
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 1109–1125
Fast parallel molecular solution to the
dominating-set problem on massively

parallel bio-computing

Minyi Guo a,*, Michael (Shan-Hui) Ho b,1,
Weng-Long Chang b,1

a Department of Computer Software, The University of Aizu, Aizu-Wakamatsu City,

Fukushima 965-8580, Japan
b Department of Information Management, Southern Taiwan University of Technology,

Tainan County, 710, R.O.C. Taiwan

Received 5 April 2004; revised 1 July 2004; accepted 15 July 2004

Available online 25 September 2004
Abstract

This paper shows how to use DNA strands to construct solution space of molecules for the

dominating-set problem and how to apply biological operations to solve the problem from the

solution space of molecules. In order to achieve this, we have proposed some DNA based par-

allel algorithms using the operations in Adleman–Lipton model, together with the analysis of

the computational complexity for DNA parallel algorithms.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Parallel biological computing; DNA-based computing; NP-complete problem; Dominating-set

problem; DNA based parallel algorithms
0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2004.07.014

* Corresponding author. Tel.: 0242 37 2557; fax: 0242 37 2744.

E-mail addresses: minyi@u-aizu.ac.jp (M. Guo), michael@mail.stut.edu.tw (Michael (Shan-Hui) Ho),

changwl@mail.stut.edu.tw (W.-L. Chang).
1 Tel.: +886 6 2533131x4300; fax: +886 6 2541621.

mailto:minyi@u-aizu.ac.jp
mailto:michael@mail.stut.edu.tw
mailto:changwl@mail.stut.edu.tw

1110 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
1. Introduction

Through advances in molecular biology [1,2], it is now possible to produce 1018 or

more DNA strands in tube. Those 1018 or more DNA strands can also be applied for

representing 1018 or more bits of information. Biological operations can be used to
simultaneously operate 1018 or more bits of information. Or we can say that 1018 or

more data processors can be executed in parallel. Hence, it becomes obvious that

biological computing can provide a very huge parallelism for dealing with problems

in the real world. Especially, the problems from the NP-complete class are well-

known to be exponentially more difficult than evaluating determinants whose entries

are merely numerical. It is difficult to solve these kinds of problems even if very mas-

sive supercomputers are used when the problem sizes become large.

On the other hand, DNA computers have the full potential of the high perform-
ance computing technology. One test tube can be viewed as a processing unit like

standard computer architecture. Furthermore, DNA algorithms using biological

operations have natural parallelism because DNA strands are separated (melted, an-

nealed) in test tubes in parallel.

Feynman [29] first proposed molecular computation in 1961, but his idea was not

implemented by experiment for a few decades. In 1994 Adleman [2] succeeded to

solve an instance of the Hamiltonian path problem in a test tube, just by handling

DNA strands. Lipton [3] demonstrated that the Adleman techniques could be used
to solve the satisfiability problem (the first NP-complete problem). Adleman and

coworkers [14] proposed sticker for enhancing the Adleman–Lipton model.

In this paper, we use sticker to construct a solution space of DNA for the domi-

nating-set problem. Simultaneously, we also apply DNA operations in the Adleman–

Lipton model to develop a DNA algorithm. The results of the proposed algorithm

show that the dominating-set problem is resolved with biological operations in the

Adleman–Lipton model for solution space of sticker. Furthermore, this work pre-

sents clear evidence of the ability of DNA based computing to solve NP-complete
problems.

The paper is organized as follows. Section 2 introduces the Adleman–Lipton

model in detail then this model is compared with other models. Section 3 introduces

a DNA algorithm for solving the dominating-set problem for the solution space of

sticker. In Section 4, the experimental results of simulated DNA computing are

given. Conclusions and future researching works are drawn in Section 5.
2. DNA model of computation

2.1. The Adleman–Lipton model

It is cited from [16] that DNA (DeoxyriboNucleic Acid) is the molecule that plays

the main role in DNA based computing. In the biochemical world of large and small

molecules, polymers, and monomers, DNA is a polymer, which is strung together

from monomers called deoxyriboNucleotides. The monomers used for the construc-

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1111
tion of DNA are deoxyribonucleotides, where each deoxyribonucleotide contains

three components: sugar, phosphate group, and nitrogenous base. Sugar has five car-

bon atoms—for the sake of reference there is a fixed numbering to them. The base

also has carbons, so to avoid confusion the carbons of the sugar are numbered 1 0

to 5 0 (rather than 1–5). The phosphate group is attached to the 5 0 carbon, and the
base is attached to the 1 0 carbon. Within the sugar structure there is a hydroxyl group

attached to the 3 0 carbon.

