 1 c2� 2 c2� 3 c2� 4
c3� 1 c3� 2 c3� 3 c3� 4
c4� 1 c4� 2 c4� 3 c4� 4



4×4



I
J
K
1



4×1

�

where �C is a 4× 4 matrix. Similarly, the alignment constraint for an array Ae for
1 ≤ e ≤ q in the general loop can also be, respectively, represented as[ �DAe]4×4[ �FAe]4×4�M	4×4

=



w1�1
w2�1
w3�1
w4�1



4×1

∗ [ae�1I+be�1J+ce�1K+de�1
]
1×1

+



w1�2
w2�2
w3�2
w4�2



4×1

+



w1�3
w2�3
w3�3
w4�3



4×1

∗ �I+J+K+1	1×1

+



w1�4
w2�4
w3�4
w4�4



4×1

∗ �I+J+K+1	1×1

=



w1�1 w1�2 w1�3 w1�4
w2�1 w2�2 w2�3 w2�4
w3�1 w3�2 w3�3 w3�4
w4�1 w4�2 w4�3 w4�4



4×4



ae�1 be�1 ce�1 de�1
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I
J
K
1



4×1

�

Therefore, the alignment problem can be expressed as follows: find �C and �DAe such
that

∀ �I� J�K� ∈ iteration space of loop:[ �C]4×4�M	4×4 =
[ �DAe]4×4[ �FAe]4×4�M	4×1� �Ex1�

To cancel the column vector M from both sides of equations, we need the following
two lemmas. The following two lemmas are extensions of Lemma 1 in [4] and
Lemmas 3.1 and 3.2 in [7].

Lemma 3.1 Let T · t and x be a q × 1 matrix, a q-component column vector and a
scalar variable, respectively. Then

∀ x�T t 	q×2
[
x
1

]
2×1

=

 0
���
0



q×1

⇔ T =

 0
���
0



q×1

and t =

 0
���
0



q×1

�
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Proof:
�⇒� In particular, we can let x be equal to zero. This gives us:

�T t 	q×2
[
0
1

]
2×1

= t =

 0
���
0



q×1

�

So we can obtain t with a q-component zero vector. Now, for any x:

�T 0 	q×2
[
x
1

]
2×1

= �T	q×1 × x =

 0
���
0



q×1

�

where 0 is a q-component zero vector�

which means that T is equal to a q× 1 zero matrix. Therefore, we can conclude

∀ x�T t 	q×2
[
x
1

]
2×1

=

 0
���
0



q×1

⇒ T =

 0
���
0



q×1

and t =

 0
���
0



q×1

� (1)

�⇐� Because T =

 0
���
0



q×1

and t =

 0
���
0



q×1

, for any x we can gain

�T t 	q×2
[
x
1

]
2×1

=

 0
���
0



q×1

� (2)

From (1) and (2), we hence can derive

∀ x�T t 	q×2
[
x
1

]
2×1

=

 0
���
0



q×1

⇔ T =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

Lemma 3.2 Let Q, R and S be q× 1 matrices, and let t, x, y and z be, respectively,
a q-component column vector and scalar variables. Then

∀ x y z �Q R S t 	q×4



x
y
z
1



4×1

=

 0
���
0



q×1

⇔ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�
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Proof: �⇒� In particular, we can let x, y and z be equal to zero. This gives us:

�Q R S t 	q×4



0
0
0
1



4×1

= t =

 0
���
0



q×1

�

So we can obtain t with a q-component zero vector. Similarly, we can let x and y
be equal to zero. This gives us:

�Q R S 0 	q×4



0
0
z
1



4×1

= �S	q×1 × z =

 0
���
0



q×1

�

where 0 is a q-component zero vector, which infers S to be a q × 1 zero matrix.
Similarly, we can let x be equal to zero. This gives us:

�Q R 0 0 	q×4



0
y
z
1



4×1

= �R	q×1 × y =

 0
���
0



q×1

�

where 0 is a q-component zero vector, which infers R to be a q × 1 zero matrix.
Now, for any x� y and z:

�Q 0 0 0 	q×4



x
y
z
1



4×1

= �Q	q×1 × x =

 0
���
0



q×1

�

where 0 is a q-component zero vector, which derives Q to be a q × 1 zero matrix.
Hence, we can conclude

∀ x y z �Q R S t 	q×4



x
y
z
1



4×1

=

 0
���
0



q×1

⇒ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

� (3)

