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Abstract

In this paper our main purpose is to givemolecularsolutions for the subset-sum problem. In order to achieve this, we propose
a DNA-based algorithm of ann-bit parallel adder and a DNA-based algorithm of ann-bit parallel comparator to formally verify
our designed molecular solutions for the subset-sum problem.
© 2003 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Through advances in molecular biology (Sinden,
1994), it is now possible to produce roughly 1018 DNA
strands that fit in a test tube. Those 1018 DNA strands
can also be applied for representing 1018 bits of in-
formation. Basic biological operations can be used to
simultaneously operate 1018 bits of information. Or
we can say that 1018 data processors can be executed
in parallel. Hence, it becomes obvious that biological
computing can provide a huge parallelism for dealing
with problems in the real world.

Feynman first proposed molecular computation in
1961, but his idea was not implemented by experi-
ment for a few decades. InAdleman (1994)succeeded
to solve an instance of the Hamiltonian path prob-
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lem in a test tube, just by handling DNA strands.
Lipton (1995)demonstrated that the Adleman tech-
niques could be used to solve the satisfiability prob-
lem (the first NP-complete problem). Adleman and
co-authors (Roweis et al., 1999)proposedsticker for
enhancing the Adleman–Lipton model.

In this paper, first we usesticker to construct so-
lution spaces of DNA strands for thesubset-sum
problem. Then by using biological operations in the
Adleman–Lipton model, we develop a DNA-based al-
gorithm of parallel adder and a DNA-based algorithm
of parallel comparative operator for finishing the func-
tions of add and comparative instructions. We also
show that the subset-sum problem is solved by us-
ing the biological operations in the Adleman–Lipton
model for the sticker solution space. Furthermore, this
work presents clear evidence of the ability of molecu-
lar computing to solve the NP-complete problem with
mathematical operations.

The paper is organized as follows.Section 2in-
troduces the Adleman–Lipton model in detail then
this model is compared with other models.Section 3
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introduces the DNA program to solve the subset-sum
problem for the sticker solution space. InSection 4,
the experimental results by simulated DNA comput-
ing are given. Conclusions and future research work
are drawn inSection 5.

2. DNA model of computation

2.1. The Adleman–Lipton model

A deoxyribonucleic acid (DNA) is a polymer, which
is strung together from monomers calledDeoxyri-
boNucleotides(Sinden, 1994; Paun et al., 1998). Dis-
tinct nucleotides are detected only with their bases.
These bases are abbreviated asA, G, C and T. Two
strands of DNA can form (under appropriate condi-
tions) a double strand, if the respective bases are the
Watson–Crick complements of each other—Amatches
T andC matchesG; also 3′ end matches 5′ end. The
length of a single stranded DNA is the number of nu-
cleotides comprising the single strand. Thus, if a single
stranded DNA includes 20 nucleotides, we can say that
it is a 20 mer (it is a polymer containing 20 monomers).
The length of a double stranded DNA (where each nu-
cleotide is base paired) is counted in the number of
base pairs. Thus, if we make a double stranded DNA
from a single stranded 20 mer, then the length of the
double stranded DNA is 20 base pairs, also written
20 bp. (For more discussions of the relevant biological
background refer toSinden, 1994; Boneh et al., 1996;
Paun et al., 1998.)

In the Adleman–Lipton model (Adleman, 1994;
Lipton, 1995), splints were used to construct the
corresponding edges of a particular graph of paths,
which represented all possible binary numbers. As it
stands, their construction indiscriminately builds all
splints that lead to a complete graph. This is to say
that hybridization has a higher probability of errors.
Hence, Adleman and co-authors (Roweis et al., 1999)
proposed the sticker-based model, which was an ab-
stract of molecular computing based on DNA with
a random access memory as well as a new form of
encoding the information.

The DNA operations in the Adleman–Lipton model
(Adleman, 1994, 1996; Lipton, 1995; Boneh et al.,
1996) are described below. These operations will be
used for finding solutions of the subset-sum problem.

2.1.1. The Adleman–Lipton model
A (test) tube is a set of molecules of DNA (i.e. a

multi-set of finite strings over the alphabet{A, C, G,
T}). A simple notation is used to explain the various
operations to be performed on DNA. Given a stringX
over the alphabet{A, C, G, T}, ↑X is denoted as the
single stranded DNA which is made up of the letters
of X oriented from the 5′ end to the 3′ end (the first
letter of X is on the 5′ end). ↓X is denoted as the
Watson–Crick complement of the strand↑X. When
↓X and↑X anneal to each other they form a double
strand which we denote by�X. If given a tube, one
can perform the following operations:

1. Extract. Given a tubeP and a short single strand
of DNA, S, produces two tubes+(P, S) and−(P,
S), where+(P, S) is all of the molecules of DNA
in P which contain the strandSas a sub-strand and
−(P, S) is all of the molecules of DNA inP which
do not contain the short strandS.

2. Merge. Given tubesP1 and P2, yield ∪(P1, P2),
where∪(P1, P2) = P1 ∪ P2. This operation is to
pour two tubes into one, without any change in the
individual strands.

3. Detect. Given a tubeP, if P includes at least one
DNA molecule we have ‘yes,’ and ifP contains no
DNA molecule we have ‘no.’

4. Discard. Given a tubeP, the operation will discard
the tubeP.

5. Amplify. At times we need to make copies of all
the DNA strands in a test tube. This can be done
with a straightforward application of the poly-
merase chain reaction (PCR). PCR is a process
that uses DNA polymerase to make many copies
of a DNA sequence. PCR works in the following
way. If we have the duplex�XYZ, we first melt
it to form ↑XYZ and ↓XYZ. To this solution we
add the primer oligos↓Z and ↑X, which anneals
to form the partial duplexes↑XY�Z and �X↓YZ.
DNA polymerase can then elongate the primers to
create full duplexes of the form�XYZ. Note that
we now have two copies of our original strand. If
we just repeat this process, we will again double
the number of copies of the original strand in so-
lution. Soon we will have 4 copies, then 8, then
16, and so on, until we have enough copies for
our purposes. Thus, if we can guarantee that the
primer sequences that we use occurs on the ends
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of every strand, and only on the ends, then we can
use PCR to duplicate every strand in the test tube.
We call this operationAmplify. Given a tubeP,
the operation,Amplify(P, P1, P2) will produce two
new tubesP1andP2 such that tubeP1 is a copy of
tubeP, tubeP2 is also a copy of tubeP (which are
now identical) and tubeP becomes empty tube.

6. Append. Given a tubeP containing a short strand of
DNA, Z, the operation will append the short strand,
Z, onto the end of every strand in the tubeP.