Due to [1,16], distinct nucleotides are detected only from their bases, which come

in two types: purines and pyrimidines. Purines include adenineand guanine, abbrevi-

ated A and G. Pyrimidines contain cytosine and thymine, abbreviated C and T. Since

nucleotides are only distinguished from their bases, they are simply represented as A,

G, C, or T, depending upon the type of base they have. The structure of a nucleotide,

cited in [16], is simplified in Fig. 1. In this figure, B is one of the four possible bases
(A, G, C, or T), P is the phosphate group, and the rest (of the ‘‘stick’’) is the sugar

base (with its carbons enumerated 1 0 through 5 0).

It was indicated from [1,11,16] that nucleotides could link together in two ways.

Firstly the 5 0-phosphate group of one nucleotide is joined with the 3 0-hydroxyl group

of another forming a phosphodiester bond. The resulting molecule has the 5 0-phos-

phate group of one nucleotide, denoted as 5 0 end, and the 3 0-OH group of the other

nucleotide is available for bonding, denoted as 3 0 end. This gives the molecule direc-

tion, and we can talk about the direction of 5 0 end to the 3 0 end or 3 0 end to the 5 0

end. The second way is that the base of one nucleotide interacts with the base of an-

other to form a hydrogen bond. This bonding is based on pairing: A and T can pair

together, and C and G can pair together—no other pairings are possible. This pair-

ing principle is called the Watson–Crick complementarity (named after J.D. Watson

and F.H.C. Crick who deduced the famous double helix structure of DNA in 1953,

and won the Nobel Prize for its discovery).

According to [1,11,16], a DNA strand is essentially a sequence (polymer) of four

types of nucleotides detected by one of the bases they contain. Two single strands of
DNA under appropriate conditions can form a double strand, if the respective bases

are the Watson–Crick complements of each other—A matches T, and C matches G;

also the 3 0 end matches the 5 0 end. The length of a single stranded DNA is the num-

ber of nucleotides comprising a single strand. Thus, if a single stranded DNA in-

cludes 20 nucleotides, we can say that it is a 20mer (it is a polymer containing 20

monomers). The length of a double stranded DNA (where each nucleotide is base

paired) is counted in the number of base pairs. Thus if we make a double stranded

DNA from a single stranded 20mer, then the length of the double stranded DNA is
20 base pairs, also written 20bp. (For more discussion of the relevant biological

background refer to [1,11,16].)
Fig. 1. A schematic representation of a nucleotide.

1112 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
In the Adleman–Lipton model [2,3], splints were used to construct the correspond-

ing edges of a particular graph of paths, which represented all possible binary num-

bers. As it stands, their construction indiscriminately builds all splints that lead to a

complete graph. This is to say that hybridization has a higher probability of errors.

Hence, Adleman and coworkers [14] proposed the sticker-based model, which was an
abstract of molecular computing based on DNA with a random access memory as

well as a new form of encoding the information

The DNA operations in the Adleman–Lipton model [2,3,11,12] are described be-

low. These operations will be used for figuring out solutions of the dominating-set

problem.

The Adleman–Lipton model:

A (test) tube is a set of molecules of DNA (i.e. a multi-set of finite strings over the

alphabet {A, C, G, T}). Given a tube, one can perform the following operations:

1. Extract. Given a tube P and a short single strand of DNA, S, produces two tubes

+(P, S) and �(P, S), where +(P, S) is all of the molecules of DNA in P which

contain the strand S as a sub-strand and �(P, S) is all of the molecules of
DNA in P which do not contain the short strand S.

2. Merge. Given tubes P1 and P2 yield [(P1, P2), where [(P1, P2) = P1 [P2. This

operation is to pour two tubes into one, with no change in the individual strands.

3. Detect. Given a tube P, we have �yes� if P includes at least one DNA molecule, and
we have �no� if it contains none.

4. Discard. Given a tube P, the operation will discard the tube P.

5. Read. Given a tube P, the operation is used to describe a single molecule, which is

contained in the tube P. Even if P contains many different molecules each encod-

ing a different set of bases, the operation can give an explicit description of exactly

one of them.