�⇐� Because Q =

 0
���
0



q×1

� R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

, for

any x� y, and z we can obtain

�Q R S t 	q×4



x
y
z
1



4×1

=

 0
���
0



q×1

� (4)
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From (3) and (4), therefore, we can infer

∀ x y z �Q R S t 	q×4



x
y
z
1



4×1

=

 0
���
0



q×1

⇔ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

Using Lemmas 3.1 and 3.2, (Ex1) can be rewritten as
[
�C
]
4×4

=
[
�DAr

]
4×4

[
�FAe

]
4×4
� �Ex2�

The system of equations (Ex2) can be converted into the following matrix equation:

[ �C �DAr · · · �DAe
]
4×�4×q+4�




1 · · · I

− �FAI
� � � 0

���
��� 0

0 0 − �FAq




�4×q+4�×�4×q�

=

 0 · · · 0
0 · · · 0
0 · · · 0



4×�4×q�

� (Ex3)

where I and 0 are, respectively, a 3× 3 identity matrix and a 3× 3 zero matrix.
To resolve the matrix equation �U	S×M�V 	M×N = �0	S×N , we must get V into a

‘rank-revealing’ form. The idea cited from [1, 4] is to apply row and column oper-
ations as needed to get the matrix into a form in which its rank can be determined
by inspection. There are many ways to finish this, and we describe one such. Sup-
pose V ∈ ZM×N and rank�V � = r. Then by integer preserving Gaussian elimination
with full pivoting [1] we can establish the following factorization:

�H	M×M�V 	M×N�P	N×N =
[
R1� 1 R1� 2
0 0

]
M×N

� (5)

where H is an M ×M invertible matrix representing the row operations, P is an
N ×N unimodular matrix representing the column operations (which are permu-
tations), R1� 1 is an r × r upper triangular invertible matrix. It is a property of this
factorization that the last M–r rows of H span the null-space of V and hence give
us the solution [1, 4]:

U = H�r + 1 �M� 1 �M�� (6)

This also means that during the elimination we need to store only H, the composi-
tion of row operations.
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Figure 1. Array references with linear subscripts.

The following loop in Figure 1 is applied towards illustrating our points. If i is an
iteration vector in the iteration space of the loop, the alignment constraints require
the processor performing iteration i to own A�F1M� and B�F2M�, where F1 and F2
are the following matrices:

F1 = � 1 1 1 0 	1×4 and F2 = � 1 1 1 1 	1×4 �

The alignment constraint for the iteration space of the loop can be expressed for-
mally as

� �C	4×4�M	4×1 =



c1� 1 c1� 2 c1� 3 c1� 4
c2� 1 c2� 2 c2� 3 c2� 4
c3� 1 c3� 2 c3� 3 c3� 4
c4� 1 c4� 2 c4� 3 c4� 4



4×4



I
J
K
1



4×1

�

where �C is a 4× 4 matrix. Similarly, the alignment constraints for the two arrays A
and B can also be, respectively, represented as

� �DA	4×4� �FA	4×4�M	4×1 =



w1� 1 w1� 2 w1� 3 w1� 4
w2� 1 w2� 2 w2� 3 w2� 4
w3� 1 w3� 2 w3� 3 w3� 4
w4� 1 w4� 2 w4� 3 w4� 4



4×4

×



1 1 1 0
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I
J
K
1



4×1

� and
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� �DB	4×4� �FB	4×4�M	4×1 =



y1� 1 y1� 2 y1� 3 y1� 4
y2� 1 y2� 2 y2� 3 y2� 4
y3� 1 y3� 2 y3� 3 y3� 4
y4� 1 y4� 2 y4� 3 y4� 4



4×4

×



1 1 1 1
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I
J
K
1



4×1

�

Therefore, the alignment problem can be expressed as follows: find �C� �DA and �DB
such that

∀ �I� J�K� ∈ iteration space of loop:
{
� �C	4×4 = � �DA	4×4� �FA	4×4
� �C	4×4 = � �DB	4×4� �FB	4×4

� (Ex4)

The system of equations (Ex4) can be converted into the following matrix equation:

[ �C �DA �DB
]
4×12


 1 1
− �FA 1
0 − �FB



12×8

=



0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0



4×8

� (Ex5)

where I and 0 are, respectively, a 4× 4 identity matrix and a 4× 4 zero matrix.
According to the method above, a solution matrix of (Ex5) is:

