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Abstract

The Direction Vector I (DVI) test [[EEE Transaction on Parallel and Distributed Systems 4
(11) (1993) 1280] is an efficient and precise data dependence method to determine whether
integer solutions exist for one-dimensional arrays with constant bounds under any given di-
rection vectors. In this paper, we generalize the (DVI) test. The generalized Direction Vector I
(GDVI) test can be applied towards determining whether integer solutions exist for one-di-
mensional arrays with both constant and variable limits under any given direction vectors,
improving the precision and applicability of the DVI test. Experiments with benchmark
showed that among 12 152 pairs of tested one-dimensional arrays consisting of the same pair
of array references with different direction vectors, 2124 had their data dependence analysis
amended by the GDVI test. That is, the GDVI test increases the success rate of the DVI test by
approximately 17.5%. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Parallelizing/Vectorizing compilers; Data dependence analysis; Parallel computing

1. Introduction

The question of whether one-dimensional array references with linear subscripts
may be parallelized/vectorized depends upon the resolution of those one-dimensional
array aliases. The resolution of one-dimensional array aliases is to ascertain whether
two references to the same one-dimensional array within a general loop may refer to
the same element of that one-dimensional array. This problem in general case can be
reduced to that of checking whether a linear equation with » unknown variables has
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an integer solution, which satisfies the bounds for each variable in the linear equa-
tion. It is assumed that the linear equation is written as

a Xy +aXo + -+ a1 X1 + a, X, = ao, (1.1)

where each g, is an integer for 0<;j<n. It is postulated that the limits to each
variable in (1.1) are represented as

r—1 r—1
Pr,() + Z PrAsXs </Y; < Qr,() + Z Qr,sz (1 2)
s=1 s=1

where P, O,0, P., and O, are integers for 1 <r<n.
If each of P, and O, is zero in the constraints of (1.2), then (1.2) will be reduced
to

Po<X, <09, wherel<r<n. (13)

That is, the bounds for each variable X, are constants.

The Direction Vector I test proposed by Kong et al. [1] is to determine integer
solutions for a linear equation (1.1) with the constraints of (1.3). In this paper, the
DVI test is extended to check whether a linear equation (1.1) together with the
bounds of (1.2) and any given direction vectors has a relevant integer solution. A
theoretical analysis explains that we take advantage of the trapezoidal shape of the
convex sets derived from a linear equation under variable limits as well as any given
direction vectors in a data dependence testing. An algorithm called the generalized
Direction Vector I (GDVI) test has been implemented and several measurements
have also been performed. Actually, the GDVI test is equivalent to a version of the
DVI test which combines the Banerjee algorithm [3] and the GCD test.

The rest of this paper is proffered as follows. In Section 2, the definition of data
dependence is presented. The GCD test, the Banerjee test, the DVI test and the
extended I test are briefly reviewed. In Section 3, the theoretical aspects and the time
complexity for the GDVI test are proposed. Experimental results showing the ad-
vantages of the generalization of the DVI test are given in Section 4. Finally, in
Section 5 we draw brief conclusions.

2. Background

In this section, we mainly introduce the concept of data dependence and cite some
dependence testing methods.

2.1. Data dependence

It is assumed that S; and S, are two statements within a general loop. The general
loop is presumed to contain d common loops. Statements S; and S, are postulated to
be embedded in d + p loops and d + ¢ loops, respectively. Each iteration of a general
loop is identified by an iteration vector whose elements are the values of the iteration
variables for that iteration. For example, the instance of the statement S; during
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iteration 7 = (i1,...,ig--.,i4;p) is denoted S(7); the instance of the statement S,
during iteration j = (ji,...,Ja,. .- Jja+q) 18 denoted $>(j). If (i1,... 04, ..., 0usp) 18
identical to (ji,...,ju,---,Jatrq) OF (i1y... Qg .. y lgsp) precede§ (i, - oy s Jd+q)

lexicographically, then S, () is said to precede S,(5), denoted S, (7) < S,(j). Otherwise,
S»(j) is said to precede S)(i), denoted S (i) > S»()).

Definition 2.1. A vector of the form 6 = (6,...,0,) is termed as a direction vector.
The direction vector (0;, ..., 0,) is said to be the direction vector from S (7) to S (j) if
for 1 <k <d, i,0,jy, 1.e., the relation 0 is defined by
< if i < Jr,
= if i = ji,
0 = > if i > Jk
x  the relation of i; and j; can be ignored,

i.e., can be any one of {<,=,>}.

Definition 2.2 [3]. Given a linear equation (1.1) beneath the constraints of (1.2) and
a specific direction vector 6 = (0, ..., 0,), where d refers to the number of common
loops. If 0, ==", 1 <k<d, Xop_10: X5 and Xo;_; and Xy; refer to the same loop
indexed variable, then the two terms, ay,_1 X5 and axyXy, in the equation will be
merged and the bounds for the corresponding variable are unchanged. If
0r € {<,>}, 1 <k <d, then the bounds of (1.2) for each pair of relative variables will
be redefined, assuming X,;_;6, Xy, and X5, and X, refer to the same loop indexed
variable. The new constraints for Xy, ; and X, are either (2.1) or (2.2).

If 0, = <, then

2%-2 %2
P10 + szkfl,sXs X1 < (Qu—10— 1) + Z Oni—1,5Xs,
s=1 s=1

B - (2.1)
1+ X5 1 <X < O + Z O 5 X
s=1
If 0, = >, then
%2 %2
P19+ ZPZI(—I,SXY S X1 < Q10 + Z Ori—1,4X;,
s=1 s=1 (22)

%1
Pyo + ZPZI(‘SX; <X <Xy — 1.

s=1
2.2. The GCD, Banerjee and DVI tests

The GCD test is based upon a theorem of elementary number theory, which says
that a linear equation (1.1) has an integer solution if and only if ged(ay,...,a,) is a
divisor of ay. The Banerjee test (involving the Banerjee inequalities and the Banerjee
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algorithm) computes the minimum and maximum values for the expression on the
left-hand side of (1.1) beneath constant or variable constraints as well as any given
direction vectors. By the Intermediate Value Theorem, the Banerjee test infers that
(1.1) has a real-valued solution if and only if the minimum value is less than or equal
to ap and the maximum value is greater than or equal to ay.

A linear equation (1.1) with the bounds of (1.3) and any given direction vectors
will be said to be integer solvable if the linear equation (1.1) has an integer solution
to satisfy the bounds of (1.3) and any given direction vectors for each variable in the
linear equation (1.1). The DVI test deals with a linear equation by first transforming
it to an interval equation. Definitions 2.3 and 2.4 cited from [1] define integer in-
tervals and an interval equation.

Definition 2.3. Let [0, ap] represent the integer intervals from o to oy, i.e., the set of
all integers between o; and o,.

To avoid redundancy, throughout this paper we will use the term interval to refer
to the integer interval.

Definition 2.4. Let a,...,a, ,a,, L and U be integers. A linear equation
Cl]X] + aZXZ + -+ anlenfl + an/Yn = [L7 U]a (23)

which is referred to as an integer interval equation, will be used to denote the set of
ordinary equations consisting of:

aXi+aXo+ - a1 X, +a,X, =L,
aXi+aXo+ - +a X ta, X, =LA+ 1,

a1X1 + azXz —+ -+ a,,,lX,,,l + a,,X,, =U.

Similarly, we will use the term interval equation to refer to integer interval
equation throughout this paper.

An interval equation (2.3) will be said to be integer solvable if one of the equations
in the set, which it defines, is integer solvable. The immediate way to determine this is
to test if an integer in between L and U is divisible by the GCD of the coefficients of
the left-hand-side terms. If L > U in an interval equation (2.3), then there are no
integer solutions for this interval equation. If the expression on the left-hand side of
an interval equation (2.3) is reduced to zero items, in the processing of testing, then
the interval equation (2.3) will be said to be integer solvable if and only if LL0< U.
It is easy to see that the linear equation (1.1) is integer solvable if and only if the
interval equation, a1X] + a, X, + - -+ + a,_1X,-1 + a,X, = [ao, ao], is integer solvable.

Definition 2.5 [1]. Let a variable g; be an integer 1 <i<n. The positive part a; and
the negative part a; of an integer a; are defined by af = MAX{qa;,0}, and
a; = MAX{-a,;,0}.