7. Read. Given a tubeP, the operation is used to de-
scribe a single molecule, which is contained in tube
P. Even if P contains many different molecules
each encoding a different set of bases, the opera-
tion can give an explicit description of exactly one
of them.

2.2. Other related work and comparison with the
Adleman–Lipton model

Based on solution space ofsplint in the Adleman–
Lipton model, their methods (Narayanan and Zorbala,
1998; Chang and Guo, 2002a,b,c,d) could be applied
towards solving the traveling salesman problem, the
dominating-set problem, the vertex cover problem,
the clique problem, the independent-set problem,
the three-dimensional matching problem and the
set-packing problem. The methods used for resolving
problems have exponentially increased volumes of
DNA and linearly increased the time.

Bach et al. (1996)proposed an1.89n volume,
O(n2 + m2) time molecular algorithm for the 3-
coloring problem and a 1.51n volume, O(n2m2) time
molecular algorithm for the independent set prob-
lem, wheren andm are, subsequently, the number of
vertices and the number of edges in the problems re-
solved.Fu (1997)presented a polynomial-time algo-
rithm with a 1.497n volume for the 3-SAT problem, a
polynomial-time algorithm with a 1.345n volume for
the 3-coloring problem and a polynomial-time algo-
rithm with a 1.229n volume for the independent set.
Though the size of those volumes (Fu, 1997; Bach
et al., 1996) is lower, constructing those volumes is
more difficult and the time complexity is higher.

Quyang et al. (1997)showed that enzymes could
be used to solve the NP-complete clique problem. Be-
cause the maximum number of vertices that they can
process is limited to 27, the maximum number of

DNA strands for solving this problem is 227 (Quyang
et al., 1997). Shin et al. (1999)presented an encoding
scheme for decreasing the error rate of hybridization.
This method (Shin et al., 1999) can be employed to-
wards ascertaining the traveling salesman problem for
representing integers and real values with fixed-length
codes.Arita et al. (1997)andMorimoto et al. (1999)
proposed a new molecular experimental technique and
a solid-phase method to find a Hamiltonian path.Amos
(1997)proposed a parallel filtering model for resolv-
ing the Hamiltonian path problem, the sub-graph iso-
morphism problem, the 3-vertex-colorability problem,
the clique problem and the independent-set problem.
These methods (Arita et al., 1997; Morimoto et al.,
1999; Amos, 1997) have lowered the error rate in real
molecular experiments.

In articles (Reif et al., 2000; LaBean et al., 2000,
2003), the methods for DNA-based computing by
self-assembly required the use of DNA nanostructures
called tiles to have efficient chemistries, expressive
computational power, and convenient input and output
(I/O) mechanisms. DNA tiles have lower error rate in
self-assembly.Garzon and Deaton (1999) introduced
a review of the most important advances in molecular
computing.

Adleman and co-authors (Roweis et al., 1999) pro-
posed a sticker-based model to enhance the error rate
of hybridization in the Adleman–Lipton model. Their
model can be used for determining solutions of an
instance in the set cover problem.Perez-Jimenez and
Sancho-Caparrini (2001)employed the sticker-based
model (Roweis et al., 1999) to resolve knapsack
problems. In our previous work,Chang and Guo
(2003), Chang et al. (2003)also employed the
sticker-based model and the Adleman–Lipton model
for dealing with the dominating-set problem and the
set-splitting problem for decreasing the error rate of
hybridization.

3. Molecular solutions for the subset-sum problem

3.1. Definition of the subset-sum
problem

Assume that a finite setS is {s1, . . . , sq}, wheresm

is themth element for 1≤ m ≤ q. Also suppose that
every element inS is a positive integer. Assume that



120 W.-L. Chang et al. / BioSystems 73 (2004) 117–130

|S| is the number of elements inS and |S| is equal to
q. The subset-sum problem forS is to find a subset
S1 ⊆ S such that the sum of every element inS1 is ex-
actly b, whereb is a positive integer. The subset-sum
problem has been proved to be the NP-complete prob-
lem (Cormen et al., 2003; Garey and Johnson, 1979;
Cook, 1971; Karp, 1972).

In Eq. (1), a finite setS is {1, 2} and any given pos-
itive integerb is 3. Four subsets ofSare, respectively,
∅, {1}, {2} and{1, 2}. Since the sum of the first el-
ement and the second element in{1, 2} is equal to 3,
the solution of the subset-sum problem forS is {1, 2}.

S = {1, 2} andb = 3 (1)

The above equation contains finite set and the given
positive integer of our problem.

3.2. Sticker-based solution space for subsets of a
finite set

Assume thatx1, . . . , xq is a q-bit binary number,
which is applied to representq elements in a finite
setS. Stickerin a sticker-based model (Roweis et al.,
1999; Braich et al., 2003) is a 15-base value sequence.
For every bitxm representing themth element inS
to 1 ≤ m ≤ q, two distinct 15-base value sequences
were designed. One represents the value “0” forxm

and the other represents the value “1” forxm. For the
sake of convenience in our presentation, assume that
x1
m denotes the value ofxm to be 1 andx0

m defines the
value ofxm to be 0. The following algorithm is used to
construct sticker-based solution space for 2q possible
subsets of aq-element setS.

Procedure Init(T0, q)
(1) Form = 1 to q

(1a) Amplify(T0, T1, T2).
(1b) Append(T1, x1

m).
(1c) Append(T2, x0

m).
(1d) T0 = ∪(T1, T2).

EndFor
EndProcedure

Lemma 1. Sticker-based solution space of2q possible
subsets for a q-element set S can be constructed with
sticker in a sticker-based model from the algorithm,
Init(T0, q).

Proof. Assume thatT0, T1 and T2 are distinct test
tubes but onlyT1 and T2 are empty. The algorithm,
Init(T0, q), is implemented via theamplify, append
andmergeoperations. Each time Step 1(a) is used to
amplify tubeT0 and to generate two new tubes,T1 and
T2, which are copies ofT0. TubeT0 becomes empty.
Then, Step 1(b) is applied to append a DNA sequence
(sticker), representing the value “1” forxm, onto the
end of every strand in tubeT1. This is to say that
subsets containing themth element appear in tubeT1.
Step 1(c) is also employed to append a DNA sequence
(sticker), representing the value “0” forxm, onto the
end of every strand in tubeT2. That implies that sub-
sets not containing themth element appear in tubeT2.
Next, Step 1(d) is used to pour tubeT1 and T2 into
tube T0. This indicates that DNA strands in tubeT0
include DNA sequences ofxm = 1 andxm = 0. Af-
ter repeating execution of Steps 1(a)–1(d), it finally
produces tubeT0 that consists of 2q DNA sequences
representing 2q possible subsets. Therefore, it is in-
ferred that sticker-based solution space for 2q possible
subsets of aq-element setS can be constructed with
sticker.

