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Abstract

In this paper our main purpose is to givelecularsolutions for the subset-sum problem. In order to achieve this, we propose
a DNA-based algorithm of am-bit parallel adder and a DNA-based algorithm ofrebit parallel comparator to formally verify
our designed molecular solutions for the subset-sum problem.
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1. Introduction

Through advances in molecular biolog®iiden,
1994, itis now possible to produce roughly fDNA
strands that fit in a test tube. Those®d ONA strands
can also be applied for representing!d®its of in-
formation. Basic biological operations can be used to
simultaneously operate ®bits of information. Or
we can say that #8 data processors can be executed
in parallel. Hence, it becomes obvious that biological
computing can provide a huge parallelism for dealing
with problems in the real world.

Feynman first proposed molecular computation in
1961, but his idea was not implemented by experi-
ment for a few decades. ldleman (1994succeeded
to solve an instance of the Hamiltonian path prob-
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lem in a test tube, just by handling DNA strands.
Lipton (1995)demonstrated that the Adleman tech-
niques could be used to solve the satisfiability prob-
lem (the first NP-complete problem). Adleman and
co-authors Roweis et al., 1999proposedstickerfor
enhancing the Adleman-Lipton model.

In this paper, first we usstickerto construct so-
lution spaces of DNA strands for thsubset-sum
problem. Then by using biological operations in the
Adleman—Lipton model, we develop a DNA-based al-
gorithm of parallel adder and a DNA-based algorithm
of parallel comparative operator for finishing the func-
tions of add and comparative instructions. We also
show that the subset-sum problem is solved by us-
ing the biological operations in the Adleman-Lipton
model for the sticker solution space. Furthermore, this
work presents clear evidence of the ability of molecu-
lar computing to solve the NP-complete problem with
mathematical operations.

The paper is organized as followSection 2in-
troduces the Adleman—Lipton model in detail then
this model is compared with other mode&ection 3
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introduces the DNA program to solve the subset-sum
problem for the sticker solution space. Section 4

the experimental results by simulated DNA comput-
ing are given. Conclusions and future research work
are drawn inSection 5

2. DNA model of computation
2.1. The Adleman-Lipton model

A deoxyribonucleic acid (DNA) is a polymer, which
is strung together from monomers call&koxyri-
boNucleotide¢Sinden, 1994; Paun et al., 1998is-
tinct nucleotides are detected only with their bases.
These bases are abbreviatedfa<s, C and T. Two
strands of DNA can form (under appropriate condi-

tions) a double strand, if the respective bases are the

Watson—Crick complements of each othekatches
T and C matchesG; also 3 end matches’Zend. The
length of a single stranded DNA is the number of nu-
cleotides comprising the single strand. Thus, if a single

stranded DNA includes 20 nucleotides, we can say that

itis a 20 mer (itis a polymer containing 20 monomers).
The length of a double stranded DNA (where each nu-
cleotide is base paired) is counted in the number of

base pairs. Thus, if we make a double stranded DNA

from a single stranded 20 mer, then the length of the
double stranded DNA is 20 base pairs, also written
20 bp. (For more discussions of the relevant biological
background refer t&inden, 1994; Boneh et al., 1996;
Paun et al., 1993

In the Adleman-Lipton modelAdleman, 1994;
Lipton, 1995, splints were used to construct the

corresponding edges of a particular graph of paths,

which represented all possible binary numbers. As it
stands, their construction indiscriminately builds all
splints that lead to a complete graph. This is to say
that hybridization has a higher probability of errors.
Hence, Adleman and co-authoRdweis et al., 1999

proposed the sticker-based model, which was an ab-

stract of molecular computing based on DNA with

a random access memory as well as a new form of

encoding the information.

The DNA operations in the Adleman—Lipton model
(Adleman, 1994, 1996; Lipton, 1995; Boneh et al.,
1996 are described below. These operations will be
used for finding solutions of the subset-sum problem.
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2.1.1. The Adleman—Lipton model

A (test) tube is a set of molecules of DNA (i.e. a
multi-set of finite strings over the alphabfA, C, G,
T}). A simple notation is used to explain the various
operations to be performed on DNA. Given a stri{g
over the alphabefA, C, G, T}, 14X is denoted as the
single stranded DNA which is made up of the letters
of X oriented from the 5end to the 3end (the first
letter of X is on the 5 end). | X is denoted as the
Watson—Crick complement of the stran&. When
I X and+tX anneal to each other they form a double
strand which we denote byX. If given a tube, one
can perform the following operations:

1. Extract Given a tubeP and a short single strand
of DNA, S produces two tubes(P, S and —(P,

S, where+(P, 9 is all of the molecules of DNA

in P which contain the stranfias a sub-strand and
—(P, 9 is all of the molecules of DNA ir® which

do not contain the short strar®l

Merge Given tubesP; and Py, yield U(P1, P2),
whereU(P1, P;) = P1 U Pp. This operation is to
pour two tubes into one, without any change in the
individual strands.

Detect Given a tubeP, if P includes at least one
DNA molecule we have ‘yes,” and B contains no
DNA molecule we have ‘no.’

Discard Given a tubeP, the operation will discard
the tubeP.

Amplify. At times we need to make copies of all
the DNA strands in a test tube. This can be done
with a straightforward application of the poly-
merase chain reaction (PCR). PCR is a process
that uses DNA polymerase to make many copies
of a DNA sequence. PCR works in the following
way. If we have the duple4XYZ we first melt

it to form +XYZ and | XYZ To this solution we
add the primer oligog Z and 1 X, which anneals

to form the partial duplexe$XY$Z and $X|YZ
DNA polymerase can then elongate the primers to
create full duplexes of the formpXYZ Note that
we now have two copies of our original strand. If
we just repeat this process, we will again double
the number of copies of the original strand in so-
lution. Soon we will have 4 copies, then 8, then
16, and so on, until we have enough copies for
our purposes. Thus, if we can guarantee that the
primer sequences that we use occurs on the ends

2.

3.

4.