W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144 1121

Theorem 2.1 [1]. Given the interval equation (2.3) subject to the constraints of (1.3)
and a specific direction vector 0 = (0, . ..,0,), where d is the number of common loops
and for all k, 1 <k<d, 0, =<. Let

_ {max(|a2k_1|7 lax|) if ay_y * ay >0,
max(min(|ay_1|, |ax|), |ax—1 + ax|) if ay_1 *ay <O0.
If t <U — L+ 1, then the interval equation
aXy + -+ a1 Xog 1+ araXog + -+ a, X, = [L, U]
is (Puo < Xopo1 < Xop < Qo for 1 <k <d, and Py <X, < Q9 for 2d + 1 <r < n)-in-
teger solvable if and only if the interval equation
arXy + -+ an 2 Xop2 + a1 Xops1 + -0+ @k,
= [L — (a3, +an) (Ono — Puo — 1) — (an_1 + ax) * Pyo — ax,
U+ (ay_, — an) (O — Puo — 1) — (a1 + an) * Pyo — aZk]

is (P2pﬁ0 <X2p7] < X2p < QZp‘,O for 1 <P< d7p 7& k and Pr,() <Xr < Qrﬁ()a 2d + 1 g r g 7’1)'
integer solvable.

It is very obvious from Theorem 2.1 that the DVI test considers a pair of same
index variables to justify the movement of the two variables to the right. It is indi-
cated from Theorem 2.1 that a pair of same index variables in Eq. (2.3) can be moved
to the right if the coefficients of the two variables have small enough values to justify
the movement of the two variables to the right. If all coefficients for variables in Eq.
(2.3) have no sufficiently small values to justify the movements of variables to the
right, then Theorem 2.1 cannot be applied. While every variable in Eq. (2.3) cannot
be moved to the right, Theorem 2.2 describes a transformation using the GCD test
which enables additional variables to be moved.

Theorem 2.2 [1]. Given the interval equation (2.3) subject to the constraints of (1.3)
and a specific direction vector 0 = (6, ..,0,), where d is the number of common loops
and for all k, 1 <k<d, 0, = <. Let g = gcd(ay, . ..,a,1,a,). The interval equation

aXy + -+ aXog + -+ a,X, = [L, U]

i (Poo < Xoj—1 < Xop < Qo for 1 <k <d, and P.o <X, <O, for 2d + 1 <r < n)-in-
teger solvable if and only if the interval equation

(al/g)Xl +- (a2d/g)X2d + e+ aan = [|—L/g-|a I_U/gj]
is (Pyo < Xop—1 < Xop < Qo for 1<k <d, and P,y <X, < Q,p for 2d + 1 <r < n)-in-
teger solvable.

2.3. The extended I test

The I test [15] is an efficient and precise data dependence method to ascertain
whether integer solutions exist for one-dimensional arrays with constant bounds.
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For one-dimensional arrays with variable limits, the I test assumes that there may exist
integer solutions. In our previous work [11], we extended the I test. The extended I test
can be applied towards determining whether integer solutions exist for one-dimen-
sional arrays with either variable or constant limits, improving the applicability of the
I test.

3. The generalization of the DVI test

A data dependence problem is considered where one-dimensional array references
are linear in terms of index variables. Bounds for one-dimensional array references
are presumed to be variable. (Note: constant limits are simply a special case of
variable constraints, so variable bounds actually cover constant limits.) Given the
data dependence problem as specified, the generalized version of the DVI test ex-
amines a linear equation (1.1) with the constraints of (1.2) as well as any given di-
rection vectors and deduces whether the system has integer solutions.

3.1. Basic concepts

A linear equation (1.1) under the constraints of (1.2) as well as any given direction
vectors will be said to be integer solvable if the linear equation has an integer so-
lution to satisfy the constraints of (1.2) and any given direction vectors for each
variable in the linear equation.

Definition 3.1. Suppose that the constraints of X, for 1 <r<n are equal to the
bounds of (1.2). Let [by + > ., b.X,, co+ y.._, c.X,] denote a variable interval in
contrast to the (constant) integer interval defined in Definition 2.3, representing the
set of all the integer intervals obtained by replacing X, with values within their
bounds of (1.2), where by, cy, b, and ¢, for 1 <r<n are integers. So, the variable
interval @ is equal to

{ by + Zn: b.x,,co + 2": C/ X,y
r=1 r=1

r—1
+ Z O,5x; for 1 <r< n}
s=1
Definition 3.2a. Suppose that the constraints of X, for 1 <r<n are equal to the
bounds of (1.2). Let L=»by+> ., bX, and U =c¢o+ >_._, ¢,X,, where L< U, and

r—1
Pr,() + Z Pr“v-xs g Xy g Qrt()
s=1

by, co, b, and ¢, for 1 <r<n are integers. Let ay,...,a,_; and a, be integers. The
following equation
a1X1 +a2X2+-~-+an_1Xn_1 —|—a,,X,, = [L7 U] (31)

is referred as a variable interval equation, in contrast to the (constant) interval
equation defined in Definition 2.4, which will be used to denote the set of all the
interval equations inferred from every variable X, within the bounds of (1.2). The



W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144 1123

variable interval equation ¥ is denoted to be equal to the set of all the (constant)
interval equations; that is

W:{a1x1+"'+arlxn: Pr,O

n n
bO + E brxr7 co+ E CrXy
r=1 r=1

r—1 r—1
+ ZPrAsxs gxr < QrﬁO + Z mes for 1 g }"g I’l}

s=1 s=1

Ifbo+ > bx, < > ax,<co+ Y., ¢ in the variable interval equation (3.1),
then the corresponding constant interval equation exists. Otherwise, the corre-
sponding one does not exist. If each of b, and ¢, in the variable interval equation
(3.1) is zero for 1 <r< n, then the variable interval equation only contains one in-
terval equation.

Definition 3.2b. The variable interval equation (3.1) will be said to be
(P, Q1;...; P, O,)-integer solvable if one of the (constant) interval equations in the
set ¥ is (P,0i;...;P,0,)-integer solvable, where P, O, 1<k<n, in
(P, Q1. ..; Py, Oy) refer to the lower and upper bounds of the variable X; defined in
(1.2).

If b+ > bx, >co+ Y., cx in every interval equation in the set ¥, then
there are no integer solutions for the variable interval equation. If
S ax, <by+ Y bx,ord> " ax.>cy+ Y. X inevery interval equation in
the set ¥, then there are no integer solutions for the set ¥. If all of the integers in
between the intervals of the interval equations in the set ¥ are not divisible by the
greatest common divisor of the left-hand-side coefficients of (3.1), then the variable
interval equation will be integer unsolvable. If the expression of the left-hand side for
one of the interval equations in the set ¥ becomes zero items, in the processing of
testing, then the variable interval equation will be said to be integer solvable if and

only if by + >0 bx, <0<y + > r €%,

Definition 3.2¢. Given a variable interval equation (3.1) subject to the constraints of
(1.2) and a specific direction vector 6 = (6y,...,0,), where d is the number of
common loops. This variable interval equation will be said to be (P, Qy;. .. ; Py, On)-
integer solvable if one of the (constant) interval equations in the set ¥ is
(P, 015 ... ; Py, Oy)-integer solvable, where Py, Oy, 1 <k <n, in (P, Os;...; P, 0,) re-
fer to the lower and upper bounds of the variable X; defined in (1.2) but may be
redefined due to dependence direction 6, (according to Definition 2.2).