[ �C �DA �DB
]
4×12 =



1 1 1 1 2

3
2
3

2
3 − 1

3 1 0 0 0
1 1 1 1 1

2
1
2

1
2 0 1

2 0 1
2 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



4×12

�

which gives us:

[ �C]4×4 =


1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0



4×4

�
[ �DA]4×4 =




2
3

2
3

2
3 − 1

3
1
2

1
2

1
2 0

0 0 0 0
0 0 0 0



4×4

� and

[ �DB]4×4 =


1 0 0 0
1
2 0 1

2 0
0 0 0 0
0 0 0 0



4×4

�

Therefore, we can obtain the result of computational and data maps as follows

[ �C]4×4


I
J
K
1



4×1

=



I + J +K + 1
I + J +K + 1

0
0



4×1

�



76 chang et al.

[ �DA]4×4[ �FA]4×4


I
J
K
1



4×1

=



I + J +K + 1
I + J +K + 1

0
0



4×1

and

[ �DB]4×4[ �FB]4×4


I
J
K
1



4×1

=



I + J +K + 1
I + J +K + 1

0
0



4×1

�

Iteration �I� J�K� is mapped to virtual processor I + J +K + 1, and arrays A and B
are also mapped to the same virtual processor. The Align statement provided by
FortranD is applied towards mapping arrays onto virtual processors. Arrays mapped
to the same virtual processor are automatically aligned with each other. We employ
the Align statement to describe the alignment relation of both arrays A and B. The
Align statement is represented as

Align A�I + J +K� with T �I + J +K + 1�
Align B�I + J +K + 1� with T �I + J +K + 1��

where the virtual processors are assumed to be organized as a one-dimensional
grid T .

3.2. Array Reference function with quadratic subscripts

It is assumed that there are m statements and q arrays with linear references
in a general loop. The general loop is presumed to contain 2 common loops.
A reference function to an array Ae for 1 ≤ e ≤ q in a general loop is Fe =
ae� 1I

2 + be� 1I + ce� 1J + de� 1, where I and J are index variables of the general loop
and ae� 1� be� 1� ce� 1� de� 1 are all coefficients. It is postulated that M is a 4-component
column vector and M is represented as �I2� I� J� 1�T , where T is transposition oper-
ator. If i is an iteration vector in the iteration space of a general loop, the alignment
constraints require that the processor performing iteration i must own Ae�FeM� for
1 ≤ e ≤ q. The alignment constraint for the iteration space of a general loop can
be expressed formally as

[ �C]4×4�M	4×1 =



c1� 1 c1� 2 c1� 3 c1� 4
c2� 1 c2� 2 c2� 3 c2� 4
c3� 1 c3� 2 c3� 3 c3� 4
c4� 1 c4� 2 c4� 3 c4� 4



4×4



I2

I
J
1



4×1

�
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where �C is a 4 × 4 matrix. Similarly, the alignment constraint for an array Ae for
1 ≤ e ≤ q in the general loop can also be, respectively, represented as

[ �DAe]4×4[ �FAe]4×4�M	4×1

=



w1�1
w2�1
w3�1
w4�1



4×1

∗ [ae�1I2+be�1I+ce�1J+de�1]1×1+


w1�2
w2�2
w3�2
w4�2



4×1

+



w1�3
w2�3
w3�3
w4�3



4×1

∗ [I2+I+J+1
]+



w1�4
w2�4
w3�4
w4�4



4×1

∗ [I2+I+J+1
]
1×1

=



w1�1 w1�2 w1�3 w1�4
w2�1 w2�2 w2�3 w2�4
w3�1 w3�2 w3�3 w3�4
w4�1 w4�2 w4�3 w4�4



4×4



ae1 be�1 ce�1 de�1
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I2

I
J
1



4×1

�

Therefore, the alignment problem can be expressed as follows: find �C and �DAe such
that

∀ �I� J� ∈ iteration space of loop:
[ �C]4×4�M	4×1

= [ �DAe]4×4[ �FAe]4×4�M	4×1� (Ex6)

To cancel the column vector M from both sides of equations, we need the following
lemma. Lemma 3.3 are an extension of Lemma 3.3 in the method proposed by Chu
et al. in [7].