2.2. Comparison of the Adleman–Lipton model with other models

Techniques in the Adleman–Lipton model could be used to solve the NP-com-

plete Hamiltonian path problem and satisfiability (SAT) problem by linearly increas-

ing time and exponentially increasing volumes of DNA [2,3]. Quyang et al. [4]

showed that restriction enzymes could be used to solve the NP-complete clique prob-

lem (MCP). The maximum number of vertices that can be processed is limited to 27

because the size of the pool with the size of the problem exponentially increases [4].
Arito et al. [5] described new molecular experimental techniques for searching a

Hamiltonian path. Morimoto et al. [6] offered a solid-phase method to finding a

Hamiltonian path. Narayanan and Zorbala [7] proved that the Adleman–Lipton

model was extended towards solving the traveling salesman problem. Shin et al.

[8] presented an encoding scheme that applies fixed-length codes for representing

integer and real values. Their method could also be employed towards solving the

traveling salesman problem. Amos [13] proposed a parallel filtering model for resolv-

ing the Hamiltonian path problem, the sub-graph isomorphism problem, the 3-ver-

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1113
tex-colorability problem, the clique problem and the independent-set problem. In

our previous work, Chang and Guo [17–20,25] proved how the DNA operations

for solution space of splint in the Adleman–Lipton model could be employed for

developing DNA algorithms to resolve the dominating-set problem, the vertex cover

problem, the clique problem, the independent-set problem, the three-dimensional
matching problem, the set-packing problem, the set cover problem and the problem

of exact cover by 3-sets.

Roweis et al. [14] proposed sticker-based model to enhance the Adleman–Lipton

model. Their model could be used for determining solutions to the set cover problem.

Perez-Jimenez et al. [15] employed sticker-based model [14] to resolve knapsack

problems. Fu [21] proposed new algorithms to resolve 3-SAT, 3-Coloring and the

independent set. In our previous work, Chang et al. [26–28] also employed the stick-

er-based model and the Adleman–Lipton model for dealing with the subset-sum
problem, Cook�s theorem [9,10] and the set-splitting problem for decreasing the error

rate of hybridization.
3. Using sticker for solving the dominating-set problem in the Adleman–Lipton model

3.1. Definition of the dominating-set problem

Mathematically, a dominating set of a graph G = (V, E), where V is the set of the

vertex and E is the set of the edge, is a subset V1 � V of vertices such that for all

u 2 V � V1 there is a v 2 V1 for which (u,v) 2 E [9,10]. The dominating-set problem

is to find a minimum size dominating set in G. This has been proved to be a NP-com-

plete problem [10].

The dominating-set problem asks: Given a network consisting of n vertices and m

edges, how many vertices are in a minimum size dominating set? The graph includes

three vertices and two edges as shown in Fig. 1, where each circle in the figure rep-
resents a vertex and the arc connecting two circles represents an edge. The minimum

size dominating set for the graph in Fig. 2 is {v1}. Hence, the size of the dominating-

set problem in this graph is one. It is indicated from [10] that finding a minimum-size

dominating-set is a NP-complete problem, so it can be formulated as a ‘‘search’’

problem. The dominating set problem is widely used in network routing, town
Fig. 2. Graph of our problem.

1114 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
planning, and other real applications. Thus we use the problem as an example to

show how powerful DNA computers are for solving NP-complete problem.

3.2. Using sticker for constructing solution space of DNA sequence for the dominating-

set problem

In the Adleman–Lipton model, their main idea is to first generate solution space of

DNA sequences for those problems resolved. Then, basic biological operations are

used to select legal solutions and to remove illegal solutions from the solution space.

Therefore, the first step of resolving the dominating-set problem is to produce a test

tube, which contains all possible dominating sets. Assume that an undirected graph

G = (V, E), whereV is the set of the vertices and E is the set of the edges. jVj represents
the number of the vertices in V and jEj represents the number of the edges in E. As-
sume that jVj = n and jEj = m. Assume that an n-digit binary number represents each

possible dominating set within G. Also suppose that V1 is a dominating set of G. If the

ith bit in an n-digit binary number is set to 1, then it represents that the ith vertex inV1

is also inG and not inV � V1. If the ith bit in an n-digit binary number is set to 0, then

it represents that the corresponding vertex is not in V1 but is found in V � V1. By

doing this, all of the possible dominating sets in G are transformed into an ensemble

of all n-digit binary numbers. Hence, Table 1 denotes the solution space for the graph

in Fig. 1. The binary number 000 in Table 1 shows that the corresponding dominating
set is empty. The binary numbers, 001, 010 and 011, in Table 1 shows that those cor-

responding dominating sets are {v1}, {v2} and {v2,v1} respectively. The binary num-

bers, 100, 101 and 110, in Table 1 shows that the corresponding dominating sets,

subsequently, are {v3}, {v3,v1} and {v3,v2}. The binary number 111 in Table 1 shows

that the corresponding dominating set is {v3,v2,v1}. Though there are eight 3-digit

binary numbers for representing eight possible dominating sets in Table 1, not every

3-digit binary number corresponds to a legal dominating set. Hence, in next subsec-

tion, basic biological operations are used to develop an algorithm for removing illegal
dominating sets and determining legal dominating sets.