For example, suppose the variable interval equation (3.1) under the constraints
(1.2) and a specific direction vector 6 = (0y,...,0,), where d is the number of
common loops, 0;, 1 <k<d, is equal to “<”, 0,, for all 1<p<d and p #k, are

equal to “x”. This variable interval equation is (Rel. 3.2)-integer solvable if one of
the interval equation in the set ¥ is (Rel. 3.2)-integer solvable, where (Rel. 3.2) is
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%2 %2
<sz 10+ZP2k 15X S X1 < Q210 — 1) +ZQ2k 1,+X; and

s=1 s=1
2k—1
1+ X1 < Xop < Qoo + Z O X, 1 <k < d; P < X5y 1 <O and
s=1
P'<X,<Q', for 1< p<d.p#k, the values of P/, 0, P", Q'
r—1
will depend on the dependence direction 0,; P,y + Z P X, <X, <00

s=1

r—1
+ Y 0nX, for 2d +1<r< n) . (Rel.3.2)

s=1

Definition 3.3. Suppose that the constraints of X, for 1<r<n are equal to
the bounds of (1.2). Let K represent the left-hand-side expression >, a.X,,
L=by+5Y,  bX and U=co+ ), _ ¢X in Eq. (3.1), where L<K<U, and
by, co,a,,b, and ¢, for 1 <r<n are integers. The set of length of the right-hand-
side variable interval, 2, in the variable interval equation (3.1) is denoted to be
equal to

{1+ Co b() +Z —b x,

r—1
+ZQ’~SXS for lgrén}.

s=1

r—1

r0+ZRsxs g-xl gQrO

s=1

It is easy to see that a linear equation (1.1) is integer solvable if and only if the
only interval equation

ale + azXZ + -+ an—an—l + aan = [(10, aO]

in the set ¥ is integer solvable. The following theorem shows the way to obtain the
maximum length of the variable interval in a variable interval equation.

Theorem 3.1 [1]. The maximum element in the set Q denoted in Definition 3.3 can be
determined by the Banerjee algorithm.

The GDVI test involves a number of variable-interval-equation to variable-in-
terval-equation transformations. In Sections 3.2-3.5, Theorems 3.2-3.7, and Lem-
mas 3.2-3.8 are extensions of Theorems 2.1 and 2.2. These theorems and lemmas will
be employed towards doing transformations of variable interval equation.

3.2. Transformation of variable interval equation with “<’ in direction vector

The bounds to each pair of same index variables in the variable interval equation
(3.1) will be redefined to be the constraints of (2.1) denoted in Definition 2.2 if the
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direction vector “<” are considered. Theorems 3.2 and 3.3 and Lemmas 3.2 and 3.3
are derived to describe the way of variable-interval-equation to variable-interval-
equation transformations under variable limits as well as a specific direction vector
0= (6...,08,), where d is the number of common loops, 0, is equal to “<”,
1 <k<d, and 0, are equal to “x” for 1 <p<d, p#k.

Theorem 3.2. Given a variable interval equation (3.1), defined in Definition 3.2a,
subject to the constraints of (1.2) and a specific direction vector 0= (6,...,64), where
d is the number of common loops, 0y is equal to “<”, 1 <k <d, and 0, are equal to **x”
for1<p<d,p#k.Ifay, > 0,ax = by = 0,a5 = o = 0, and the value for ay is less
than or equal to the length of the right-hand-side interval of one of the interval equa-
tions in the variable interval equation, then the variable interval equation is (Rel. 3.2)-

integer solvable if and only if the variable interval equation

aiXi + -+ ay 1 X + a1 Xogr1 + -0 + anXa
n 2k—1
bo =+ Z br)(, + (b2k — azk) (QZk,O + Z QZk,s)(s> )
r=1 s=1

co + z”: X + (e —ax)(1 Jerkl)] for r # 2k (3.2)

r=1

is (Rel. 3.3)-integer solvable, where (Rel. 3.3) is

(P’ <Xop1 <Q and P'< X5, < Q" for 1< p<dand p#k,

the values of P',Q',P" and Q" will depend on the direction 0,;
2%-2 2%-2

P19+ ZPZkfl‘sXvs X1 < (Qu—10— 1) + Z Osi—1:Xs; and
s=1

s=1

r—1 r—1
Po+ Z P X, <X, < Ono + Z 0, X; for 2d +1<r< n) . (Rel.3.3)

s=1 s=1

Proof. (Only if) According to Definition 3.2a, the variable interval equation (3.1)
represents the set of all the interval equations inferred from every variable X, with the
bounds of (1.2) and a specific direction vector 0= (61,...,0,). The set of all the
interval equations ¥ is equal to

by + i: b,x,,co + z”: c,x,]
r=1 r=1

satisfies its bounds}.

for each x,,1 <r<n,

{alxl + ot anx, =

Since the set of all the interval equations ¥ is integer solvable, so there exists an
interval equation in the set ¥ that is integer solvable. Let the interval equation be
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by + Xn: byx,,co+ i: crxr] ;
r=1 r=1

axy+ -+ A1 Xy + apXy =

where x,,...,x, satisfy the conditions for (Rel. 3.2)-integer solvable.
We thus have that

axy + -+ ax, = [(bZk — Qo)X + by + Z byx,, (cox — @)X + co + Z Crxr]
r=1 r=1

for r # 2k.
Let the integer interval A be

r=1 r=1

[(bZk — )Xo + by + Z byXy, (Cox — @ )Xok + ¢o + Z crxr]

for r # 2k, and let the integer interval 4 be

2k—1
by + Z b.x, + (b — ax <Q2k 0+ Z ok ?xs>

co + Zcrxr + (e — ax)(1 + x2k1)]
r=1

for r # 2k.

Since 0 < by, < ay and 0 < ¢y < ay according to the assumption of Theorem 3.2,
the integer interval A is enclosed by the integer interval A. Therefore, the interval
equation

aixy + -+ a1 X1 + A1 Xk + -0+ ApXy

2k—1
b() -+ Z b,xr bzk — )y <Q2k o+ Z QZk vxv>

co+ Z ¢xr + (e — ax)(1 +X2k—1)1
r=1

for r # 2k is (Rel. 3.3)-integer solvable.

The interval equation lies in the set of all the interval equations concluded from
the variable interval equation (3.2), so the variable interval equation (3.2) is (Rel.
3.3)-integer solvable.

(If): According to Definition 3.2a, the variable interval equation (3.2) represents
the set of all the interval equations inferred from every variable X, with the bounds of
(1.2) and a specific direction vector 0= (61,...,0,). The set of all the interval
equations ¥ is equal to
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{alxl + - @1 Xop-1 F 1 X2ur1 + 00+ anXy

2k—1

by + Z byx, + (b — ax (szo + Z O sxs> ¢+ Z CrXy

+ (C2k — aZk)(l +X21(,1) P <X2‘n71 < Q/ and P’ <X2p < Q” for 1 gpgd

and p # k, the values of P',Q', P" and Q" will depend on the direction 0,;

2k—2 2k—2

Py 10+ZP2k 15X < X1 < (Qo—10 — 1) +ZQ2k 155, and

s=1

s=1 s=1

r—1 r—1
Pr,O +Zpr,sxs <xr<Qr,0 + ZQr,sxs for 2d+ 1 <I"<n}

The set of all the interval equations ¥ is integer solvable, so there exists an in-
terval equation that is integer solvable in the set . Let the interval equation be

aixy + -+ a1 X1 + A1 Xon1 + -0+ ApXy

2%—1
by + z box, + (b — ax (szo + Z O, v%) )

Co + Zcrxr + (e —ax)(1 +X2k1)]
r=1

for r # 2k, where xy, ..., X _1,X%41,- - -, X, satisfy the conditions for (Rel. 3.3)-inte-
ger solvable. Since 0 < by <ay and 0< ey < ay according to the assumption of
Theorem 3.2 and suppose 1 + xy—1 <x2 < Ono + Z sz sXs, we obtain the fol-
lowing results:

21
by + Z byx, + (b — ax (szo + Z Ox, st>

s=1
2k—1

= by + Z byx, + bopXor — ay (szo + Z O s&) for r # 2k,
and

Co + Z Cp X} + (C2k — azk)(l +X2k,|)

r=1

< co + ZC,X, “+ CorXop — (lzk(l +X2k,1) for r # 2k.

r=1
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Hence, the interval equation

aixy + -+ a1 X1 + A1 Xk + -0+ ApXy

" 2%—1 n
by + Z b.x, — ay (sz,o + Z QZk,st> ,Co + Z ey — aye(1 4 x-1)
r= §s= r=

is (Rel. 3.2)-integer solvable.
Because the interval equation is integer solvable, a linear equation in the interval
equation is integer solvable. Let the linear equation be equal to

aixy + -+ a1 Xp-1 + Qo1 X2k41 + 0 F Xy =,

where

n 2k—1 n
by + Z byx, — ay (sz,o + Z QZk,s-xs> <ce<e+ Z exy — ay(1 4+ xp1).
r=1

s=1 r=1

Let L' and U' represent by + >~ bx, and ¢o + >, ¢,x,, and let o and f rep-
resent 1 +xy 1 and Oy + Zfi]l O xs. Consider the set of integer intervals
(L' — an(B—m), U' —ay(B—m)]|0<m< B —a}. Since ay > 0, these integer in-
tervals lie in the following sequence in order of initial element:

(L' — axp, U" — axf]
[Ll — azk(ﬁ— 1)7 Ul —azk(ﬁ — 1)]

[L] — Ay, l/1 — a2koc].