5.
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of every strand, and only on the ends, then we can DNA strands for solving this problem i€2(Quyang
use PCR to duplicate every strand in the test tube. et al., 1997. Shin et al. (1999presented an encoding
We call this operatiomPAmplify. Given a tubeP, scheme for decreasing the error rate of hybridization.
the operationAmplify(P, P1, P2) will produce two This method §hin et al., 199Pcan be employed to-
new tubesP;andP, such that tubé; is a copy of wards ascertaining the traveling salesman problem for
tubeP, tubeP; is also a copy of tub® (which are representing integers and real values with fixed-length
now identical) and tub® becomes empty tube. codesArita et al. (1997)andMorimoto et al. (1999)
6. AppendGiven a tubé® containing a short strand of  proposed a new molecular experimental technique and
DNA, Z, the operation will append the short strand, a solid-phase method to find a Hamiltonian patimos
Z, onto the end of every strand in the tuBe (1997) proposed a parallel filtering model for resolv-
7. Read Given a tubeP, the operation is used to de- ing the Hamiltonian path problem, the sub-graph iso-
scribe a single molecule, which is contained in tube morphism problem, the 3-vertex-colorability problem,
P. Even if P contains many different molecules the clique problem and the independent-set problem.
each encoding a different set of bases, the opera- These methodsAfita et al., 1997; Morimoto et al.,
tion can give an explicit description of exactly one 1999; Amos, 1997have lowered the error rate in real
of them. molecular experiments.
In articles Reif et al., 2000; LaBean et al., 2000,
2.2. Other related work and comparison with the 2003, the methods for DNA-based computing by

Adleman-Lipton model self-assembly required the use of DNA nanostructures
called tiles to have efficient chemistries, expressive
Based on solution space splintin the Adleman— computational power, and convenient input and output

Lipton model, their methods\arayanan and Zorbala, (I/O) mechanisms. DNA tiles have lower error rate in

1998 Chang and Guo, 2002a,b,gcbuld be applied  self-assemblyGarzon and Deaton (199ttroduced

towards solving the traveling salesman problem, the a review of the most important advances in molecular

dominating-set problem, the vertex cover problem, computing.

the cliqgue problem, the independent-set problem, Adleman and co-author&kpweis et al., 1999pro-

the three-dimensional matching problem and the posed a sticker-based model to enhance the error rate

set-packing problem. The methods used for resolving of hybridization in the Adleman-Lipton model. Their

problems have exponentially increased volumes of model can be used for determining solutions of an

DNA and linearly increased the time. instance in the set cover probleferez-Jimenez and
Bach et al. (1996)proposed anl.89* volume, Sancho-Caparrini (2008mployed the sticker-based

O@? + m?) time molecular algorithm for the 3- model Roweis et al., 1999to resolve knapsack

coloring problem and a 1.31volume, O(2m?) time problems. In our previous workChang and Guo

molecular algorithm for the independent set prob- (2003) Chang et al. (2003)also employed the

lem, wheren andm are, subsequently, the number of sticker-based model and the Adleman-Lipton model

vertices and the number of edges in the problems re- for dealing with the dominating-set problem and the

solved.Fu (1997)presented a polynomial-time algo- set-splitting problem for decreasing the error rate of

rithm with a 1.497 volume for the 3-SAT problem, a  hybridization.

polynomial-time algorithm with a 1.345volume for

the 3-coloring problem and a polynomial-time algo-

rithm with a 1.22% volume for the independent set. 3. Molecular solutionsfor the subset-sum problem

Though the size of those volumeBu, 1997; Bach

et al., 1999 is lower, constructing those volumes is 3.1. Definition of the subset-sum

more difficult and the time complexity is higher. problem
Quyang et al. (1997%howed that enzymes could
be used to solve the NP-complete clique problem. Be- ~ Assume that a finite s&is {sy, ..., §;}, wheres,,

cause the maximum number of vertices that they can is themth element for 1< m < ¢. Also suppose that
process is limited to 27, the maximum number of every element irSis a positive integer. Assume that
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|[§ is the number of elements Band § is equal to Proof. Assume thatTp, Ty and T, are distinct test

0. The subset-sum problem f&is to find a subset tubes but onlyT; and T, are empty. The algorithm,

§1 c § such that the sum of every elementhis ex- Init(To, g), is implemented via thamplify, append

actly b, whereb is a positive integer. The subset-sum andmergeoperations. Each time Step 1(a) is used to

problem has been proved to be the NP-complete prob- amplify tubeTp and to generate two new tubdg,and

lem (Cormen et al., 2003; Garey and Johnson, 1979; T,, which are copies ofy. Tube Ty becomes empty.

Cook, 1971; Karp, 1972 Then, Step 1(b) is applied to append a DNA sequence
In Eq. (1) afinite seSis {1, 2} and any given pos-  (sticker), representing the value “1” fag,, onto the

itive integerb is 3. Four subsets & are, respectively, end of every strand in tub&;. This is to say that

@, {1}, {2} and{1, 2}. Since the sum of the first el-  subsets containing theth element appear in tubl.

ement and the second element{ihy 2} is equal to 3, Step 1(c) is also employed to append a DNA sequence

the solution of the subset-sum problem &is {1, 2}. (sticker), representing the value “0” fag,, onto the
end of every strand in tub&. That implies that sub-
§={1,2}andb =3 (1) sets not containing theth element appear in tube.

Next, Step 1(d) is used to pour tufie and T, into
The above equation contains finite set and the given tybe T,. This indicates that DNA strands in tufig
positive integer of our problem. include DNA sequences of, = 1 andx,, = 0. Af-

ter repeating execution of Steps 1(a)-1(d), it finally
3.2. Sticker-based solution space for subsets of a  produces tubd that consists of 2 DNA sequences

finite set representing 2 possible subsets. Therefore, it is in-
ferred that sticker-based solution space fbpassible
Assume thati, ..., X, is ag-bit binary number, subsets of aj-element se& can be constructed with
which is applied to represent elements in a finite ~ Sticker.
setS Stickerin a sticker-based modeRpweis et al., From Init(To, g), it takesq amplifyoperations,

1999; Braich et al., 2003s a 15-base value sequence. ¢ appendoperations,q mergeoperations and three
For every bitx,, representing thenth element inS test tubes to construct sticker-based solution space. A
to 1 < m < ¢, two distinct 15-base value sequences d-bit binary number corresponds to a subset. A value
were designed. One represents the value “0”Xgr sequence for every bit contains 15 bases. Therefore,
and the other represents the value “1” fr. For the the Iength of a DNA strand, encoding a subset, ix15
sake of convenience in our presentation, assume thatg¢ bases consisting of the concatenation of one value
xL denotes the value of, to be 1 and?, defines the ~ sequence for each bit. O
value ofx,, to be 0. The following algorithm is used to

construct sticker-based solution space fépdssible 3.3. Sticker-based solution space for elements of