From Init(T0, q), it takesq amplifyoperations, 2×
q appendoperations,q mergeoperations and three
test tubes to construct sticker-based solution space. A
q-bit binary number corresponds to a subset. A value
sequence for every bit contains 15 bases. Therefore,
the length of a DNA strand, encoding a subset, is 15×
q bases consisting of the concatenation of one value
sequence for each bit. �

3.3. Sticker-based solution space for elements of
subsets for a finite set

An element,sm, in a q-element finite setS can be
converted as a binary number,sm,1, . . . , sm,n, using
a digital computer.sm,n is the highest order bit and
sm,1 is the lowest order bit.Stickeris applied to rep-
resent every bitsm,k for 1 ≤ k ≤ n. For every bit
sm,k two distinctDNA sequences were designed. One
corresponds to the value “0” forsm,k and the other
corresponds to the value “1” forsm,k. For the sake
of convenience in our presentation, assume thats1

m,k

denotes the value ofsm,k to be 1 ands0
m,k defines the

value ofsm,k to be 0. The following algorithm is em-
ployed to construct sticker-based solution space for
elements of 2q possible subsets to aq-element setS.
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Procedure Value(T0, q, n)
(1) Form = 1 to q

(1a)T1 = +(T0, x
1
m) andT2 = −(T0, x

1
m).

(1b) Fork = 1 to n
(1c) Append(T1, sm,k).
(1d) Append(T2, s0

m,k).
EndFor
(1e)T0 = ∪(T1, T2).

EndFor
EndProcedure

Lemma 2. Sticker-based solution space of elements
for 2q possible subsets of a q-element set S can be
constructed with sticker in a sticker-based model from
the algorithm, Value(T0, q, n).

Proof. Assume thatT0 is generated from the algo-
rithm, Init(T0, q), and contains those DNA strands cor-
responding to 2q possible subsets to aq-element set
S. The algorithm, Value(T0, q, n), is implemented via
theextract, appendandmergeoperations. Step 1 is the
outer loop and is employed to construct sticker-based
solution space. When the first execution of Step 1(a)
uses theextractoperation to form two test tubes:T1
and T2. The first tubeT1 includes all of the strands
that havex1 = 1, that is to say, the first element in
S occurs in tubeT1. The second tubeT2 consists of
all of the strands that havex1 = 0, this is to say that
the first element inSdoes not appear in tubeT2. Step
1(b) is the inner loop and is mainly used to encode the
size of an element onto the tail of those DNA strands
containing the element. On the first execution of Step
1(c), it uses theappendoperation to append 15-based
DNA sequences for representing the value 1 ofs1,1
or representing the value 0 ofs1,1 onto the tail of ev-
ery strand inT1. Next, the first execution of Step 1(d)
also applies theappendoperation to append 15-based
DNA sequences for representing the value 0 ofs1,1
onto the tail of every strand inT2. Repeat execution
of Steps 1(c)–1(d) until every bit in the first element
in S is processed. TubeT1 contains the strands encod-
ing the size of the first element. TubeT2 includes the
strands encoding the value 0 ofs1,k for 1 ≤ k ≤ n.
Then Step 1(e) uses themergeoperation to pour two
tubesT1 andT2 into tubeT0. TubeT0 currently con-
sists of the DNA sequences encoding the size of the
first element and the value 0 ofs1,k for 1 ≤ k ≤ n.
Similarly, after other elements are processed, tubeT0

consists of the strands for encoding elements of 2q

possible subsets for aq-element setS.
From Value(T0, q, n), it takesq extractoperations,

2 × n × q appendoperations,q mergeoperations
and three test tubes to construct sticker-based solu-
tion space for elements of 2q possible subsets to a
q-element setS. A q-bit binary number corresponds
to a subset and ann-bit binary number encodes the
size of an element inS. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encoding elements of 2q possible subsets for a
q-element setS, is 15× (q+n) bases consisting of the
concatenation of one value sequence for each bit.�

3.4. Parallel adder for computing the sum of elements

Assume that ((q+1)×n) one-digit binary numbers,
yw, are used to represent the sum ofq elements inS
for 1 ≤ w ≤ ((q+1)×n). Also suppose (q× (n+1))
one-digit binary numbers,za, are applied to represent
the carry of the sum forq elements ofS to 1 ≤ a ≤
(q × (n + 1)). Assume thaty1. . . yn is employed to
denote the initialized value of the sum for finishing
the addition of every element inS. Also suppose that
y(i−1)×n+j . . . yi×n is applied to denote the intermedi-
ate value of the sum to finish the addition of every el-
ement inS for 2 ≤ i ≤ q and 1≤ j ≤ n. Assume that
yq×n+j . . . y(q+1)×n is employed to denote the final re-
sult of the sum to finish the addition of every element
in S for 1 ≤ j ≤ n. Also suppose thatz(b−1)×(n+1)+1
is used to define the initialized value of the carry for
finishing the addition of every element inS for 1 ≤
b ≤ q. Assume thatz(b−1)×(n+1)+c . . . zb×(n+1) is em-
ployed to define the intermediate value of the carry
to finish the addition of every element inS for 1 ≤
b ≤ q − 1 and 2≤ c ≤ n + 1. Also suppose that
z(q−1)×(n+1)+c . . . zq×(n+1) is used to define the final
result of the carry for finishing the addition of every
element inS to 2 ≤ c ≤ n + 1.

Stickeris employed to encode every bityw andza

for 1 ≤ w ≤ ((q+ 1)×n) and 1≤ a ≤ (q× (n+ 1)).
For every bityw two distinctDNA sequences were de-
signed. One corresponds to the value “0” foryw and
the other corresponds to the value “1” foryw. Simi-
larly, there also are twodistinct DNA sequences de-
signed for every bitza. One corresponds to the value
“0” for za and the other corresponds to the value “1”
for za. For the sake of convenience in our presentation,
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assume thaty1
w denotes the value ofyw to be 1 and

y0
w defines the value ofyw to be 0. Similarly, suppose

that z1
a contains the value ofza to be 1 andz0

a con-
tains the value ofza to be 0. The following algorithm
is proposed to finish the function of a parallel adder
for computing the sum of elements to be 2q possible
subsets of aq-element setS.

Procedure ParallelAdder(T0, q, n)
(1) For j = 1 to n

(1a) Append(T0, y0
j ).

EndFor
(2) For i = 1 to q

(2a) Append(T0, z
0
(i−1)×(n+1)+1).

For j = 1 to n
(2b) T1 = +(T0, s

1
i,j) andT2 = −(T0, s

1
i,j).