The length of each integer interval is U' — L! + 1. Consider two consecutive integer
intervals [L! — ayf, U' — ayfland [L' — ax (B — 1), U' — ax (B — 1)]. There is a gap
between the two integer intervals if and only if U' — ayff + 1 < L' — ay (B — 1) which
reduces to ax > U' — L' + 1. But ay < U' — L' + 1 due to the assumption of Theo-
rem 3.2, the gap between the two integer intervals does not exist. We thus have that

n 2k—1 n

by + Z} byx, — axy (sz,o + Zl: sz,sxs> , €0 + ZI: exy —axy(l + xzkl)]
n 2%-1

=S |bo+ D bxe—an| Qo+ | D Ouoxi | —m |,
r=1 s=1
" 2%-1

co + Z Cr Xy — Qg (sz,o + (Z sz,sxs> - m)]
r=1 s=1

2%-1
+ Z Oosxs — (1 +x2k—l)}~
s=1

Let 0<p<cy—by+ Y. (¢, — b,)x, be the specific integer such that

n 2%-1
c=by+ Z bx, — ay (sz,o + (Z Q2k,sxs> - m) +p.

r=1 s=1

0<m< O
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We thus have from ayxy + -+ a_1Xok—1 + A1 X2k41 + -+ aApXy, = C that

n 2k—1
aixy + -+ a,x, = by + Z byx, — axy <Q2k,0 + (Z szsxs) - m) +p.
=1 s=1
This makes it clear that

2%—1
apxy + -+ a1 X1 + ax (sz,o + <Z sz,sxs> — m) + et apx,
s=1

n

=bo+ Y bx +p.

r=1

But,

21 21
1+ X251 < Qoo + (Z szsxs> —m< Oy + Z O Xy,
s=1 s=1

and

bO + ibrxr < bO + ibrxr +p<CO + icrxm

r=1 r=1 r=1

which imply that the interval equation

by + i b,x,,co + i c,x,.l
r=1 r=1

is (Rel. 3.2)-integer solvable.

The interval equation lies in the set of all the interval equations concluded from
the variable interval equation (3.1), so the variable interval equation (3.1) is (Rel.
3.2)-integer solvable. [

a1x1+"'+anxn:

Lemma 3.2. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0 = (0,, ..., 0,), where d is the number of common loops,
Oy is equal to “<”, 1 <k <d, and 0, are equal to “x” for 1 <p<d, p# k. If ay > 0,
ay, = by =0, ay, = ¢y = 0, and the value for ay; is less than or equal to the maximum
length of the right-hand-side intervals of the interval equations in the variable interval
equation, then the variable interval equation is (Rel. 3.2)-integer solvable if and only if
the variable interval equation

alXy + -+ an 1 Xpe—1 + a1 Xoggr + -+ a, X,

n 2%-1
= |by + Z byx, + (b — ax) (sz‘o + Z sz,sXs> ,
r=1

s=1
co+ Z X+ (e —ax)(1 +X2k1)] for r # 2k (3.3)
r=1

is (Rel. 3.3)-integer solvable.
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Proof. Refer to Theorems 3.1 and 3.2. O

Theorem 3.3. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 8 = (6., . ..,0,), where d is the number of common loops,
Oy is equal to “<”, 1 <k <d, and 0, are equal to “x” for 1 <p<d,p#k. If ay <0,
axy < by <0, ay <y <0, and the negative value for ayy is less than or equal to the
length of the right-hand-side interval of one of the interval equations in the variable
interval equation, then the variable interval equation is (Rel. 3.2)-integer solvable if and
only if the variable interval equation

Xy + -t ay 1 Xop1 + X + -+ aX;
= |by + Zbrxr + (b — az) (1 + Xoi1),
r=1

2k—1

co + z”: exy + (Cor — azx) <Q2k,o + Z sz&)] for r # 2k
=1 s=1
(Rel.3.4)
is (Rel. 3.3)-integer solvable.
Proof. Similar to Theorem 3.2. O

Lemma 3.3. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0= (01,...,0,), where d is the number of common loops,
Or is equal to “<”, 1<k<d, and 0, are equal to “x” for 1<p<d, p#k. If
ay < 0, ay <by <0, ay <y <0, and the negative value for ay is less than or equal
to the maximum length of the right-hand-side intervals of the interval equations in the
variable interval equation, then the variable interval equation is (Rel. 3.2)-integer
solvable if and only if the variable interval equation

aXy + -+ ap 1 X1 + aunXop + 0+ @k

= |by + Zbrxr + (b — az) (1 + Xoi1),
r=1

n 2%-1
co + Z ey + (cor — ax) <Q2k,o + Z sz&)] Sor r # 2k
r=1 s=1
(Rel.3.5)
is (Rel. 3.3)-integer solvable.

Proof. Refer to Theorems 3.1 and 3.3. O

The set of all the interval equations ¥ at least contains one interval equation in
light of Definition 3.2a. The set Q for the length of the right-hand-side interval on
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every interval equation in the set ¥ at least consists of one element according to
Definitions 3.2a and 3.3. If the set Q only includes one element, then the only element
will be equal to ¢y — by + 1 according to Definition 3.3. Otherwise, every element in
the set will be equal to 1 + (¢o — by) + >_._, (¢, — b,)x,.. It is obvious from Definitions
3.1,3.2a-3.2c and 3.3 that the value for every element in the set Q is greater than or
equal to one. Theorems 3.2 and 3.3 and Lemmas 3.2 and 3.3 can be used to deter-
mine integer solutions for the variable interval equation (3.1) with the bounds of
(1.2) and with “<” in direction vectors if the coefficient a,; for one item in Eq. (3.1) is
small enough to justify the movement of the item to the right. If ay > 0,
ay, = by =0, ay, = ¢y = 0, and the value for ay is less than or equal to one of the
elements in the set Q in light of the assumption of Theorem 3.2 and Lemma 3.2, then
the value is actually equivalent to the small enough value to justify the movement of
the item to the right. If ay, < 0, ay < by <0, ay < ey <0, and the negative value for
ay; 1s less than or equal to one of the elements in the set Q in light of the assumption
of Theorem 3.3 and Lemma 3.3, then the value is actually equivalent to the small
enough value to justify the movement of the item to the right. On the other hand,
Theorems 3.2 and 3.3 and Lemmas 3.2 and 3.3 are inapplicable towards ascertaining
integer solutions of the variable interval equation (3.1) if the absolute values of the
coefficients for all the items in the variable interval equation (3.1) are greater than the
maximum element in the set Q. As proved in Theorem 3.1, the Banerjee algorithm
can be employed to determine the maximum element in the set Q.

We now give an example to show the precision of the GDVI test is over that of the
DVI test, when it is applied to deal with a data dependence problem for a linear
equation with constant bounds under a given direction vector.

Consider the equation

=3X,+X, =10 (Ex1)
subject to the bounds
1<X;<100 and 1<X,<100,
and the limits of a direction vector
X, < Xa.
The linear equations (Ex1) are rewritten as the interval equation
=3X; + X, = [10, 10]. (Ex1.1)

If Theorem 2.1 is used to resolve the interval equation (Ex1.1), then a value for ¢ is
gained to be equal to two. The two terms X, and X; cannot be moved to the right-
hand side of (Ex1.1) because there is no suitable value for ¢ to justify the movement
of the two terms X; and X; to the right-hand side of (Ex1.1). Therefore, the DVI test
assumes that there are integer solutions.

According to the constraints of (2.1) denoted in Definition 2.2, the constraints for
X, and X, will be redefined by 1 < X; <99, and 1 + X; <X, < 100. If the GDVI test is
used to resolve the same problem, then in light of Definitions 3.2a-3.2c the set of all
the interval equations ¥ is equal to
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{=3X + X, = [10,10]| 1 <X; <99 and 1 + X; <X, < 100}.