subsets of @-element se&. subsets for a finite set
Procedure Inif{o, d) An element,s,, in a g-element finite seS can be
(1) Form =1toq converted as a binary numbey, 1, ..., Sy.., USing
(1a) Amplify(To, T11, T2). a digital computers,, ,, is the highest order bit and
(1b) AppendTy, x6,). Sn.1 is the lowest order bitStickeris applied to rep-
(1c) AppendTz, x,,)- resent every bis, ; for 1 < k < n. For every bit
(1d) To = U(T1, T2). sx.k two distinct DNA sequences were designed. One
EndFor corresponds to the value “0” fas,, ; and the other
EndProcedure corresponds to the value “1” fas, ;. For the sake

of convenience in our presentation, assume t[l;@t
Lemmal. Sticker-based solution space2ffpossible  denotes the value &, ; to be 1 andrgl’k defines the
subsets for a g-element set S can be constructed withvalue ofs,, ; to be 0. The following algorithm is em-
sticker in a sticker-based model from the algorithm ployed to construct sticker-based solution space for
Init(To, Q). elements of 2 possible subsets togelement sef.
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Procedure Valudp, g, n)
(1) Form =1toq
(1a) Ty = +(To, x}) and T2 = —(To, x1).
(1b) Fork =1ton
(1c) AppendTy, Sy .k)-
(1d) AppendTy, 59, ,)-
EndFor
(1e) To = U(T1, T2).
EndFor
EndProcedure
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consists of the strands for encoding elements 6f 2
possible subsets forgelement sef.

From Value(y, q, n), it takesq extractoperations,
2 x n x g appendoperations,q merge operations
and three test tubes to construct sticker-based solu-
tion space for elements of?2possible subsets to a
g-element seS A g-bit binary number corresponds
to a subset and an-bit binary number encodes the
size of an element its. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encoding elements of ossible subsets for a

Lemma 2. Sticker-based solution space of elements g-element se§, is 15x (¢ +n) bases consisting of the
for 29 possible subsets of a g-element set S can beconcatenation of one value sequence for each hit.

constructed with sticker in a sticker-based model from

the algorithm Value(To, g, n).

Proof. Assume thaflg is generated from the algo-
rithm, Init(To, g), and contains those DNA strands cor-
responding to 2 possible subsets to gelement set
S The algorithm, Valuélp, g, n), is implemented via
theextract appendandmergeoperations. Step 1 is the

3.4. Parallel adder for computing the sum of elements

Assume that(g+ 1) x n) one-digit binary numbers,
Yu, are used to represent the sumgoélements inS
forl < w < ((g+1) x n). Also supposeq x (n+ 1))
one-digit binary numberg,, are applied to represent
the carry of the sum fog elements ofSto 1 < a <

outer loop and is employed to construct sticker-based (¢ x (n + 1)). Assume that. ..y, is employed to
solution space. When the first execution of Step 1(a) denote the initialized value of the sum for finishing

uses theextractoperation to form two test tubesy
and T,. The first tubeT; includes all of the strands
that havex; = 1, that is to say, the first element in
S occurs in tubeT;. The second tub&; consists of
all of the strands that havg = 0, this is to say that
the first element irfs does not appear in tubie. Step

the addition of every element i& Also suppose that
Y- xn+j - - - Yixn iS applied to denote the intermedi-
ate value of the sum to finish the addition of every el-
ement inSfor2 <i < g and 1< j < n. Assume that
Ygxn+j - - - Yg+1 xn IS €mployed to denote the final re-
sult of the sum to finish the addition of every element

1(b) is the inner loop and is mainly used to encode the in Sfor 1 < j < n. Also suppose thaf,—1)x (u+1)+1
size of an element onto the tail of those DNA strands is used to define the initialized value of the carry for
containing the element. On the first execution of Step finishing the addition of every element Bifor 1 <

1(c), it uses theppendoperation to append 15-based
DNA sequences for representing the value 1spf

or representing the value 0 sf 1 onto the tail of ev-
ery strand inT1. Next, the first execution of Step 1(d)
also applies thappendoperation to append 15-based
DNA sequences for representing the value Ospf
onto the tail of every strand i,. Repeat execution
of Steps 1(c)-1(d) until every bit in the first element
in Sis processed. Tubg, contains the strands encod-
ing the size of the first element. Tube includes the
strands encoding the value 0 sf; for 1 < k < n.
Then Step 1(e) uses tmeergeoperation to pour two
tubesT; andT; into tubeTy. TubeTy currently con-

b < g. Assume that p—1)x (n+1)+c - - - Zbx (n+1) IS €M-
ployed to define the intermediate value of the carry
to finish the addition of every element Bifor 1 <
b<gqg—1and 2< ¢ < n+ 1. Also suppose that
Z(g—Dx@+D+c - - - Zgx(n+1) 1S used to define the final
result of the carry for finishing the addition of every
elementinSto2<c<n+ 1.

Stickeris employed to encode every i}, andz,
forl<w=<((g+D xn)and1l<a < (g x (n+1)).
For every bity,, two distinct DNA sequences were de-
signed. One corresponds to the value “0” fgr and
the other corresponds to the value “1” fgy. Simi-
larly, there also are twdistinct DNA sequences de-

sists of the DNA sequences encoding the size of the signed for every bitz,. One corresponds to the value

first element and the value 0 sf ; for 1 < k < n.
Similarly, after other elements are processed, {lipe

“0” for z, and the other corresponds to the value “1”
for z,. For the sake of convenience in our presentation,
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assume thay!l denotes the value of,, to be 1 and
yg defines the value of,, to be 0. Similarly, suppose
that z1 contains the value of, to be 1 andz con-
tains the value of, to be 0. The following algorithm

is proposed to finish the function of a parallel adder
for computing the sum of elements to b& @ossible
subsets of @-element se&.