(2c) T3 = +(T1, z
1
(i−1)×(n+1)+j) andT4 =

−(T1, z
1
(i−1)×(n+1)+j).

(2d) T5 = +(T2, z
1
(i−1)×(n+1)+j) andT6 =

−(T2, z
1
(i−1)×(n+1)+j).

(2e) T7 = +(T3, y
1
(i−1)×n+j) and T8 =

−(T3, y
1
(i−1)×n+j).

(2f) T9 = +(T4, y
1
(i−1)×n+j) and T10 =

−(T4, y
1
(i−1)×n+j).

(2g) T11 = +(T5, y
1
(i−1)×n+j) and T12 =

−(T5, y
1
(i−1)×n+j).

(2h) T13 = +(T6, y
1
(i−1)×n+j) and T14 =

−(T6, y
1
(i−1)×n+j).

(2i) Append(T7, y
1
i×n+j) and Append(T7, z

1
(i−1)×(n+1)+(j+1)).

(2j) Append(T8, y
0
i×n+j) and Append(T8, z

1
(i−1)×(n+1)+(j+1)).

(2k) Append(T9, y
0
i×n+j) and Append(T9, z

1
(i−1)×(n+1)+(j+1)).

(2l) Append(T10, y
1
i×n+j) and Append(T10, z

0
(i−1)×(n+1)+(j+1)).

(2m) Append(T11, y
0
i×n+j) and Append(T11, z

1
(i−1)×(n+1)+(j+1)).

(2n) Append(T12, y
1
i×n+j) and Append(T12, z

0
(i−1)×(n+1)+(j+1)).

(2o) Append(T13, y
1
i×n+j) and Append(T13, z

0
(i−1)×(n+1)+(j+1)).

(2p) Append(T14, y
0
i×n+j) and Append(T14, z

0
(i−1)×(n+1)+(j+1)).

(2q)T0 = ∪(T7, T8, T9, T10, T11, T12, T13, T14).
EndFor

EndFor
EndProcedure

Lemma 3. The algorithm, ParallelAdder(T0, q, n) can
be applied to finish the function of a parallel adder for

computing the sum of elements to2q possible subsets
of a q-element set S.

Proof. Assume thatT0 is generated from the algo-
rithm, Value(T0, q, n), and contains the DNA strands
corresponding to the elements of 2q possible subsets
for q-element setS. The algorithm, ParallelAdder(T0,
q, n), is implemented via theextract, appendand
mergeoperations. Step 1 is the first loop and is mainly
employed to set the initialized value of the sum forq
elements inS. When the first execution of Step 1(a)
uses theappendoperation to append 15-based DNA
sequences for representingy0

1 onto the tail of every
strand inT0. This is to say that the first bit of the ini-
tialized value for the sum is set to zero. Repeating ex-
ecution of Step 1(a) until every bit of the initialized
value for the sum is processed. TubeT0 contains the
strands encoding the initialized value of the sum.

Step 2 is the second loop and is mainly used to finish
the function of a parallel adder. On the first execution
of Step 2(a), it uses theappendoperation to append
15-based DNA sequences for encodingz0

1 onto the
tail of every strand inT0. This implies that the first
bit of the initialized value for the carry is also set to
zero. When the first execution of Step 2(b) employs
the extract operation to form two test tubes:T1 and
T2. The first tubeT1 includes all of the strands that
haves1,1 = 1. The second tubeT2 consists of all of
the strands that haves1,1 = 0. On the first execution
of Step 2(c), it uses theextractoperation to form two

test tubes:T3 andT4. The first tubeT3 includes all of
the strands that haves1,1 = 1 andz1 = 1. The second
tubeT4 consists of all of the strands that haves1,1 = 1
andz1 = 0. Next, the first execution of Step 2(d) uses
theextractoperation to form two test tubes:T5 andT6.
The first tubeT5 includes all of the strands that have
s1,1 = 0 andz1 = 1. The second tubeT6 consists of
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all of the strands that haves1,1 = 0 andz1 = 0. On the
first execution of Step 2(e), it uses theextractopera-
tion to form two test tubes:T7 andT8. The first tubeT7
includes all of the strands that haves1,1 = 1, z1 = 1
andy1 = 1. The second tubeT8 consists of all of the
strands that haves1,1 = 1, z1 = 1 andy1 = 0. Then,
on the first execution of Step 2(f), it applies theextract
operation to form two test tubes:T9 andT10. The first
tubeT9 includes all of the strands that haves1,1 = 1,
z1 = 0 andy1 = 1. The second tubeT10 consists of all
of the strands that haves1,1 = 1, z1 = 0 andy1 = 0.
On the first execution of Step 2(g), it employs theex-
tract operation to form two test tubes:T11 and T12.
The first tubeT11 includes all of the strands that have
s1,1 = 0,z1 = 1 andy1 = 1. The second tubeT12 con-
sists of all of the strands that haves1,1 = 0,z1 = 1 and
y1 = 0. Next, on the first execution of Step 2(h) uses
the extractoperation to form two test tubes:T13 and
T14. The first tubeT13 includes all of the strands that
haves1,1 = 0,z1 = 0 andy1 = 1. The second tubeT14
consists of all of the strands that haves1,1 = 0, z1 = 0
andy1 = 0.

Next, the first execution of Step 2(i) uses theap-
pend operations to appendy1

n+1 and z1
2 onto the

tail of every strand inT7. On the first execution of
Step 2(j), it applies theappend operations to ap-
pend y0

n+1 and z1
2 onto the tail of every strand in

T8. Then, the first execution of Step 2(k) employs
the appendoperations to appendy0

n+1 and z1
2 onto

the tail of every strand inT9. On the first execu-
tion of Step 2(l), it uses theappendoperations to
appendy1

n+1 and z0
2 onto the tail of every strand

in T10. Next, the first execution of Step 2(m) uses
the appendoperations to appendy0

n+1 and z1
2 onto

the tail of every strand inT11. On the first execu-
tion of Step 2(n), it uses theappendoperations to
appendy1

n+1 and z0
2 onto the tail of every strand in

T12. Then, the first execution of Step 2(o) applies
the appendoperations to appendy1

n+1 and z0
2 onto

the tail of every strand inT13. On the first execu-
tion of Step 2(p), it employs theappendoperations
to appendy0

n+1 and z0
2 onto the tail of every strand

in T14. Next, the first execution of Step 2(q) applies
the merge operation to pour tubesT7 through T14
into T0. Repeat execution of Steps 2(a)–2(q) until
every bit of q elements inS is processed. TubeT0
contains the strands encoding the sum ofq elements
in S.