The set Q for the length of the right-hand-side interval on every interval equation in
the set ¥ is {1}. Therefore, the maximum element in the set Q2 is one. It is obvious
from Definitions 3.2a-3.2c¢ that the set ¥ is integer solvable if the only interval
equation in the set ¥ is integer solvable. The coefficient for X, satisfies the as-
sumption of Lemma 3.2: (1) 1 >0,(2) 1 >0>0, (3) 1 = 0 > 0 and (4) the value of
the coefficient is equal to one. Lemma 3.2 is applied towards moving the term X; to
the right-hand side of the only interval equation in the set ¥. The variable interval
equation (i.e., the new set ¥,) in light of Lemma 3.2 and Definitions 3.2a-3.2¢ is

{=3X; = [-90,9 — X;]| 1 <X; <99}

Now the set Q; for the length of the right-hand-side interval of the interval equations
in the set ¥, is equal to {—X; + 100| 1 < X; <99}. The maximum element computed
by the Banerjee algorithm in the set Q; is 99. When the maximum element is 99, the
value for X; is equal to 1. The value to X, is one, so —3 = [—90,8] (—90< —3<8)
hold. Therefore, there exists a constant interval equation in the set ¥, satisfying the
given limitations. The coefficient for X satisfies the assumption of Lemma 3.3: (1)
-3<0,(2)—3<0<0,(3) —-3< —1<0, and (4) the negative value of the coefficient
is less than 99. Lemma 3.3 is employed toward moving the term —3X; to the right.
The new set ¥, is

{0 = [-87,207]}.

The expression of the left-hand side of the only interval equation in the set ¥, is
reduced to zero items. The only interval equation in the set ¥, is integer solvable
because —87 <0< 207 is true. Therefore, the GDVI test concludes that there are
integer solutions.

3.3. Transformation of variable interval equation with “>"" in direction vector

The bounds to each pair of same index variables in the variable interval equation
(3.1) will be redefined to be the constraints of (2.2) denoted in Definition 2.2 when
the direction vector “>"" are considered. Theorems 3.4 and 3.5 and Lemmas 3.4 and
3.5 are derived to describe the way of variable-interval-equation to variable-interval-
equation transformations under variable limits as well as a specific direction vector
0=1(0y,...,0,), where d is the number of common loops, 0, is equal to “>”,
1 <k<d, and 0, are equal to “x” for | <p<d, p # k.

Theorem 3.4. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 6= (64,...,04), where d is the number of common loops,
Or is equal to “>", 1 <k <d, and 0, are equal to “x” for 1 <p<d, p# k. If azy > 0,
axy, = by =20, ay, = ¢y = 0, and the value for ay; is less than or equal to the length of
the right-hand-side interval on one of the interval equations in the variable interval
equation, then the variable interval equation is (Rel. 3.4)-integer solvable, where (Rel.
34)is
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%2 %2
<P2k1,0 + ZPZk—]“\‘/Yx S X1 <010 + Z On—15X;, and

s=1 s=1
21
Pyo + ZP2k,sXv <Xop <Xopoy — 1, where 1 <k<d; P'<X5, 1 <Q and

s=1

P'<X, < Q" for 1< p<d, p+#k, the values of P',Q',P",Q"
will depend on the dependence direction 0,,;

r—1 r—1

P+ Y PX <X <O+ > 0nX: for 2d+1<r< n> : (Rel.3.4)
s=1 s=1

if and only if the variable interval equation

arXy + -+ ay 1 Xopo1 + a1 Xopr + -+ anX,,

bo + Zbrxr + (b — ax)( Xk — 1),
r=1

n 2k—1
Co + Z Cr Xy —+ (Cgk — aZk) <P2k,0 + ZPZk,sXv>‘| fOI” r 7& 2k (36)
r=1

s=1

is (Rel. 3.5)-integer solvable, where (Rel. 3.5) is

<P’<X2p_1 <Q and P"'<X,, < Q" for 1< p<d, p#k,

the values of P',Q',P", Q" will depend on the dependence direction 0,;
%2 %2

Poy_1p+ ZPZk—Ls)(s X1 €010 + Z Ori—15Xs, and
o

s=1 s=

s=1 s=1

r—1 r—1
P+ Y PX, <X, <00+ Y 0nX for2d +1<r< n> . (Rel.3.5)

Proof. Refer to Theorem 3.2. O

Lemma 3.4. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 6= (64,...,04), where d is the number of common loops,
Or is equal to “>7, 1<k<d, and 0, are equal to “x” for 1<p<d, p#k. If
axy >0, ay = by =0, ay, = ¢y = 0, and the value for ay; is less than or equal to the
maximum length of the right-hand-side intervals of the interval equations in the variable
interval equation, then the variable interval equation is (Rel. 3.4)-integer solvable if and
only if the variable interval equation
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arXy + -+ an 1 Xop1 + ayn Xy + -+ aX,

bo + Z by, + (bax — az)(Xox-1 — 1),

2k—1
Co —+ ZC,X,- —+ (CZk — azk) <P2k$(] —+ szkﬂsXq>‘| fO}" r # Zk (37)
r=1

s=1

is (Rel. 3.5)-integer solvable.
Proof. Refer to Theorems 3.1 and 3.2. O

Theorem 3.5. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0 = (0, . .., 0,), where d is the number of common loops,
Oy is equal to “>", 1 <k <d, and 0, are equal to “x” for 1 <p<d, p# k. If ay <0,
s < by <0, ay <o <0, and the negative value for ay is less than or equal to the
length of the right-hand-side interval on one of the interval equations in the variable
interval equation, then the variable interval equation is (Rel. 3.2)-integer solvable if and
only if the variable interval equation

aXy+ -+ an X1 + ayn Xy + -+ X,

2k—1
bo—f—Zer bzk_a2k)<P2k0+ZP2ks s)

s=1
co + ZC,JC,. + (CZk — azk)(sz,l — 1)‘| f()}" r # 2k (38)
r=1
is (Rel. 3.5)-integer solvable.
Proof. Refer to Theorem 3.2. [

Lemma 3.5. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 6= (64,...,04), where d is the number of common loops,
Or is equal to “>", 1 <k <d, and 0, are equal to “x” for 1 <p<d, p# k. If ay <0,
ar < by <0, ay <oy <0, and the negative value for ay is less than or equal to the
maximum length of the right-hand-side intervals of the interval equations in the variable
interval equation, then the variable interval equation is (Rel. 3.2)-integer solvable if and
only if the variable interval equation

a Xy + -+ an— 1 Xop—1 + a1 Xopgr + -0+ a,X,

%1
bo—l—be, bzk—aZk)<P2k0+ZP2ks s)

s=1
co + Z ey + (cor — an) (Xopo1 — 1)1 Sor r # 2k (3.9)

is (Rel. 3.5)-integer solvable.
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Proof. Refer to Theorems 3.1 and 3.2. O

Let us use the following example to explain the power of the GDVI test based on
Lemmas 3.4 and 3.5, when it is applied to deal with a data dependence problem for a
linear equation with variable bounds under a given direction vector.

Consider the equation

Xi—-X%-X+X=0
subject to the bounds

1<X <100, 1<X,<100, 14X <X3<100+X] and 1+ X, <X <100 + X,
and the limits of a direction vector

Xi>X, and X3 > Xj.