Procedure ParallelAddérd, g, n)
(1)) Forj=1ton
(1a) AppendTo, y9).
EndFor
(2) Fori=1toq
(22) Appendlo, z_y). (41)41)-
Forj=1ton
(2b) Ty = +(To, s ) and Tz = —(To, s} ).
(20) T3 = +(T1. 261 (uy1)1 ) @NdTa =
~(T4 T 1)y
(2d) Ts = +(T2, 2§, 1), (u114,) @NdTo =
—(T2, Z(11'—1)X(n+1)+j)'
(2€) T7 = +(T3, Yj;_1yxny,) @Nd Tg =
—(Ts, y(li—l)xn+j)'
(2f) To = +(Ta, ¥;_1),ny,) @nd T1o =
—(Ta, y(li—l)xn+j)'
(29) T1 = +(Ts, y(l,-_l)x,lﬂ) and 71
~(T5, Y_1yny -
(2h) T1is = +(Te, ¥j;_1yxny,) @Nd Tra =
=T, Y—1yxn))-
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computing the sum of elements2bpossible subsets
of a g-element set. S

Proof. Assume thafly is generated from the algo-
rithm, Value{To, g, n), and contains the DNA strands
corresponding to the elements of Bossible subsets
for g-element sef The algorithm, ParallelAddeFg,
g, n), is implemented via thextract appendand
mergeoperations. Step 1 is the first loop and is mainly
employed to set the initialized value of the sum épr
elements inS. When the first execution of Step 1(a)
uses theappendoperation to append 15-based DNA
sequences for representiw@ onto the tail of every
strand inTp. This is to say that the first bit of the ini-
tialized value for the sum is set to zero. Repeating ex-
ecution of Step 1(a) until every bit of the initialized
value for the sum is processed. Tubgcontains the
strands encoding the initialized value of the sum.
Step 2 is the second loop and is mainly used to finish
the function of a parallel adder. On the first execution
of Step 2(a), it uses thappendoperation to append
15-based DNA sequences for encodirfyonto the
tail of every strand inTp. This implies that the first
bit of the initialized value for the carry is also set to
zero. When the first execution of Step 2(b) employs
the extract operation to form two test tube3; and
T,. The first tubeT; includes all of the strands that
havesi 1 = 1. The second tub&, consists of all of
the strands that hawg 1 = 0. On the first execution
of Step 2(c), it uses thextractoperation to form two

(2i) Append((7. 7., ;) and Appendl7, i 1), s 1)1 (j41)-
(2i) Append(Ts. 7., ;) and Appendls, 2§ 1), (4 1)4(41)-
(2K) Append(s, yP,,,, ;) and Append, z{,_). (1 11)+(j+1)-
(2) Append(io, ¥}, ) and Append(io, 20 1) (ui1)1(j+1)-
(2m) Append(is, 37,4 ;) @nd ApPendlis, 21, i)+ (j+1)-
(2n) Append(iz, v}, ;) and Appendliz, 201, 41y 1(j+1)):
(20) Append(ia, v}, ;) and Append(is, 201, w11+ (j11):
(2p) Append(is. Y., ) and Append(ia. z0_y,, . 1)4(j+1)-

(20)To = U(T7, Tg, To, T10, T11, T12, T13, T14).
EndFor
EndFor
EndProcedure

Lemma 3. The algorithm ParallelAdderTo, g, n) can
be applied to finish the function of a parallel adder for

test tubesT3z and T4. The first tubeTls includes all of
the strands that havg 1 = 1 andz; = 1. The second
tubeT, consists of all of the strands that havg = 1
andz; = 0. Next, the first execution of Step 2(d) uses
theextractoperation to form two test tube®; andTs.
The first tubeTs includes all of the strands that have
s1,1 = 0 andz1 = 1. The second tub&g consists of
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all of the strands that hawe 1 = 0 andzg; = 0. On the
first execution of Step 2(e), it uses thetractopera-
tion to form two test tubest; andTg. The first tubely
includes all of the strands that have; =1,z1=1
andy; = 1. The second tub&g consists of all of the
strands that have; 1 = 1, z1 =1 andy; = 0. Then,
on the first execution of Step 2(f), it applies #ract
operation to form two test tube$y andT1g. The first
tube Ty includes all of the strands that have; = 1,
z1 = 0 andy; = 1. The second tub&; g consists of all
of the strands that hawg 1 = 1,z1 =0 andy; = 0.
On the first execution of Step 2(g), it employs e
tract operation to form two test tube3;1 and Ty».
The first tubeT4 includes all of the strands that have
s1.1 = 0,z1 = 1andy; = 1. The second tubg» con-
sists of all of the strands that have; = 0,z1 = 1 and
y1 = 0. Next, on the first execution of Step 2(h) uses
the extractoperation to form two test tube3is and
T14. The first tubeTy3 includes all of the strands that
haves; 1 = 0,z1 = 0 andy; = 1. The second tubg 4
consists of all of the strands that hawe = 0,z1 =0
andy; = 0.

Next, the first execution of Step 2(i) uses the-
pend operations to appen(j#rl and z% onto the
tail of every strand inT7. On the first execution of
Step 2(j), it applies theappendoperations to ap-
pendy? ; and zJ onto the tail of every strand in
Tg. Then, the first execution of Step 2(k) employs
the appendoperations to append? , and z} onto
the tail of every strand infg. On the first execu-
tion of Step 2(l), it uses th@ppendoperations to
appendy}l 41 and zg onto the tail of every strand
in T1o. Next, the first execution of Step 2(m) uses
the appendoperations to append? , and z} onto
the tail of every strand iff17. On the first execu-
tion of Step 2(n), it uses thappendoperations to
appendy}l 41 and zg onto the tail of every strand in
T12. Then, the first execution of Step 2(0) applies
the appendoperations to appengﬁﬂ and zg onto
the tail of every strand inf13. On the first execu-
tion of Step 2(p), it employs thappendoperations
to appendy,? 41 and zg onto the tail of every strand
in T14. Next, the first execution of Step 2(q) applies
the merge operation to pour tube3; through T14
into To. Repeat execution of Steps 2(a)-2(q) until
every bit of g elements inS is processed. Tub&g
contains the strands encoding the sungalements
in S
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From ParallelAddefp, g, n), it takes (7x n x q)
extractoperations, { + ¢ + 16 x n x ¢) appendop-
erations, £ x g) mergeoperations and 15 test tubes
to compute the sum of elements fof possible sub-
sets of ag-element seB. A g-bit binary number cor-
responds to a subset. Anrbit binary number encodes
the size of an element i ((¢ + 1) x n) bits corre-
spond to the sum of elementg. x (n + 1)) bits en-
code the carry of the sum. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encoding the final result of the sum for ele-
ments of 2 possible subsets togelement sef is
15x (g+n+(g+1) xn+qgx (n+ 1)) bases con-
sisting of the concatenation of one value sequence for
each bit. O

3.5. Parallel comparator for comparing the sum of
elements for subsets of a finite set with any given
positive integer

Any given positive integel, can be represented as
none-bit binary numbersy,+; for 1 < j < n, using
a digit computer. This is to say that the same sticker
is used to encode and the final result of the sum for
elements of 2 possible subsets to@element set
The main advantage is to reduce the complexity of the
DNA algorithm for constructing a parallel comparator.
MakeValue(y, q, n) is proposed to construct a DNA
strand for encodindp. OneBitComparatof, T, d,
n, j) is presented to finish the function of a parallel
comparator for one bit and ParallelComparaler@,
n) also is proposed to finish the function of a parallel
comparator for comparing the sum of elements %o 2
possible subsets of @element seS with b.