From ParallelAdder(T0, q, n), it takes (7× n × q)
extractoperations, (n + q + 16× n × q) appendop-
erations, (n × q) mergeoperations and 15 test tubes
to compute the sum of elements for 2q possible sub-
sets of aq-element setS. A q-bit binary number cor-
responds to a subset. Ann-bit binary number encodes
the size of an element inS. ((q + 1) × n) bits corre-
spond to the sum of elements. (q × (n + 1)) bits en-
code the carry of the sum. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encoding the final result of the sum for ele-
ments of 2q possible subsets to aq-element setS, is
15× (q + n + (q + 1) × n + q × (n + 1)) bases con-
sisting of the concatenation of one value sequence for
each bit. �

3.5. Parallel comparator for comparing the sum of
elements for subsets of a finite set with any given
positive integer

Any given positive integer,b, can be represented as
n one-bit binary numbers,yq×n+j for 1 ≤ j ≤ n, using
a digit computer. This is to say that the same sticker
is used to encodeb and the final result of the sum for
elements of 2q possible subsets to aq-element setS.
The main advantage is to reduce the complexity of the
DNA algorithm for constructing a parallel comparator.
MakeValue(Tb, q, n) is proposed to construct a DNA
strand for encodingb. OneBitComparator(T0, Tb, q,
n, j) is presented to finish the function of a parallel
comparator for one bit and ParallelComparator(T0, q,
n) also is proposed to finish the function of a parallel
comparator for comparing the sum of elements to 2q

possible subsets of aq-element setSwith b.

Procedure MakeValue(Tb, q, n)
(1) For j = 1 to n

(1a) Append(Tb, yq×n+j).
EndFor

Lemma 4. Sticker-based solution space of any
given positive integer b can be constructed with
sticker in a sticker-based model from the algorithm,
MakeValue(Tb, q, n).

Proof. The algorithm, MakeValue(Tb, q, n), is imple-
mented via theappendoperation. The only loop in the
algorithm is mainly used to construct a DNA strand
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for any given positive integerb. Each time Step 1(a)
is used to append a DNA sequence (sticker), encod-
ing the value “1” or “0” of yq×n+j, onto the end of
every strand in tubeTb. After repeating execution of
Step 1(a), it finally produces tubeTb that includes a
DNA strand encodingb. Therefore, it is inferred that
sticker-based solution space for any given positive in-
tegerb can be constructed with sticker.

From MakeValue(Tb, q, n), it takesn appendopera-
tions and one test tube to construct sticker-based solu-
tion space. Any given positive integerb corresponds to
n one-bit binary numbers. A value sequence for every
bit contains 15 bases. Therefore, the length of a DNA
strand, encodingb, is 15× n bases consisting of the
concatenation of one value sequence for each bit.�

Procedure OneBitComparator(T0, Tb, q, n, j)
(1) T ON

0 = +(T0, y
1
q×n+j) and T OFF

0 =
−(T0, y

1
q×n+j).

(2) T ON
b = +(Tb, y

1
q×n+j) and T OFF

b =
−(Tb, y

1
q×n+j).

(3) If (Detect(T ON
b ) = ‘yes’) then

(3a) If (Detect(T ON
0 ) = ‘yes’) then

(3b) T0 = ∪(T0, T
ON
0 ) and Tb =

∪(Tb, T
ON
b ).

EndIf
Else

(3c) If (Detect(T OFF
0 ) = ‘yes’) then

(3d)T0=∪(T0, T
OFF
0 ) andTb=∪(Tb, T

OFF
b ).

EndIf
EndIf

EndProcedure

Lemma 5. The algorithm, OneBitComparator(T0, Tb,
q, n, j) can be applied to finish the function of a one-bit
parallel comparator.

Proof. The algorithm, OneBitComparator(T0, Tb, q,
n, j), is implemented via theextract, detectandmerge
operations. When the execution of Step 1 employs
theextractoperation to form two test tubes:T ON

0 and
T OFF

0 . The first tubeT ON
0 includes all of the strands

that haveyq×n+j = 1. The second tubeT OFF
0 consists

of all of the strands that haveyq×n+j = 0. On the
execution of Step 2, it also uses theextractoperation
to form two test tubes:T ON

b andT OFF
b . The first tube

T ON
b includes all of the strands that haveyq×n+j = 1.

The second tubeT OFF
b consists of all of the strands

that haveyq×n+j = 0. Next, the execution of Step 3
uses thedetectoperation to check whether there is any
DNA sequence in tubeT ON

b . If it returns a “yes,” this
indicates that the value of thejth bit in b is one. On
the execution of Step 3(a), it uses thedetectoperation
to test if there is any DNA sequence in tubeT ON

0 . If it
returns a “yes,” this indicates that the value of thejth
bit in the sum ofq elements inS is also one. Next, the
execution of Step 3(b) applies themergeoperations to
pour tubesT ON

0 into T0 and also to pour tubesT ON
b

into Tb. If thedetectoperation in Step 3 returns a “no,”
the execution of Step 3(c) uses thedetectoperation to
check whether there is any DNA strand in tubeT OFF

0 .
If it returns a “yes,” this indicates that the value of the
jth bit in the sum ofq elements inS is zero. Then, the
execution of Step 3(d) applies themergeoperations to
pour tubesT OFF

0 into T0 and also to pour tubesT OFF
b

into Tb.
From OneBitComparator(T0, Tb, q, n, j), it takes two

extractoperations, threedetectoperations, fourmerge
operations and six test tubes to finish the function of
a one-bit parallel comparator. �

Procedure ParallelComparator(T0, Tb, q, n)
(1) For j = n to 1

(1a) OneBitComparator(T0, Tb, q, n, j).
(1b) If (Detect(T0)=“no”) or (Detect(Tb)=“no”)

then
(1c) Terminate the execution of the loop.

EndIf
EndFor

EndProcedure

Lemma 6. The algorithm, ParallelComparator(T0, Tb,
q, n) can be used to finish the function of an n-bit
parallel comparator.

Proof. The only loop is used to implement the
function of ann-bit parallel comparator. When the
first execution of Step 1(a) calls the algorithm,
OneBitComparator(T0, Tb, q, n, j), to finish the com-
parative result of the highest order bit for any given
positive integerb and the sum ofq elements inS.
On the first execution of Step 1(b), it uses thede-
tect operations to check whether there is any DNA
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sequence inT0 or Tb. From OneBitComparator(T0,
Tb, q, n, j), if the two highest order bits are not equal,
then T0 and Tb are both empty. This means that the
execution of Step 1(c) will terminate the execution of
the loop if the two compared bits are not equal. Oth-
erwise it repeats execution of Steps 1(a)–1(c) until
every bit of the sum forq elements inS is compared
with every bit of b. Tube T0 contains the strands
encoding the sum ofq elements, which is equal
to b.