Lemma 3.3 Let Q�R and S be q × 1 matrices, and let t� y and z be, respectively,
a q-component column vector and scalar variables. Then

∀ y z[Q R S t
]
q×4



y2

y
z
1



4×1

=

 0
���
0



q×1

⇔ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

Proof: �⇒� In particular, we can let y and z be equal to zero. This gives us:

[
Q R S t

]
q×4



0
0
0
1



4×1

= t =

 0
���
0



q×1

�
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So we can obtain t with a q-component zero vector. Similarly, we can let y be equal
to zero. This gives us:

[
Q R S 0

]
q×4



0
0
z
1



4×1

= �S	q×1 z =

 0
���
0



q×1

�

where 0 is a q-component zero vector. So we can obtain S with a q-component zero
vector. Now, for any y and z:

[
Q R 0 0

]
q×4



y2

y
z
1



4×1

= [
Q R

]
q×2

[
y2

y

]
2×1

= y × [
Q R

]
q×2

[
y
1

]
2×1

=

 0
���
0



q×1

�

where 0 is a q-component zero vector. According to Lemma 3.1, we can obtain

Q =

 0
���
0



q×1

and R =

 0
���
0



q×1

�

We thus can conclude

∀ y z[Q R S t
]
q×4



y2

y
z
1



4×1

=

 0
���
0



q×1

⇒ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

(7)

�⇐� Because

Q =

 0
���
0



q×1

� R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

for any y and z we can acquire

[
Q R S t

]
q×4



y2

y
z
1



4×1

=

 0
���
0



q×1

� (8)
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According to (7) and (8), therefore, we can infer

∀ y z[Q R S t
]
q×4



y2

y
z
1



4×1

=

 0
���
0



q×1

⇔ Q =

 0
���
0



q×1

�

R =

 0
���
0



q×1

� S =

 0
���
0



q×1

and t =

 0
���
0



q×1

�

Using Lemma 3.3, (Ex6) can be rewritten as

[ �C]4×4 = [ �DAe]4×4[ �FAr ]4×4� (Ex7)

The system of equations (Ex7) can be converted into the following matrix equation:

[ �C �DA1
· · · �DAq

]
4×�4×q+4�




1 · · · I

− �FAI
� � � 0

���
��� 0

0 0 − �FAq




�4×q+4�×�4×q�

=

 0 · · · 0
0 · · · 0
0 · · · 0



4×�4×q�

� (Ex8)

where 1 and 0 are, respectively, a 3× 3 identity matrix and a 3× 3 zero matrix.
Consider the following loop with two one-dimensional arrays with quadratic sub-

scripts in Figure 2. The loop is used to illustrate our points. If i is an iteration vector
in the iteration space of the loop, the alignment constraints require the processor
performing iteration i to own A�F1M� and B�F2M�, where F1 and F2 and are the
following matrices:

F1 = � 1 −1 1 0 	1×4 and F2 = � 1 −1 1 0 	1×4�

Figure 2. Array references with quadratic subscripts.
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The alignment constraints for the iteration space of the loop can be expressed
formally as

[ �C]4×4�M	4×1 =



c1� 1 c1� 2 c1� 3 c1� 4
c2� 1 c2� 2 c2� 3 c2� 4
c3� 1 c3� 2 c3� 3 c3� 4
c4� 1 c4� 2 c4� 3 c4� 4



4×4



I2

I
J
1



4×1

�

where �C is a 4× 4 matrix. Similarly, the alignment constraints for the two arrays A
and B can also be, respectively, represented as

� �DA	4×4� �FA	4×4�M	4×1 =



w1� 1 w1� 2 w1� 3 w1� 4
w2� 1 w2� 2 w2� 3 w2� 4
w3� 1 w3� 2 w3� 3 w3� 4
w4� 1 w4� 2 w4� 3 w4� 4



4×4

×



1 −1 1 0
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I2

I
J
1



4×1

� and

� �DB	4×4� �FB	4×4�M	4×1 =



y1� 1 y1� 2 y1� 3 y1� 4
y2� 1 y2� 2 y2� 3 y2� 4
y3� 1 y3� 2 y3� 3 y3� 4
y4� 1 y4� 2 y4� 3 y4� 4



4×4

×



1 −1 1 0
0 0 0 1
1 1 1 1
1 1 1 1



4×4



I2

I
J
1



4×1

�

Therefore, the alignment problem can be expressed as follows: find �C� �DA and �DB
such that

∀ �I� J� ∈ iteration space of loop:
{
� �C	4×4 = � �DA	4×4� �FA	4×4
� �C	4×4 = � �DB	4×4� �FB	4×4

� (Ex9)

The system of equations (Ex9) can be converted into the following matrix equation:

[ �C �DA �DB
]
4×12


 I I
− �FA I
0 − �FB



12×8

=



0 · · · 0
0 · · · 0
0 · · · 0
0 · · · 0



4×8

� (Ex10)

where I and 0 are, respectively, a 4× 4 identity matrix and a 4× 4 zero matrix.
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According to the method stated in Section 3.1, a solution matrix of (Ex10) is:

[ �C �DA �DB
]
4×12 =



2 0 2 1 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 1 0 0 1 0
3 1 3 3 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 −1 1



4×12

�

which gives us:

[ �C]4×4 =


2 0 2 1
1 1 1 1
3 1 3 3
0 0 0 0



4×4

�
[ �DA]4×4 =



1 0 1 0
0 0 0 1
1 1 1 1
0 0 0 0



4×4

�

and
[ �DB]4×4 =



1 0 1 0
0 0 1 0
1 1 1 1
0 0 −1 1



4×4

�

Therefore, we can obtain the computational and data maps as follows

[ �C]4×4


I2

I
J
1



4×1

=




2I2 + 2J + 1
I2 + I + J + 1
3I2 + I + 3J + 3

0



4×1

�

[ �DA]4×4[ �FA]4×4


I2

I
J
1



4×1

=




2I2 + 2J + 1
I2 + I + J + 1
3I2 + I + 3J + 3

0



4×1

and

[ �DB]4×4[ �FB]4×4


I2

I
J
1



4×1

=




2I2 + 2J + 1
I2 + I + J + 1
3I2 + I + 3J + 3

0



4×1

�

Iteration (I� J) is mapped to virtual processor 2I2 + 2J + 1, and arrays A and
B are also mapped to the same virtual processor. We employ the Align statement
to describe the alignment relation both arrays A and B. The Align statement is
represented as

Align A�I2 − I + J� with T �2I2 + 2J + 1�
Align B�I2 − I + J� with T �2I2 + 2J + 1��

where the virtual processors are assumed to be organized as a one-dimensional
grid T .
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3.3. Time complexity

The proposed method reduces the problem of determining data and computation
placement to the standard linear algebra problem of determining a basis for the
null space of a matrix. It includes three main phases. The first phase is to set the
value of each element in the matrix of constraints V . The second phase is to apply
Gaussian elimination with full pivoting [1] to compute a basis UT for the null-space
of V , where T is a transposition operator. The third phase is to extract the solution
matrices from U .
It is postulated that V is an M∗N matrix and its rank is r, where r is at most

the minimal value between M and N . The worst-case time complexity of setting the
value for every element of V is O�M∗N�. Gaussian elimination with full pivoting
is employed towards figuring out a basis UT for the null-space of V , and requires
O�r∗M∗N + r3� arithmetic operations [1]. Therefore, the worst-case time complexity
of determining a basis UT for the null-space of V is immediately inferred to be
O�r∗M∗N + r3�. It is clear from (6) that U = H�r + 1 � M� 1 � M�. The worst-
case time complexity of extracting the solution matrices from U thus is O�M2 −
r∗M�. Hence, the worst-case time complexity of the presented method is O�M∗N +
r∗M∗N + r3 +M2 − r∗M�, similar to that of the method proposed by Bau et al.
in [4].

4. Experimental results

Using hand computation, the proposed method was tested experimentally on codes
from two numerical packages. Parallel Loop and Vector Loop [2, 3]. The codes
included seven nested loops consisting of array access references with linear sub-
scripts in three loop index variables or quadratic subscripts. The results are shown
in Table 1. It is very clear from Table 1 that the proposed method solves the data
alignment problem for array reference with linear subscripts in three loop index
variables and quadratic subscripts.

5. Conclusions

We have presented a technique to improve data locality for arrays with complex
subscripts in loop nests. Our technique can reduce the problem of determining data
and computation placement to the standard linear algebra problem of determining a

Table 1. Results of application of proposed method on communication-free alignment of the seven
tested nested loops

The number of communication-free
Benchmark The number of loop tested alignment obtained

Parallel loop 1 1
Vector loop 6 2
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basis for the null space of a matrix. It is therefore suggested that, depending on the
application domain, our method can be used together with the methods proposed
by Bau et al. [4] and Chu et al. [7] to enhance data locality in loop nests. If the
corresponding lemmas can be derived with correct proofs, it would be possible to
extend our method to deal with loops with linear subscripts in four or more loop
index variables or quadratic subscripts.
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