Procedure MakeValugg, g, n)
(1) Forj=1ton
(1a) Append(s, Ygxn+)-
EndFor

Lemma 4. Sticker-based solution space of any
given positive integer b can be constructed with
sticker in a sticker-based model from the algorithm
MakeValue(y, g, n).

Proof. The algorithm, MakeValudy, g, n), is imple-
mented via th@ppendoperation. The only loop in the
algorithm is mainly used to construct a DNA strand
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for any given positive integen. Each time Step 1(a)

is used to append a DNA sequence (sticker), encod-

ing the value “1” or “0” of y,x,+;, onto the end of
every strand in tubd,. After repeating execution of
Step 1(a), it finally produces tubb, that includes a
DNA strand encodindp. Therefore, it is inferred that
sticker-based solution space for any given positive in-
tegerb can be constructed with sticker.

From MakeValueTy, g, n), it takesn appendpera-

tions and one test tube to construct sticker-based solu-

tion space. Any given positive integecorresponds to

n one-bit binary numbers. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encodindp, is 15 x n bases consisting of the
concatenation of one value sequence for each hit.

Procedure OneBitComparatdg( Ty, g, N, j)

Q) N = +(To, ¥}, ) and TPF =
1

—(To, Y ns j)-

(2) TbON = +(Tbvy;-><n+j) and TbOFF =

—(Tp, y;xn—i-j)-
(3) If (Detect@PN) = ‘yes) then
(3a) If (DetectfN) = ‘yes) then
@Bb) To = UTo, TOY) and T,
U(Tp, TON).
EndIf
Else
(3¢) If (Detect(PF) = ‘yes) then
(3d) To=U(Tp, TPFF) andT,=U(Ty, TO).
EndIf
EndIf
EndProcedure

Lemma5. The algorithm OneBitComparatoilp, Tp,
g, n, j) can be applied to finish the function of a one-bit
parallel comparator

Proof. The algorithm, OneBitComparatdi, T, q,

n, j), is implemented via thextract detectandmerge
operations. When the execution of Step 1 employs
the extractoperation to form two test tubeg™N and
1O, The first tubeTPN includes all of the strands
that havey,x,+; = 1. The second tub&>FF consists

of all of the strands that have,,+; = 0. On the
execution of Step 2, it also uses teetractoperation

to form two test tubesT°N and 72FF. The first tube
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72N includes all of the strands that havg.,+; = 1.
The second tubgPFF consists of all of the strands
that havey,.,+; = 0. Next, the execution of Step 3
uses thaletectoperation to check whether there is any
DNA sequence in tub&°N. If it returns a “yes,” this
indicates that the value of ttjéh bit in b is one. On
the execution of Step 3(a), it uses thetectoperation

to test if there is any DNA sequence in tuig\. If it
returns a “yes,” this indicates that the value of jtie
bit in the sum ofg elements irSis also one. Next, the
execution of Step 3(b) applies theergeoperations to
pour tubes7{PN into To and also to pour tubegN
into Tj,. If the detectoperation in Step 3 returns a “no,”
the execution of Step 3(c) uses tietectoperation to
check whether there is any DNA strand in tulg™".

If it returns a “yes,” this indicates that the value of the
jth bit in the sum ofj elements irSis zero. Then, the
execution of Step 3(d) applies theergeoperations to
pour tubes7OFF into To and also to pour tubeBOFF
into Tp.

From OneBitComparatofg, Ty, g, n, ), it takes two
extractoperations, thredetectoperations, foumerge
operations and six test tubes to finish the function of
a one-bit parallel comparator. O

Procedure ParallelComparaf®g( Ty, g, n)
(Q)Forj=ntol
(1a) OneBitComparatorg, Ty, q, N, j).
(1b) If (Detect{Tg)="no") or (Detect{T,)="n0")
then
(1c) Terminate the execution of the loop.
EndIf
EndFor
EndProcedure

Lemma6. The algorithmParallelComparatorg, Tj,
g, n) can be used to finish the function of an n-bit
parallel comparator

Proof. The only loop is used to implement the
function of ann-bit parallel comparator. When the
first execution of Step 1(a) calls the algorithm,
OneBitComparatofi, Ty, g, N, j), to finish the com-
parative result of the highest order bit for any given
positive integerb and the sum ofy elements inS
On the first execution of Step 1(b), it uses tte-
tect operations to check whether there is any DNA
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sequence inly or Tp. From OneBitComparatorf,

Ty, 0, N, j), if the two highest order bits are not equal,
thenTg and T, are both empty. This means that the
execution of Step 1(c) will terminate the execution of
the loop if the two compared bits are not equal. Oth-
erwise it repeats execution of Steps 1(a)-1(c) until
every bit of the sum fog elements inSis compared
with every bit of b. Tube Tp contains the strands
encoding the sum ofj elements, which is equal
to b.

From ParallelComparatdrg, T, g, n), it takes 2xn
extractoperations, 5 n detectoperations, 4 n merge
operations and six test tubes to finish the function of
ann-bit parallel comparator. O

3.6. A DNA algorithm for solving the subset-sum
problem

Algorithm 1. Solving the subset-sum problem.

(1) Init(To, q).

(2) Value(To, q, n).

(3) ParallelAdderTy, g, n).

(4) MakeValuety, q, n).

(5) ParallelComparatorg, T;, g, n).

(6) If (Detect(Tp) ="“yes”) then
(6a) Read(p).

EndIf

EndAlgorithm

Theorem 1. From those steps ilgorithm 1, the
subset-sum problem foR? possible subsets of a
g-element set S can be solved

Proof. On the execution of Step 1, it calls Iniy,
g). The algorithm, InitTo, ), is mainly used to con-
struct sticker-based solution space féissible sub-
sets of ag-element setS This means that tub&g
includes strands encodindg Dossible subsets. Next,
the execution of Step 2 calls Valug( g, n). The
algorithm, Value{o, g, n), is employed to construct
sticker-based solution space for elements ©passi-
ble subsets. This implies that tulbg contains strands
encoding elements of?2possible subsets. On the ex-
ecution of Step 3, it calls ParallelAdd&g g, n). The
algorithm, ParallelAddef, g, n), is used to finish
the function of a parallel adder for computing the
sum of elements to 2possible subsets. That means
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tube Tp consists of strands encoding the sum of el-
ements for 2 possible subsets. Next, the execution
of Step 4 calls MakeValu@y, g, n). The algorithm,
MakeValue{y, g, n), is applied to construct a DNA
strand for encoding. This indicates that tub€, con-
sists of a strand encodirigy On the execution of Step
5, it calls ParallelComparatdrg, Ty, g, n). The algo-
rithm, ParallelComparatorf, T, g, n), is employed
to finish the function of a parallel comparator for com-
paring the sum of elements with Next, the execution
of Step 6 uses thdetectoperation to check if there
is any DNA strand in tubfy. If it returns a “yes,”
the execution of Step 6(a) applies ttead operation
to find the answer. Therefore, the subset-sum problem
for 29 possible subsets of g@element selS can be
solved from those steps Wlgorithm 1.