From ParallelComparator(T0, Tb, q, n), it takes 2×n

extractoperations, 5×n detectoperations, 4×n merge
operations and six test tubes to finish the function of
ann-bit parallel comparator. �

3.6. A DNA algorithm for solving the subset-sum
problem

Algorithm 1. Solving the subset-sum problem.

(1) Init(T0, q).
(2) Value(T0, q, n).
(3) ParallelAdder(T0, q, n).
(4) MakeValue(Tb, q, n).
(5) ParallelComparator(T0, Tb, q, n).
(6) If (Detect(T0) = “yes”) then

(6a) Read(T0).
EndIf
EndAlgorithm

Theorem 1. From those steps inAlgorithm 1, the
subset-sum problem for2q possible subsets of a
q-element set S can be solved.

Proof. On the execution of Step 1, it calls Init(T0,
q). The algorithm, Init(T0, q), is mainly used to con-
struct sticker-based solution space for 2q possible sub-
sets of aq-element setS. This means that tubeT0
includes strands encoding 2q possible subsets. Next,
the execution of Step 2 calls Value(T0, q, n). The
algorithm, Value(T0, q, n), is employed to construct
sticker-based solution space for elements of 2q possi-
ble subsets. This implies that tubeT0 contains strands
encoding elements of 2q possible subsets. On the ex-
ecution of Step 3, it calls ParallelAdder(T0, q, n). The
algorithm, ParallelAdder(T0, q, n), is used to finish
the function of a parallel adder for computing the
sum of elements to 2q possible subsets. That means

tube T0 consists of strands encoding the sum of el-
ements for 2q possible subsets. Next, the execution
of Step 4 calls MakeValue(Tb, q, n). The algorithm,
MakeValue(Tb, q, n), is applied to construct a DNA
strand for encodingb. This indicates that tubeTb con-
sists of a strand encodingb. On the execution of Step
5, it calls ParallelComparator(T0, Tb, q, n). The algo-
rithm, ParallelComparator(T0, Tb, q, n), is employed
to finish the function of a parallel comparator for com-
paring the sum of elements withb. Next, the execution
of Step 6 uses thedetectoperation to check if there
is any DNA strand in tubeT0. If it returns a “yes,”
the execution of Step 6(a) applies theread operation
to find the answer. Therefore, the subset-sum problem
for 2q possible subsets of aq-element setS can be
solved from those steps inAlgorithm 1.

The setSand the integerb in Eq. (1)can be applied
for showing the power ofAlgorithm 1. In Eq. (1), the
finite setSis {1, 2} and the integerb is 3. Four subsets
of S are, respectively,∅, {1}, {2} and{1, 2}. From
the execution of Step 1 inAlgorithm 1, tubeT0 is filled
with four library strands. The four library strands are
0(x1 = 0)0(x2 = 0), 1(x1 = 1)0(x2 = 0), 0(x1 =
0)1(x2 = 1) and 1(x1 = 1)1(x2 = 1). They encode,
respectively to,∅, {1}, {2} and{1, 2}. Next, from the
execution of Step 2 inAlgorithm 1, DNA sequences
encoding the size of the two elements inS are ap-
pended onto the tail of the four library strands in tube
T0. The library strand, 0(x1 = 0)0(x2 = 0)0(s1,1 =
0)0(s1,2 = 0)0(s2,1 = 0)0(s2,2 = 0), encodes∅.
The library strand, 1(x1 = 1)0(x2 = 0)1(s1,1 =
1)0(s1,2 = 0)0(s2,1 = 0)0(s2,2 = 0), encodes the
size of the element, 1, and{1}. The library strand,
0(x1 = 0)1(x2 = 1)0(s1,1 = 0)0(s1,2 = 0)0(s2,1 =
0)1(s2,2 = 1), encodes the size of the element, 2 and
{2}. The library strand, 1(x1 = 1)1(x2 = 1)1(s1,1 =
1)0(s1,2 = 0)0(s2,1 = 0)1(s2,2 = 1), encodes the
values of the two elements, 1 and 2, and{1, 2}. From
the execution of Step 3 inAlgorithm 1, since it fin-
ishes the function of a two-bit parallel adder, DNA
sequences encoding the sum of the elements and the
carry of the sum are appended onto the tail of the
four library strands in tubeT0. Because∅ does not
contain any element, its sum is zero. Hence, the li-
brary strand, 0(x1 = 0)0(x2 = 0)0(s1,1 = 0)0(s1,2 =
0)0(s2,1 = 0)0(s2,2 = 0)0(y1 = 0)0(y2 = 0)0(z1 =
0)0(y3 = 0)0(z2 = 0)0(y4 = 0)0(z3 = 0)0(z4 =
0)0(y5 = 0)0(z5 = 0)0(y6 = 0)0(z6 = 0), encodes
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the sum, 0. The subset,{1}, consists of 1, so its sum
is one. Therefore, the library strand, 1(x1 = 1)0(x2 =
0)1(s1,1 = 1)0(s1,2 = 0)0(s2,1 = 0)0(s2,2 =
0)0(y1 = 0)0(y2 = 0)0(z1 = 0)1(y3 = 1)0(z2 =
0)0(y4 = 0)0(z3 = 0)0(z4 = 0)1(y5 = 1)0(z5 =
0)0(y6 = 0)0(z6 = 0), encodes the sum, 1. Since{2}
includes 2, its sum is two. Hence, the library strand,
0(x1 = 0)1(x2 = 1)0(s1,1 = 0)0(s1,2 = 0)0(s2,1 =
0)1(s2,2 = 1)0(y1 = 0)0(y2 = 0)0(z1 = 0)0(y3 =
0)0(z2 = 0)0(y4 = 0)0(z3 = 0)0(z4 = 0)0(y5 =
0)0(z5 = 0)1(y6 = 1)0(z6 = 0), encodes the sum, 2.
The subset{1, 2} includes 1 and 2, so its sum is three.
Thus, the library strand, 1(x1 = 1)1(x2 = 1)1(s1,1 =
1)0(s1,2 = 0)0(s2,1 = 0)1(s2,2 = 1)0(y1 = 0)0(y2 =
0)0(z1 = 0)1(y3 = 1)0(z2 = 0)0(y4 = 0)0(z3 =
0)0(z4 = 0)1(y5 = 1)0(z5 = 0)1(y6 = 1)0(z6 = 0),
encodes the sum, 3. Next, on the execution of Step 4
in Algorithm 1, tubeTb is filled with a library strand,
1(y5 = 1)1(y6 = 1). From the execution of Step 5 in
Algorithm 1, tubeT0 only includes the library strand,
1(x1 = 1)1(x2 = 1)1(s1,1 = 1)0(s1,2 = 0)0(s2,1 =
0)1(s2,2 = 1)0(y1 = 0)0(y2 = 0)0(z1 = 0)1(y3 =
1)0(z2 = 0)0(y4 = 0)0(z3 = 0)0(z4 = 0)1(y5 =
1)0(z5 = 0)1(y6 = 1)0(z6 = 0). Next, from the ex-
ecution of Step 6 inAlgorithm 1, it returns a “yes.”
Therefore, the answer is{1, 2} from the execution of
Step 6(a) inAlgorithm 1. �

3.7. The Complexity ofAlgorithm 1

Lemma 7. Suppose that a finite set S is{s1,. . . ,sq}
and any given positive integer b. The subset-sum prob-
lem for S and b can be solved withO(q × n) bi-
ological operations the Adleman–Lipton model from
sticker-based solution space, where n is the number of
bits for representing the size of every element or b.