According to the constraints of (2.2) denoted in Definition 2.2, the constraints for
X1,X,X; and X; will be redefined by 1<X; <100, 1<X<X -1, 1+X <
X;<100+ X, and 14+ X, <Xy, <X;— 1. If the GDVI test is used to resolve the
problem, then in light of Definitions 3.2a—3.2c the set of all the interval equations ¥ is
equal to

(X~ Xo— X5 + X, = [0,0] |1 <X,
I +X <X3

100, 1<Xo <X, — 1,

<
g 100 +X1 and 1 +X2 <X4 <X3 — 1}

The set Q for the length of the right-hand-side interval on every interval equation in
the set ¥ is {1}. Therefore, the maximum element in the set Q is one. It is obvious
from Definitions 3.2a-3.2c¢ that the set ¥ is integer solvable if the only interval
equation in the set ¥ is integer solvable. The coefficient for X, satisfies the as-
sumption of Lemma 3.4: (1) 1 >0,(2) 1 >0>0, (3) 1 =0 > 0 and (4) the value of
the coefficient is equal to one. Lemma 3.4 is applied towards moving the term Xj to
the right-hand side of the only interval equation in the set ¥. The variable interval
equation (i.e., the new set ¥,) in light of Lemma 3.4 and Definitions 3.2a-3.2¢ is

{X] —X2 —X3 = [1 —A/.?,7 —1 —X2H1<X1 < 1007 1<X2 gXl — 1 and
1+X <X3<100 4 X}

Now the set Q; for the length of the right-hand-side interval on every interval
equation in the set ¥, is equal to {X; — X, — 1]1<X; <100, 1 <Xo <X, — 1 and
1+ X <X3 <100+ X;}. The maximum element computed by the Banerjee algo-
rithm in the set Q; is 198. When the maximum element is equal to 198, the values for
X1,X; and X; are equal to 100, 1 and 200, respectively. Because X; = 100, X, = 1 and
X; =200, s0 —101 = [—199, —2] (=199 < — 101 < —2) hold. Therefore, there exists
a constant interval equation in the set ¥, satisfying the given limitations. The co-
efficient for X3 satisfies the assumption of Lemma 3.5: (1) -1 < 0, (2) -1 < — 1 <0,
(3) —1 <0< 0and (4) the negative value of the coefficient is less than 198. Lemma 3.5



1136 W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144

is applied towards moving the term X; to the right-hand side of the interval equation
in the set ¥;. The variable interval equation (i.e., the new set ¥») in light of Lemma
3.5 and Definitions 3.2a-3.2c is

{X] —Xz = [1,99 +X1 —X2]|1<Xl < 100 and ngz <X1 — 1}

Now the set Q, for the length of the right-hand-side interval on every interval
equation in the set ¥, is equal to {99 + X; — X5 |1<X; <100 and 1 <X, <X; — 1}.
The maximum element computed by the Banerjee algorithm in the set Q, is 198.
When the maximum element is equal to 198, the values for X; and X are equal to 100
and 1, respectively. Because X; = 100 and X, =1, so 99 = [1,198] (1<99<198)
hold. Therefore, there exists a constant interval equation in the set ¥, satisfying the
given limitations. The coefficient for X, satisfies the assumption of Lemma 3.5: (1)
1<0,2)-1<0<0,(3) —1< —1<0 and (4) the negative value of the coefficient is
less than 198. Lemma 3.5 is applied towards moving the term X, to the right-hand
side of the interval equation in the set ¥,. The variable interval equation (i.e., the
new set ¥3) in light of Lemma 3.5 and Definitions 3.2a-3.2¢ is

(X1 = 2,99 + X;] |1 <X, < 100}.

Now the set Q; for the length of the right-hand-side interval on every interval
equation in the set ¥ is equal to {98 + X1 |1 <X, <100}. The maximum element
computed by the Banerjee algorithm in the set Q; is 198. When the maximum ele-
ment is equal to 198, the value for X; is equal to 100. Because X; = 100, so
100 = [2,199] (2<100<199) hold. Therefore, there exists a constant interval
equation in the set V5 satisfying the given limitations. The coefficient for X satisfies
the assumption of Lemma 3.4: (1) 1 >0, (2) 1 >0>=0, (3) 1 =1 >0 and (4) the
value of the coefficient is less than 198. Lemma 3.4 is again used to move the term X;
to the right. The new set ¥, is

{0 = [—98,99]}.

According to Definitions 3.2a-3.2c, the set ¥4 is equal to {0 = [—98,99]}. The ex-
pression of the left-hand side on the only interval equation in the set ¥, is reduced to
zero items. The only interval equation in the set ¥, is integer solvable because
—98 <0< 99istrue. Therefore, the GD VI test concludes that there are integer solutions.

3.4. Transformation of variable interval equation with “=""in direction vector

Two variables in (3.1) will be merged into a single variable if they refer to the same
index variable and are related in dependence direction by a direction vector “="".
The bounds for the single variable will be unchanged. Theorems 3.6 and 3.7 and
Lemmas 3.6 and 3.7 are derived to describe the way of variable-interval-equation to
variable-interval-equation transformations under variable limits as well as a specific
direction vector 0 = (0, ..., 0,), where d is the number of common loops, 0; is equal
to “=",1<k<d, and 0, are equal to “x” for 1 <p<d, p # k.



W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144 1137

Theorem 3.6. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0= (01,...,04), where d is the number of common loops,
Or is equal to “=", 1<k<d, and 0, are equal to “x” for 1<p<d,p#k. If
(az—1 + ax) > 0, (an—1 + ax) = (ba—1 + ba) = 0, (az—1 + ax) = (co-1 +cx) =0,
and the value for (ay._ + ay) is less than or equal to the length of the right-hand-side
interval on one of the interval equations in the variable interval equation, then the
variable interval equation is (Rel. 3.6)-integer solvable, where (Rel. 3.6) is

2%-1 2%-1
<P2k,0 ) P, <Xyoy = X < Qoo + Y QX

s=1 s=1
where 1 <k<d; P'<X5, 1 <Q and P" <X, < Q" for 1< p<d, p#k,
the values of P',Q',P", Q" will depend on the dependence direction Op;

r—1 r—1
Po+ Y PX, <X, <O+ Y 0nX for 2d +1<r< n> , (Rel.3.6)

s=1 s=1
if and only if the variable interval equation

arXy + -+ ay 2 Xopo + a1 Xop1 + -+ anX,

n 2%-1
bo+ > bex, + (bay + by — a1 — ax) (tho +) QZk,s/Ys> ;
r=1 s=1

n 2k—1
co+ Z Xy + (Copo1 + Cox — a1 — aox) <P2k,0 + szk,sXs>]
r=1

s=1

for r #2k — 1 and 2k (3.10)

is (Rel. 3.7)-integer solvable, where (Rel. 3.7) is

<P/ <Xop1 <O and P' < X5, < Q" for 1< p<d, p#k,
the values of P',Q',P", Q" will depend on the dependence direction 0,;

r—1 r—1
Po+ Y P X <X <O+ > 0nX: for 2d+1<r< n> : (Rel.3.7)

s=1 s=1

Proof. Refer to Theorem 3.2. O

Lemma 3.6. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0 = (0,,. .., 0,), where d is the number of common loops,
Or is equal to “=", 1<k<d, and 0, are equal to “x” for 1<p<d,p#k. If
(@zk—1 + ax) >0, (ay—1 +ax) = (by—1 +bxy) =0, (ay_1 +ay) = (cy—1 +cx) =0,
and the negative value for (axy._1 + aa) is less than or equal to the maximum length of
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the right-hand-side interval on one of the interval equations in the variable interval
equation, then the variable interval equation is (Rel. 3.6)-integer solvable if and only if
the variable interval equation (3.10) is (Rel. 3.7)-integer solvable.

Proof. Refer to Theorem 3.2. O

Theorem 3.7. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 6= (641,...,04), where d is the number of common loops,
Or is equal to “=", 1<k<d, and 0, are equal to “x” for 1<p<d,p#k. If
(a-1+ax) <0, (an—1 + ax) < (bay-1 +bxy) <0, (an—1 + ax) < (cu-1 +cx) <0,
and the negative value for (ay._y + ay) is less than or equal to the length of the right-
hand-side interval on one of the interval equations in the variable interval equation, then
the variable interval equation is (Rel. 3.6)-integer solvable if and only if the variable
interval equation

a Xy + -+ a2 Xop—r + a1 X1 + - - + a, X,

" %1
= |by + Z byx, + (b1 + boy — an—1 — ax) <P2k,0 + ZPZk,S)(s> ;
r=1

s=1

n 2%-1
co + Z ¢ Xy + (Copoy + Cox — aop—1 — a2x) (sz,o + Z Q2k,sXs>]
r=1

s=1

for r # 2k — 1 and 2k (3.11)
is (Rel. 3.7)-integer solvable.

Proof. Refer to Theorem 3.2. 0O

Lemma 3.7. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0= (64,...,04), where d is the number of common loops,
Or is equal to “=", 1<k<d, and 0, are equal to “x” for 1<p<d, p#k. If
(az—1+ax) <0, (an—1 + ax) < (bay-1 +by) <0, (an—1 + ax) < (cu-1 +cx) <0,
and the negative value for (axy._1 + ax;) is less than or equal to the maximum length of
the right-hand-side interval on one of the interval equations in the variable interval
equation, then the variable interval equation is (Rel. 3.6)-integer solvable if and only if
the variable interval equation (3.11) is (Rel. 3.7)-integer solvable.