The setSand the integeb in Eq. (1)can be applied
for showing the power oflgorithm 1. In Eq. (1) the
finite setSis {1, 2} and the integeb is 3. Four subsets
of Sare, respectivelyg, {1}, {2} and {1, 2}. From
the execution of Step 1 idlgorithm 1, tubeTy is filled
with four library strands. The four library strands are
0(x1 = 0)0(x2 = 0), 1(x1 = DO(x2 = 0),0(x1 =
0)1(x2 = 1) and 1x; = 1)1(x2 = 1). They encode,
respectively tog, {1}, {2} and{1, 2}. Next, from the
execution of Step 2 ilgorithm 1, DNA sequences
encoding the size of the two elements $nare ap-
pended onto the tail of the four library strands in tube
To. The library strand, Oc1 = 0)0(x2 = 0)0(s1,1 =
0)0(s1,2 = 0)0(s21 = 0)0(s22 = 0), encodesz.
The library strand, &xy = 1)0(x2 = 0)1(sy1 =
1)O0(s1.2 0)0(s2,1 = 0)0(s22 = 0), encodes the
size of the element, 1, anfll}. The library strand,
O0(x1 = 0)1(x2 = DO(s1,1 = 0)0(s1,2 = 0)0(s2,1 =
0)1(s22 = 1), encodes the size of the element, 2 and
{2}. The library strand, &1 = D)1(x2 = 1)1(s1.1 =
1O0(s1.2 0)0(s2.1 0)1(s22 = 1), encodes the
values of the two elements, 1 and 2, &rid 2}. From
the execution of Step 3 iAlgorithm 1, since it fin-
ishes the function of a two-bit parallel adder, DNA
sequences encoding the sum of the elements and the
carry of the sum are appended onto the tail of the
four library strands in tub&. Becausez does not
contain any element, its sum is zero. Hence, the li-
brary strand, Qg = 0)0(x2 = 0)0(s1,1 = 0)0(s1,2 =
0)0(s2.1 = 0)0(s2.2 = 0)0(y1 = 0)0(y2 = 0)0(z1
00(y3 = 0)0(z2 = 0)0(ys = 0)0(z3 = 0)0(z4
0)0(y5 = 0)0(zs = 0)0(ys = 0)0(z¢g = 0), encodes
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the sum, 0. The subseftl}, consists of 1, so its sum
is one. Therefore, the library strandx1 = 1)0(x2

0)1(s1,2 = D012 = 00(s21 = 00(s22 =
00(y1 = 0)0(y2 = 0)0(z1 = 0)1(y3 = DO(z2 =
0)0(ys = 0)0(zz3 = 0)0(z4 = 0)1(ys = DO0(z5 =

0)0(ys = 0)0(z¢ = 0), encodes the sum, 1. Sin¢2}
includes 2, its sum is two. Hence, the library strand,
O(x1 = 0)1(x2 = DO(s1,1 = 0)0(s1,2 = 0)0(s2,1
0)1(s2,2 = DO(y1 = 0)0(y2 = 0)0(z1 = 0)0(y3
0)0(z2 = 0)0(ys = 0)0(z3 = 0)0(z4 = 0)0(ys
0)0(zs = 0)1(ys = 1)0(zg = 0), encodes the sum, 2.
The subsef1, 2} includes 1 and 2, so its sum is three.
Thus, the library strand,(; = 1)1(x2 = 1)1(s1,1 =
10(s1,2 = 0)0(s21 = 0)1(s2,2 = 1)0(y1 = 0)0(y2 =
0)0(z1 = 01(y3 = D0(z2 = 0)0(ys = 0)0(z3 =
0)0(z4 = 0)1(ys = 1)0(z5 = 0)1(ys = 1)0(z6 = 0),
encodes the sum, 3. Next, on the execution of Step 4
in Algorithm 1, tubeT, is filled with a library strand,
1(y5 = 1)1(ys = 1). From the execution of Step 5 in
Algorithm 1, tube Ty only includes the library strand,
1(x1 = D1(x2 = DI(s1,1 = 1)0(s1,2 = 0)0(s2.1
0)1(s22 = DO(y1 = 0)0(y2 = 0)0(z1 = 0)1(y3
1)0(z2 = 0)0(y4 = 0)0(zz = 0)0(z4 = 0)1(ys
1)0(zs = 0)1(y¢ = 1)0(z6 = 0). Next, from the ex-
ecution of Step 6 iMAlgorithm 1, it returns a “yes.”
Therefore, the answer igl, 2} from the execution of
Step 6(a) inAlgorithm 1. O

3.7. The Complexity dklgorithm 1

Lemma 7. Suppose that a finite set S{s,...,s;}
and any given positive integer Bhe subset-sum prob-
lem for S and b can be solved with(g x n) bi-
ological operations the Adleman—Lipton model from
sticker-based solution spaosghere n is the number of
bits for representing the size of every element.or b

Proof. Algorithm 1 can be applied for solving the
subset-sum problem f@andb. Algorithm lincludes
six main steps. Step 1 takgamplifyoperations, X g
appendoperations,q mergeoperations. Step 2 uses
2 x n x g appendoperationsg mergeoperations and
extractoperations. Step 3 takes-{¢+16xn x g) ap-
pendoperationsy x ¢ mergeoperations and ¥ n x ¢
extractoperations. Step 4 appliesappendperations.
Step 5 takes 4« n merge operations, & n extract
operations and X n detectoperations. Step 6 takes
onedetectoperation and Step 6(a) takes amad op-
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eration. Therefore, from the statements above, it is
inferred that the time complexity oAlgorithm 1 is
O(g x n) biological operations in the Adleman—Lipton
model from sticker-based solution space. O

Lemma 8. Suppose that a finite set S{sy,...,s;}
and any given positive integer. lfhe subset-sum
problem for S and b can be solved wit(2") li-
brary strands in the Adleman—Lipton model from
sticker-based solution spacehere n is the number
of bits for representing the size of every element.or b