Proof. Algorithm 1 can be applied for solving the
subset-sum problem forSandb. Algorithm 1 includes
six main steps. Step 1 takesq amplifyoperations, 2×q

appendoperations,q mergeoperations. Step 2 uses
2×n×q appendoperations,q mergeoperations andq
extractoperations. Step 3 takes (n+q+16×n×q) ap-
pendoperations,n×q mergeoperations and 7×n×q

extractoperations. Step 4 appliesn appendoperations.
Step 5 takes 4× n merge operations, 2× n extract
operations and 5× n detectoperations. Step 6 takes
onedetectoperation and Step 6(a) takes onereadop-

eration. Therefore, from the statements above, it is
inferred that the time complexity ofAlgorithm 1 is
O(q×n) biological operations in the Adleman–Lipton
model from sticker-based solution space. �

Lemma 8. Suppose that a finite set S is{s1,. . . ,sq}
and any given positive integer b. The subset-sum
problem for S and b can be solved withO(2n ) li-
brary strands in the Adleman–Lipton model from
sticker-based solution space, where n is the number
of bits for representing the size of every element or b.

Proof. Refer toLemma 7. �

Lemma 9. Suppose that a finite set S is{s1,. . . ,sq}
and any given positive integer b. The subset-sum prob-
lem for S and b can be solved withO(c) tubes in
the Adleman–Lipton model from sticker-based solu-
tion space, where c is a constant value.

Proof. Refer toLemma 7. �

Lemma 10. Suppose that a finite set S is{s1,. . . ,sq}
and any given positive integer b. The subset-sum prob-
lem for S and b can be solved with the longest library
strand, O(15× (q + n + (q + 1) × n + q × (n + 1))),
in the Adleman–Lipton model from sticker-based so-
lution space.

Proof. Refer toLemma 7. �

4. Experimental results by simulated DNA
computing

From (Roweis et al., 1999; Braich et al., 2003),
errors in the separation of the library strands are er-
rors in the computation. This implies that a lower
rate of errors of hybridization is needed in the com-
putation. DNA sequences must be designed to ensure
that library strands have little secondary structure that
might inhibit intended probe–library hybridization.
The design must also exclude DNA sequences that
might encourage unintended probe–library hybridiza-
tion. To help achieve these goals, the seven constraints
for DNA sequences are proposed from (Braich et al.,
2003).
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Table 1
The number of mutations for the block for satisfying the constraints

The number
of mutations

The number
of the block

The number
of mutations

The number
of the block

The number
of mutations

The number
of the block

1 1 1 2 1 3
1 4 1 5 1 6
2 7 1 8 1 9
1 10 1 11 9 12
1 13 8 14 2 15
1 16 7 17 9 18

From the first constraint, library strands composed
only of A’s, T’s, and C’s will have less secondary
structure than those composed ofA’s, T’s, C’s, and
G’s (Mir, 1998). From the second constraint, those
long homopolymer tracts may have an unusual sec-
ondary structure. The melting temperatures of the
probe–library hybrids will be more uniform if none of
the probe–library hybrids involve long homopolymer
tracts. From the third constraint and the fifth con-
straint, the probes will bind only weakly where they
are not intended to bind. From the fourth constraint
and the sixth constraint, the library strands will have
a low affinity for themselves. From the seventh con-
straint, the intended probe–library pairings will have
uniform melting temperatures.

Table 2
Sequences chosen were used to represent the 18-bits (blocks)

Bit 5′→3′ DNA sequence Bit 5′→3′ DNA sequence

x0
1 AATTCACAAACAATT x1

1 TCTCCCTATTTATTT

x0
2 ACTCCTTCCCTACTC x1

2 CCACCAAACCTAAAC

s0
1,1 TCTCTCTCTAATCAT s1

1,1 CCATCATCTACCTTA

s0
1,2 ACTCACATACACCAC s1

1,2 CAACCTATTAACTTA

s0
2,1 CTTCTCCACTATACT s1

2,1 CCTAAATCTCCAATA

s0
2,2 AAACTATCATACTTC s1

2,2 CTCTCAACAATCAAA

y0
1 TTCAATAAACATTTA y1

1 CCCTCCTTAACACTT

z0
1 TATTTCTCTCCCAAA z1

1 CACTATCACTAATAC

y0
2 TATTAACCCAACTAT y1

2 ACTATAAACCATCCA

z0
2 CCTTTCTAACCTTCA z1

2 TATCTTTCTTTATCA

y0
3 AACCCAAACTTCTCA y1

3 ATCCCATATACCTCT

z0
3 ATTACTATCTATAAT z1

3 TAACCACTCCAACCA

y0
4 AAACTCTACATACAC y1

4 TTTACCCTCATTACT

z0
4 AATTAACAATCATCT z1

4 AATTCACTTTCTATC

y0
5 TTACTCTTAACATCT y1

5 CCACCCTCATCCTAT

z0
5 TTAATCAAATCCCTA z1

5 CTCTTAATCTCATTC

y0
6 CCTAAATTTCACTAC y1

6 TTTCTAAACCTCTTC

z0
6 TCCCCACACATTACC z1

6 ATAAATCCCTTAAAT

We modified the Adleman program (Braich et al.,
2003) using a Pentium(R) 4 and 128 MB of main
memory. The operating system used is Window 98
and Visual C++ 6.0 compiler. The program modified
was applied to generating DNA sequences to solve
the subset-sum problem. Because the source code of
the two functionssrand48() anddrand48() was not
found in theoriginal Adleman program, we used the
standard functionsrand() in Visual C++ 6.0 to sub-
stitute functionsrand48() and added the source code
for functiondrand48().