Proof. Refer to Theorem 3.2. O

Two variables referring to the same loop index variable in the variable interval
equation (3.1) will be merged into a single variable if they are related by a direction
vector “="". The bounds for the single variable will be unchanged. Theorems 3.6 and
3.7 and Lemmas 3.6 and 3.7 can be used to determine integer solutions for the
variable interval equation (3.1) with the bounds of (1.2) and specific direction vectors
containing ““="" if the coefficient (ay,_; + ay) for the single variable in the equation
is small enough to justify the movement of the item to the right. If (as_1 + ax) > 0,
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(a2k,1 + aZk) = (b2k71 + bZk) = 0, (a2k,1 + a2k) = (C2k—l + cZk) = 0, and the value for
(ax—1 + ay) is less than or equal to one of the elements in the set Q in light of the
assumption of Theorem 3.6 and Lemma 3.6, then the value is actually equivalent to
the small enough value to justify the movement of the item to the right. If
(ar—1+ax) <0, (an—1 + axn) < (bay-1 +bxy) <0, (an—1 + ax) < (cu-1 +cx) <0,
and the negative value for (ay_; + ay) is less than or equal to one of the elements in
the set Q in light of the assumption of Theorem 3.7 and Lemma 3.7, then the value is
actually equivalent to the small enough value to justify the movement of the item to
the right. On the other hand, Theorems 3.6 and 3.7 and Lemmas 3.6 and 3.7 are
inapplicable towards ascertaining integer solutions of the variable interval equation
(3.1) if the absolute values of the coefficients for all the items in the variable interval
equation (3.1) are greater than the maximum element in the set Q. The Banerjee
algorithm can be employed to determine the maximum element in the set Q.

The GDVI test generates three possible results. The first result of ‘yes’ means that
Eq. (3.1) has integer solutions, and the second result of ‘no’ means that there are no
integer solutions. The third value of ‘maybe’, on the other hand, shows that the
equation has a solution which satisfies the limits on all the variables which has been
moved to the right-hand side of the equation, and might still have a solution which
satisfies the limits on the rest of the variables.

The GDVI test produces a result of ‘maybe’ because there are no longer any
coefficients with small enough values to justify their movement to the right. In the
case, it is prudent to complete the “step-by-step Banerjee algorithm™ anyway, i.€., to
complete the computation of the Banerjee bounds, L, and U,, and to test for
[Ly, Up) N [L, U] = 0, where [L,U] is the right-hand side of the variable interval
equation (3.1) after Theorem 3.1 has been applied as many times as possible. This is
to imply that the GDVI test is always at least as efficient and accurate as the Banerjee
algorithm.

The GDVI test can be viewed as involving the term-by-term computation of the
Banerjee bounds. That is, the Banerjee-bound-computation component of the GDVI
test costs at most the cost of a single Banerjee algorithm. If the GDVI test arrives at a
definitive result (for example, all of the integers in between the intervals of the in-
terval equations in the set ¥ are not divisible by the greatest common divisor of the
left-hand-side coefficients of (3.1)) before all terms have been moved to the right-
hand side of the variable interval equation, then the Banerjee-bound-computation
component of the GDVT test costs even less.

3.5. Variable interval-equation transformation using the GCD test

It is obvious from Lemmas 3.2-3.7 that one variable in Eq. (3.1) can be moved to
the right if the coefficient of the variable has a small enough value to justify the
movement of the variable to the right. If all coefficients for variables in Eq. (3.1) have
no sufficiently small values to justify the movements of variables to the right, then
Lemmas 3.2-3.7 cannot be applied. In the following, Lemma 3.8, extended from
Theorem 2.2, describes the new transformation using the GCD test which frequently
enables one or more additional variables to be moved.



1140 W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144

Lemma 3.8. Given a variable interval equation (3.1) subject to the constraints of (1.2)
and a specific direction vector 0= (64,...,04), where d is the number of common loops,
and 0, are equal to “x” for 1 <p<d. Let g = ged(ay,...,a,). The variable interval
equation (3.1) is (P, Qy; . . .; Py, Q,)-integer solvable if and only if the variable interval
equation

(ar/g)Xi + -+ (a2a/8)Xoa + - - - + (as/8)Xn = [[L/g], | U/2]] (3.12)

is (P, 0h;...; P, Q,)-integer solvable, where Py, Oy, 1 <k<n, in (P,01;...;P:,0n)
refer to the bounds of X, but may be redefined due to dependence direction.

Proof. Refer to [11]. O

Lemma 3.8 guarantees to always perform at least as well as (and sometimes better
than) a combination of the GCD test and the Banerjee algorithm at no more than
their cost (and sometimes at a lower cost). In the worst case, the GDVI test consists
of n GCD tests, where n is the number of variables in Eq. (3.1). In actual practice, it
requires frequently no more than one.

3.6. Time complexity

The main phases to the GDVI test are:

1. finding a small enough coefficient to justify the movement of a term to the right-
hand side;

2. changing the expression of the right-hand side on the equation due to the move-
ment of a term to the right;

3. using the GCD test to reduce coefficients of each variable in Eq. (3.1).

A small enough coefficient is easily found according to Theorems 3.1-3.7, and

Lemmas 3.2-3.7. It is obvious that the worst-case time complexity to searching such

a coefficient is O(n? + y * n) (n* accounts for finding the maximum length of variable

interval and y*n is due to search of proper term) in light of Theorem 3.1 and

Lemmas 3.2-3.7, where n is the number of variables in the equation and y is a

constant. The number of looking for all small enough coefficients in the equation is

at most n times because the number of terms moved in the equation is at most n

terms. Thus, the worst-case time complexity to finding all small enough coefficients

in the variable interval equation is concluded to be O(n* + n? x y).

The expression of the right-hand side on the variable interval equation is changed
according to Lemmas 3.2-3.7 because an item on the left-hand side of the equation is
moved to the right. The cost of changing the expression of the right-hand side on the
equation according to Theorem 3.1 and Lemmas 3.2-3.7 is actually equivalent to a
single term computation of the Banerjee algorithm. The worst-case time complexity
to a single term computation of the Banerjee algorithm is O(#n). Thus, the worst-case
time complexity to modifying the expression of the right-hand side on a variable
interval equation is deduced to be O(n). The number to modifying the expression of
the right-hand side on the equation is at most » times because the number of terms is
at most n. Therefore, the worst-case time complexity for changing all the expressions
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of the right-hand side on the variable interval equation is O(n?). If all coefficients in
Eq. (3.1) have no absolute values of 1, then Lemma 3.8 employs the GCD test to
reduce all coefficients to obtain a small enough coefficient. In the worst cases, the
GDVI test contains n GCD tests. Ref. [2] shows that a large percentage of all co-
efficients have absolute values of 1 in one-dimensional array references with linear
subscripts in real programs. Therefore, the GCD test is very seldom to be applied to
reduce the coefficients in the equations of real programs, implying the time com-
plexity for the GCD test can be ignored. The worst-case time complexity to the
GDVI test is thus derived to be O(n* + y x n? + n?). The worst-case time complexity
of the original DVI test is O(n? * y + n * y) [1]. That is, the GDVI test has slightly
decreased efficiency than that of the original DVI test because the number of vari-
ables, 1, in the equation tested is generally very small.

4. Experimental results

We tested the effect of the GDVI test and compared it with other tests through
performing experiments on Personal Computer Intel 80486 to the codes cited from
five numerical packages EISPACK, LINPACK, Parallel loops, Livermore loops and
Vector loops [8,9,12-14]. In our experiments, if the stride of the loop is a positive
constant, then whenever a loop lower limit is not known 1 is assumed, and whenever
the loop upper limit is not known 100 is assumed. The choices of 1 and 100 as the
loop lower and upper bounds are arbitrary. The stride of the loop was defined to be 1
if it was not an integer constant. We did not perform induction variable substitution
in the experiments. The codes tested include about 37000 lines of statements in-
volving 205 subroutines and 12 152 pairs of one-dimensional array references con-
sisting of the same pair of array references but with different direction vectors. The
results are shown in Table 1. The DVI test detected that there were definite (yes or
no) results for 6629 pairs of one-dimensional array references with constant bounds
under any given direction vectors. The GDVI test is only applied to those one-di-
mensional arrays with linear subscripts under variable bounds as well as any given
direction vectors. It found that there were 2124 pairs with definite results. Therefore,
there were 8753 definite results obtained based on interval testing approach.