Proof. Refer toLemma 7 O

Lemma 9. Suppose that a finite set S{sy,...,s;}
and any given positive integer Bhe subset-sum prob-
lem for S and b can be solved with(c) tubes in
the Adleman-Lipton model from sticker-based solu-
tion spacewhere c is a constant value

Proof. Refer toLemma 7 O

Lemma 10. Suppose that a finite set S{s;,...,s;}
and any given positive integer Bhe subset-sum prob-
lem for S and b can be solved with the longest library
strand O(15x (g +n+ (g +1) x n+¢q x (n +1))),

in the Adleman-Lipton model from sticker-based so-
lution space

Proof. Refer toLemma 7

4. Experimental results by simulated DNA
computing

From (Roweis et al., 1999; Braich et al., 2003
errors in the separation of the library strands are er-
rors in the computation. This implies that a lower
rate of errors of hybridization is needed in the com-
putation. DNA sequences must be designed to ensure
that library strands have little secondary structure that
might inhibit intended probe-library hybridization.
The design must also exclude DNA sequences that
might encourage unintended probe-library hybridiza-
tion. To help achieve these goals, the seven constraints
for DNA sequences are proposed froBrdich et al.,
2003.
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Table 1
The number of mutations for the block for satisfying the constraints
The number The number The number The number The number The number
of mutations of the block of mutations of the block of mutations of the block
1 1 1 2 1 3
1 4 1 5 1 6
2 7 1 8 1 9
1 10 1 11 9 12
1 13 8 14 2 15
1 16 7 17 9 18

From the first constraint, library strands composed
only of A’s, T's, and C's will have less secondary
structure than those composed A, T's, C's, and
G's (Mir, 1998). From the second constraint, those

long homopolymer tracts may have an unusual sec-

We modified the Adleman progranBiaich et al.,
2003 using a Pentium(R) 4 and 128 MB of main
memory. The operating system used is Window 98
and Visual G-+ 6.0 compiler. The program modified
was applied to generating DNA sequences to solve

ondary structure. The melting temperatures of the the subset-sum problem. Because the source code of

probe—library hybrids will be more uniform if none of
the probe-library hybrids involve long homopolymer
tracts. From the third constraint and the fifth con-
straint, the probes will bind only weakly where they
are not intended to bind. From the fourth constraint
and the sixth constraint, the library strands will have
a low affinity for themselves. From the seventh con-
straint, the intended probe-library pairings will have
uniform melting temperatures.

Table 2
Sequences chosen were used to represent the 18-bits (blocks)

the two functionssrand48() anddrand48() was not
found in theoriginal Adleman program, we used the
standard functiorsrand) in Visual C++ 6.0 to sub-
stitute functionsrand48() and added the source code
for function drand48().

The Adleman program was used to construct each
15-base DNA sequence for every bit of the library.
For each bit, the program generates two 15-base ran-
dom sequences (‘1' and ‘0’) checking to see if the

Bit 5'—3 DNA sequence Bit 5-3 DNA sequence
x(l’ AATTCACAAACAATT x% TCTCCCTATTTATTT
xg ACTCCTTCCCTACTC x% CCACCAAACCTAAAC
94 TCTCTCTCTAATCAT sty CCATCATCTACCTTA
59, ACTCACATACACCAC st CAACCTATTAACTTA
591 CTTCTCCACTATACT 531 CCTAAATCTCCAATA
53, AAACTATCATACTTC 53, CTCTCAACAATCAAA
y(l) TTCAATAAACATTTA y% CCCTCCTTAACACTT
23 TATTTCTCTCCCAAA 3 CACTATCACTAATAC
» TATTAACCCAACTAT v ACTATAAACCATCCA
23 CCTTTCTAACCTTCA 23 TATCTTTCTTTATCA
yg AACCCAAACTTCTCA y% ATCCCATATACCTCT
zg ATTACTATCTATAAT z% TAACCACTCCAACCA
y?1 AAACTCTACATACAC y}l TTTACCCTCATTACT
25 AATTAACAATCATCT k51 AATTCACTTTCTATC
»2 TTACTCTTAACATCT yi CCACCCTCATCCTAT
zg TTAATCAAATCCCTA zé CTCTTAATCTCATTC
yg CCTAAATTTCACTAC yé TTTCTAAACCTCTTC
zg TCCCCACACATTACC % ATAAATCCCTTAAAT
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library strands satisfy the seven constraints with the Table 3

new DNA sequences addelraich et al., 2008 If the The energy for binding of each probe to its corresponding region
constraints are satisfied, the new DNA sequences are?" 2 ibrary strand

‘greedily’ accepted. If the constraints are not satisfied Bit Enthalpy energyl) Entropy energy$ Free energy )

then mutations are introduced one by one into the new ;1= 1,4 4 209.4 25
block until either: (A) the constraints are satisfied and 0 1975 278.6 24.3
the new DNA sequences are then accepted or (B) a % 114.3 2012 271
threshold for the number of mutations is exceeded and 2 1091 279 25.9
the program has failed and so it exits, printing the se- sh, 1052 270.5 244
quence found so far. Ij4-n+(g+1) xn+g x (n+1)) O, 973 2523 221
bits that satisfy the constraints are found then the pro- S%’Z 108.4 286.3 226
gram has succeeded and it outputs these sequences. o~ g, 7 239.8 228

Making mutations in a new block of the Adleman si’z 111.1 288.3 25
program picks one of the 15 positions for the mutation sé'i 101.9 266 224
at random. This means that many mutations may have st, 1013 258 241
nothing to do with the reason that a particular block g, 1021 269.7 214
does not satisfy the chosen constraints, and many mu- vo1141 2021 26.8
tations may be made without effect. However, making o 1075 282.2 229
a single base mutation for a new block in the Adleman A 966 255.3 201
program may actually be the only path to satisfy the O 1112 285 26.1
constraints. This is to say that the rate of mutations can ,ﬁ 107.4 2775 244
be enhanced and DNA sequences satisfying the con- yO 1111 292 237
straints can be found in a reasonable amount of time. 5 103.8 2726 223
Therefore, from the Adleman program, a lower rate of 5 1113 285.7 25.9
mutations and a lower rate of errors of hybridization 3 109.9 2841 25 2
can be simultaneously achieved. 5 109.8 978.2 6.6