The Adleman program was used to construct each
15-base DNA sequence for every bit of the library.
For each bit, the program generates two 15-base ran-
dom sequences (‘1’ and ‘0’) checking to see if the
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library strands satisfy the seven constraints with the
new DNA sequences added (Braich et al., 2003). If the
constraints are satisfied, the new DNA sequences are
‘greedily’ accepted. If the constraints are not satisfied
then mutations are introduced one by one into the new
block until either: (A) the constraints are satisfied and
the new DNA sequences are then accepted or (B) a
threshold for the number of mutations is exceeded and
the program has failed and so it exits, printing the se-
quence found so far. If (q+n+(q+1)×n+q×(n+1))
bits that satisfy the constraints are found then the pro-
gram has succeeded and it outputs these sequences.

Making mutations in a new block of the Adleman
program picks one of the 15 positions for the mutation
at random. This means that many mutations may have
nothing to do with the reason that a particular block
does not satisfy the chosen constraints, and many mu-
tations may be made without effect. However, making
a single base mutation for a new block in the Adleman
program may actually be the only path to satisfy the
constraints. This is to say that the rate of mutations can
be enhanced and DNA sequences satisfying the con-
straints can be found in a reasonable amount of time.
Therefore, from the Adleman program, a lower rate of
mutations and a lower rate of errors of hybridization
can be simultaneously achieved.

Consider the finite setS and any given positive in-
tegerb in Eq. (1). The finite setS is {1, 2}. The value
for b is three. The number of mutations for DNA se-
quences, satisfying the constraints, is shown inTable 1.
DNA sequences generated by the modified Adleman
program are shown inTable 2. With the nearest neigh-
bor parameters, the Adleman program was used to cal-
culate the enthalpy, entropy, and free energy for the
binding of each probe to its corresponding region on a
library strand. The energy used was shown inTable 3.
Only G really matters to the energy of each bit. For
example, the delta G for the probe binding a ‘1’ in the
first bit is 25 kcal/mol and the delta G for the probe
binding a ‘0’ is estimated to be 24.3 kcal/mol. The
program also figured out the average and standard de-
viation for the enthalpy, entropy and free energy over
all probe/library strand interactions. The energy levels
are shown inTable 4.

The Adleman program was employed for comput-
ing the distribution of the different types of potential
mishybridizations. The distribution of the types of po-
tential mishybridizations is the absolute frequency of a

Table 3
The energy for binding of each probe to its corresponding region
on a library strand

Bit Enthalpy energy (H) Entropy energy (S) Free energy (G)

x1
1 114.4 299.4 25

x0
1 107.8 278.6 24.3

x1
2 114.3 291.2 27.1

x0
2 109.1 279 25.9

s1
1,1 105.2 270.5 24.4

s0
1,1 97.3 252.3 22.1

s1
1,2 108.4 286.3 22.6

s0
1,2 94.7 239.8 22.8

s1
2,1 111.1 288.3 25

s0
2,1 101.9 266 22.4

s1
2,2 101.3 258 24.1

s0
2,2 102.1 269.7 21.4

y1
1 114.1 292.1 26.8

y0
1 107.5 282.2 22.9

z1
1 96.6 255.3 20.1

z0
1 111.2 285 26.1

y1
2 107.4 277.5 24.4

y0
2 111.1 292 23.7

z1
2 103.8 272.6 22.3

z0
2 111.3 285.7 25.9

y1
3 109.9 284.1 25.2

y0
3 109.8 278.2 26.6

z1
3 107.5 269.6 26.8

z0
3 104.3 283.6 19.5

y1
4 109.9 285.5 24.5

y0
4 97.6 255.8 20.9

z1
4 104.3 273 22.7

z0
4 105.3 275.5 22.9

y1
5 112.1 282.8 27.8

y0
5 101.3 266.6 21.5

z1
5 102.1 266 22.7

z0
5 112.4 291.5 25.3

y1
6 109.2 283.7 24.4

y0
6 108 282.9 23.3

z1
6 118.7 313 25.2

z0
6 110.2 275.3 27.9

Table 4
The energy over all probe/library strand interactions

Enthalpy
energy (H)

Entropy
energy (S)

Free
energy (G)

Average 107.033 277.461 24.0694
Standard deviation 5.47827 14.0834 2.09149
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probe-strand match of lengthk from 0 to the bit length
15 (for DNA sequences) where probes are not sup-
posed to match the strands. The distribution was, sub-
sequently, 628, 1492, 3124, 5517, 7719, 8125, 6623,
4264, 2115, 842, 253, 54, 1, 0, 0 and 0. It is pointed
out from the last three zeros that there are 0 occur-
rences where a probe matches a strand at 13, 14 or
15 places. Hence, the number of matches peaks at 5
(8125). That is to say that there are 8125 occurrences
where a probe matches a strand at 5 places.

5. Conclusions and future research work

The proposed algorithm (Algorithm 1) for solving
the subset-sum problem is based on biological oper-
ations in the Adleman–Lipton model and the solu-
tion space of stickers in the sticker-based model. This
modified algorithm has several advantages from the
Adleman–Lipton model and the sticker-based model.
First, the proposed algorithm actually has a lower
rate of errors for hybridization after we modified the
Adleman program to generate good DNA sequences
for constructing the solution space of stickers to the
subset-sum problem. The basic biological operations
in the Adleman–Lipton model were employed to fin-
ish the function of ann-bit parallel adder and the
function of ann-bit parallel comparator for solving
the subset-sum problem. Secondly, the basic biologi-
cal operations in the Adleman–Lipton model had been
performed in a fully automated manner in their lab.
The full automation manner is essential not only for
the speedup of computation but also for error-free
computation. Thirdly, inAlgorithm 1 for solving the
subset-sum problem, the number of tubes, the longest
length of DNA library strands, the number of DNA li-
brary strands and the number of biological operations,
respectively, are O(c), O(15× (q + n + (q + 1) × n +
q × (n + 1))), O(2n ) and O(q × n). This implies that
the proposed algorithm can be easily performed in a
fully automated manner in a lab. Furthermore, this pre-
sented algorithm generates 2n library strands, which
satisfy the constraints in (Braich et al., 2003) and cor-
respond to 2n possible solutions. This allows the pro-
posed algorithm to be applied to a larger instance of
the subset-sum problem. Fourthly, since ann-bit par-
allel adder can be implemented in a fully automated
manner in a lab, this seems to imply that mathematical

operations can be performed on a DNA-based com-
puting.

Any multiplication operation can be accomplished
through many addition operations. We proposed an
n-bit parallel adder to implement theaddition oper-
ation. This indicates that it seems to be reasonable
for extending ann-bit parallel adder to finish multi-
plication operation. Simultaneously, this implies that
NP-complete problems with multiplication operations
can be solved. In the future, our primary work is to
solve other outstanding NP-complete problems with
multiplication operations that were irresolvable us-
ing the Adleman–Lipton model and the sticker-based
model.
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