The improvement rate of the GDVI test can be affected by two factors. First, the
frequency of one-dimensional array references with linear subscripts subject to

Table 1
Compearisons of testing capability among the DVI test, the GDVI test, the Power test, and the Omega test
for 12152 pairs of benchmark statements

Dependence Constant bounds Variable bounds Overall Success
testing Definitive =~ Maybe Definitive =~ Maybe Definitive ~ Maybe rate (%)
DVI test 6629 2821 6629 2821 54.5
GDVI test 2124 578 2124 578 17.5
Power test 4292 5158 1416 1286 5708 6444 47.0

Omega test 6629 2821 2124 578 8753 3399 72.0
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constant and variable limits. Second, the ““success rate” of the GDVI test, by which
we mean how often the GDVI test detects a case where there is a definite result. Let b
be the number of the one-dimensional arrays found in our experiments, and let ¢ be
the number that is detected to have definite results from the one-dimensional arrays
with linear subscripts subject to constant and variable limits and any given direction
vectors. Thus the success rate is denoted to be equal to ¢/b. In our experiments,
12 152 pairs of one-dimensional array references were found, and 2124 of them were
found to have definite results to variable bounds. So the improvement rate of the
GDVI test over the DVI test in our experiments was about 17.5%.

The Power test and Omega test were also tested to resolve those 12 152 pairs of
one-dimensional array references. The Power test concluded that there were 1416
pairs with definite results for variable limits and 4292 pairs with definite results to
constant constraints. This indicates that the Power test is not as accurate as the
interval testing approach. Whereas, the Omega test, as shown in Table 1, was found
to give the same accurate results as the interval testing approach when it was used to
handle dependence testing of one-dimensional array references with constant and
variable bounds under any given direction vectors.

The execution efficiency for these test approaches was also compared. Let Kp,
Ksp, Kp and K be the execution time to treat data dependence problem of a one-
dimensional array for the DVI test, the GDVI test, the Power test, and the Omega
test, subsequently. Table 2 shows the computing speedups the DVI test and the
GDVI test over the Power test and the Omega test for those 12152 pairs of array
references. It is very clear that the DVI test and the GDVI test are much superior to
the Power test and the Omega test in terms of analyzing efficiency.

The superiority of testing efficiency of the GDVI test over that of the Omega test
for the stated dependence problem can also be deduced from time complexity analysis.
The Omega test based on the least remainder algorithm, a variation of Euclid’s al-
gorithm, and Fourier’s elimination method [7,10] consists of three major computa-
tions: eliminating equality constraints, eliminating variables in inequality constraints,
and finding integer solutions (that is an integer programming problem). The time
complexities for these steps are O(mn log|c| + mnp + mn), O(n’s*>) and O(k")
[7,10,16], respectively, where m, n, ¢, p, s, k denote the number of equality constraints,

Table 2
The computing speedups of the DVI test and the GDVI test over the Power test and the Omega test for
12152 pairs of benchmark statements

Bounds of Speed-up Total number of
tested loops subroutines involved
Kp/Kp Constant 4.5-5.0 40
9.5-18.0 126
Kp/Kcp Variable 6.5-11.0 6
13.0-22.0 33
Ko/Kp Constant 4595 156
10.0-17.5 10
Ko/Kap Variable 3.0-12.0 36

18.0-21.0 3
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the number of variables, the coefficient with the largest absolute value in equality
constraints, the number of passes to eliminate all the variables that become unbound,
the number of inequality constraints, and the absolute value of coefficient of variable
in inequality constraints, subsequently. So the overall time complexity of the Omega
test is O(mn log || + mnp + mn + n*s> + k"). Obviously, the GDVI test is significantly
superior to that of the Omega test in terms of testing efficiency. In [7] it is reported that
the Omega test has exponential worst-case time complexity. Wolf [6,7] and Triolet [5]
also found that Fourier-Motzkin variable elimination for dependence testing takes
from 22 to 28 times longer than Banerjee method, a part of the GDVI test.

5. Conclusions

The GDVI test proposed in this paper extends the dependence testing range of
one-dimensional array references to linear subscripts with variable bounds under any
given direction vectors, enhancing significantly data dependence analysis capability
of the DVI test. The GDVI test defines some conditions under which dependence
equations of linear subscripts with variable bounds under any given direction vectors
can be continuously tested if integer solutions exist. In short, the GDVI test is exactly
equivalent to a version of the DVI test that combines the Banerjee algorithm and the
GCD test. The Banerjee algorithm is employed to deduce maximum bound to a
linear expression of which the variables are with variable constraints and any given
direction vectors [3].

The Power test is a combination of Fourier—Motzkin variable elimination with an
extension of Euclid’s GCD algorithm [4,6]. The Omega test combines new methods
for eliminating equality constraints with an extension of Fourier—Motzkin variable
elimination to integer programming [7]. These two tests have currently the highest
precision and the widest applicable range in the field of data dependence testing for
array references with linear subscripts. However, the cost of the two tests is very
expensive because the worst-case of Fourier—Motzkin variable elimination is expo-
nential in the number of free variables [4,6,7]. Banerjee [10] indicated that the Omega
test is a precise but inefficient method. According to our experiments, the efficiency
and the precision of the interval testing approach are much better than those of the
Power test. Whereas, the interval testing approach shares the same accuracy with the
Omega test but outperforms significantly the Omega test in testing efficiency.

The GDVI test extends the applicable range of the DVI test and, according to the
time complexity analysis, only slightly lowers the efficiency of the DVI test. There-
fore, the GDVI test seems to be a practical scheme to analyze data dependence for
one-dimensional arrays with linear references.

References

[1]1 X. Kong, D. Klappholz, K. Psarris, The direction vector i test, IEEE Transaction on Parallel and
Distributed Systems 4 (11) (1993) 1280-1290.



1144 W.-L. Chang, C.-P. Chu | Parallel Computing 27 (2001) 1117-1144

[2] Z. Shen, Z. Li, P.-C. Yew, An empirical study of Fortran programs for parallelizing compilers, IEEE
Transaction on Parallel and Distributed Systems 1 (3) (1992) 356-364.
[3] U. Banerjee, in: Dependence Analysis for Supercomputing, Kluwer Academic Publishers, Dordrecht,
1988.
[4] M. Wolfe, C.-W. Tseng, The power test for data dependence, IEEE Transaction on Parallel and
Distributed Systems 3 (5) (1992) 591-601.
[5] R. Triolet, F. Irigoin, P. Feautrier, Direct parallelization of call statements, in: Proc. SIGPLAN
Symp. Compiler Constructiton, Palo Alto, CA, 1986, pp. 176-185.
[6] M. Wolfe, in: High Performance Compiler for Parallel Computing, Addison-Wesley, Reading, MA,
1996.
[7] W. Pugh, A practical algorithm for exact array dependence analysis, Communication of the ACM 35
(8) (1992) 102-114.
[8] B.J. Smith, in: Matrix Eigensystem Routines — Eispack Guide, Springer, Heidelberg, 1976.
[9] W. Blume, R. Eigenmann, Performance analysis of parallelizing compilers on the perfect benchmark®
programs, IEEE Transaction on Parallel and Distributed Systems 3 (6) (1992) 643-656.
[10] U. Banerjee, in: Dependence Analysis, Kluwer Academic Publishers, Norwell, Massachusetts, 1997.
[11] W.-L. Chang, C.-P. Chu, The extension of the i test, Parallel Computing 24 (14) (1998) 2101-2127.
[12] J. Dongarra, M. Furtney, S. Reinhardt, J. Russell, Parallel loops — a test suite for parallelizing
compilers: description and example results, Parallel Computing 17 (1991) 1247-1255.
[13] J.M. Levesque, J.W. Williamson, in: A Guidebook to Fortran on Supercomputing, Academic Press,
New York, 1989.
[14] D. Levine, D. Callahan, J. Dongarra, A comparative study of automatic vectorizing compilers,
Parallel Computing 17 (1991) 1223-1244.
[15] X. Kong, D. Klappholz, K. Psarris, The i test, IEEE Transaction on Parallel and Distributed Systems
2 (3) (1991) 342-349.
[16] U. Banerjee, in: Loop Transformations for Restructuring Compilers: The Foundations, Kluwer
Academic Publishers, Dordrecht, 1993.