Consider the finite sesand any given positive in-  ; 1075 269.6 6.8
tegerb in Eq. (1) The finite seSis {1, 2}. The value 5 1043 2836 los
for b is three. The number of mutations for DNA se- 3 oo 285 5 45
guences, satisfying the constraints, is showFable 1 5 97'6 255'8 20 '9
DNA sequences generated by the modified Adleman 7 10423 273' 22:7
program are shown ifable 2 With the nearest neigh- 0 1053 2755 229
bor parameters, the Adleman program was used to cal- y‘l 1121 2828 278
culate the enthalpy, entropy, and free energy for the vg 1013 266.6 215
binding of each probe to its corresponding region on a "7 102'1 266' 22 '7
library strand. The energy used was showiiaible 3 5 112'4 2915 25'3
Only G really matters to the energy of each bit. For 3 109'2 283'7 24'4
example, the delta G for the probe binding a ‘1’ in the " 108' 282'9 23'3
first bit is 25 kcal/mol and the delta G for the probe "} 118.7 313' 25'2
binding a ‘0’ is estimated to be 24.3kcal/mol. The 8 110'2 2753 27'9
program also figured out the average and standard de-° : ' '
viation for the enthalpy, entropy and free energy over Table 4

all probe/library strand interactions. The energy levels
are shown inTable 4

The Adleman program was employed for comput- Enthalpy ~ Entropy Free
ing the distribution of the different types of potential A efoe;gés) er;r?;;g en;ggeil
m|shybr|q|zat|qn§. T_he d|_str|but|on of the types of po- sfﬁﬁzgafd deviation 5.47827 14.0834 2.09149
tential mishybridizations is the absolute frequency of a

The energy over all probe/library strand interactions
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probe-strand match of lengktfrom 0 to the bit length operations can be performed on a DNA-based com-
15 (for DNA sequences) where probes are not sup- puting.
posed to match the strands. The distribution was, sub-  Any multiplication operation can be accomplished
sequently, 628, 1492, 3124, 5517, 7719, 8125, 6623, through many addition operations. We proposed an
4264, 2115, 842, 253, 54, 1, 0, 0 and 0. It is pointed n-bit parallel adder to implement theddition oper-
out from the last three zeros that there are 0 occur- ation. This indicates that it seems to be reasonable
rences where a probe matches a strand at 13, 14 orfor extending am-bit parallel adder to finish multi-
15 places. Hence, the number of matches peaks at Splication operation. Simultaneously, this implies that
(8125). That is to say that there are 8125 occurrencesNP-complete problems with multiplication operations
where a probe matches a strand at 5 places. can be solved. In the future, our primary work is to
solve other outstanding NP-complete problems with
multiplication operations that were irresolvable us-
5. Conclusions and future research work ing the Adleman—Lipton model and the sticker-based
model.
The proposed algorithnmA{gorithm 1) for solving
the subset-sum problem is based on biological oper-
ations in the Adleman-Lipton model and the solu-
tion ,SPace of sFlckers in the sticker-based model. This Adleman, L., 1994. Molecular computation of solutions to
modified algorlthm has several ac_Jvantages from the " compinatorial problems. Science 266, 1021-1024.
Adleman—Lipton model and the sticker-based model. Adleman, L.M., 1996. On constructing a molecular computer. DNA
First, the proposed algorithm actually has a lower  based computers. In: Lipton, R., Baum, E. (Eds.), DIMACS:
rate of errors for hybridization after we modified the Series in Discrete Mathematics and Theoretical Computer
Adl t t d DNA Science. American Mathematical Society, pp. 1-21.
eman prqgram 0 gen.era € goo : sequences Amos, M., 1997. DNA Computation. Ph.D. Thesis, Department
for constructing the solution space of stickers to the  of computer Science, The University of Warwick.
subset-sum problem. The basic biological operations Arita, M., Suyama, A., Hagiya, M., 1997. A heuristic approach
in the Adleman—Lipton model were employed to fin- for Hamiltonian path problem with molecules. In: Proceedings
: ; i of Second Genetic Programming (GP-97), pp. 457-462.
ish the function Qf am-bit parallel adder and ,the Bach, E., Condon, A., Glaser, E., Tanguay, C., 1996. DNA models
function of ann-bit parallel comparator for _SOlV'mg ) and algorithms for NP-complete problems. In: Proceedings of
the subset-sum problem. Secondly, the basic biologi-  the 11th Annual Conference on Structure in Complexity Theory,
cal operations in the Adleman—Lipton model had been  pp. 290-299. _
performed in a fully automated manner in their lab. Boneh, D., Dunworth, C., Lipton, R.J,, Sgall, J., 1996. On
The full automation manner is essential not only for the computational Power of DNA. In: Discrete Applied
- y Mathematics, Special Issue on Computational Molecular
the speedup of.computanor) but also for.error—free Biology, vol. 71, pp. 79-94.
computation. Thirdly, inAlgorithm 1 for solving the Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D.,
subset-sum prob'em, the number Of tubeS, the |Ongest Chely_apov,_ _N., Leonard, M., 2003. Adleman. Solution of
Iength of DNA Iibrary strands. the number of DNA li- a satisfiability problem on a gel-based DNA computer. In:
b d dth b ’ f biological . Proceedings of the Sixth International Conference on DNA
rary St.ran s and the number of biological operations, Computation in the Springer-Verlag Lecture Notes in Computer
respectively, are @f, O(15x (g+n+(g+1) xn+ Science Series.
g x (n + 1))), O(2") and Og x n). This implies that Chang, W.-L., Guo, M., 2002a. Solving the dominating-set problem
the proposed algorithm can be easily performed ina in Adleman-Lipton’s model. In: The Third Int(_ernational_
fully automated manner in a lab. Furthermore, this pre- ~ conference on Parallel and Distributed Computing, Appli-
. . cations and Technologies, Japan, pp. 167-172.
Semed algorithm gengrate§ Hbrary strands, which  chang, w.-L., Guo, M., 2002b. Solving the clique problem and the
satisfy the constraints irBfaich et al., 2008and cor- vertex cover problem in Adleman—Lipton’s model. In: IASTED
respond to?2 possible solutions. This allows the pro- International Conference, Networks, Parallel and Distributed
posed algorithm to be applied to a larger instance of _ Processing, and Applications, Japan, pp. 431-436.
the subset-sum problem. Fourthly. sincerabit par- Chang, W.-L., Guo, M., 2002c. Solving NP-complete problem
p . ' Y' p in the Adleman-Lipton model. In: The Proceedings of
allel adder can be implemented in a fully automated 2002 International Conference on Computer and Information
manner in a lab, this seems to imply that mathematical  Technology, Japan, pp. 157-162.
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