To implement this, assume that an unsigned value X is represented by a binary

number xn, xn�1 , . . . , x1, where the value of xj is 1 or 0 for 1 6 j 6 n. The range

of the value for X is from zero to 2n–1. This is to say that it is formed by 2n kinds
Table 1

Solution space for the graph in Fig. 1

3-Digit binary number The corresponding dominating set

000 B

001 {v1}

010 {v2}

011 {v2, v1}

100 {v3}

101 {v3, v1}

110 {v3, v2}

111 {v3, v2, v1}

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1115
of possible values. Each possible value represents a dominating set for a graph G.

Therefore an unsigned value X forms 2n possible dominating sets. A bit xi in an un-

signed integer X represents the ith vertex in G. If the ith vertex is in a dominating set,

then the value of xi is set to 1. If the ith vertex is out of a dominating set, then the

value of xi is set to 0.
To represent all possible dominating sets for the dominating-set problem, sticker

[14,22] is used to construct solution space for the problem solved. For every bit, xi,

two distinct 15 base value sequences were designed. One represents the value, 1, for

xi and the second represents the value, 0, to xi. For the sake of convenience in our

presentation, assume that x1i denotes the value of xi to be 1 and x0i defines the value
of xi to be zero. Each of the 2

n possible dominating sets was represented by a library

sequence of 15 · n bases consisting of the concatenation of one value sequence for

each bit. DNA molecules with library sequences are termed library strands and a
combinatorial pool containing library strands is termed a library. The probes used

for separating the library strands have sequences complementary to the value

sequences.

It is pointed out from [14,22] that errors in the separation of the library strands

are errors in the computation. Sequences must be designed to ensure that library

strands have little secondary structure that might inhibit intended probe-library

hybridization. The design must also exclude sequences that might encourage unin-

tended probe-library hybridization. To help achieve these goals, sequences were
computer-generated to satisfy the following constraint [22].

1. Library sequences contain only As, Ts, and Cs.

2. All library and probe sequences have no occurrence of 5 or more consecutive iden-

tical nucleotides; i.e. no runs of more than 4 As, 4 Ts, 4 Cs or 4 Gs occur in any

library or probe sequences.

3. Every probe sequence has at least 4 mismatches with all 15 base alignments of any

library sequence (except for its matching value sequence).
4. Every 15 base subsequence of a library sequence has at least 4 mismatches with all

15 base alignment of itself or any other library sequence.

5. No probe sequence has a run of more than seven matches with any eigth base

alignment of any library sequence (except for its matching value sequence).

6. No library sequence has a run of more than seven matches with any eight base

alignment of itself or any other library sequence.

7. Every probe sequence has 4, 5, or 6 Gs in its sequence.

Constraint (1) is motivated by the assumption that library strands composed only

of As, Ts, and Cs will have less secondary structure than those composed of As, Ts,

Cs, and Gs [23]. Constraint (2) is motivated by two assumptions: first, those long

homopolymer tracts may have unusual secondary structure and second, that the

melting temperatures of probe-library hybrids will be more uniform if none of the

probe-library hybrids involve long homopolymer tracts. Constraints (3) and (5)

are intended to ensure that probes bind only weakly where they are not intended

to bind. Constraints (4) and (6) are intended to ensure that library strands have a

1116 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
low affinity for themselves. Constraint (7) is intended to ensure that intended probe-

library pairings have uniform melting temperatures.

The Adleman program [22] was modified for generating those DNA sequences to

satisfy the constraints above. For example, for representing the three vertices in the

graph in Fig. 1, the DNA sequences generated were:

x01 ¼ AAAACTCACCCTCCT; x02 ¼ TCTAATATAATTACT;

x03 ¼ ATTCTAACTCTACCT; x11 ¼ TTTCAATAACACCTC;

x12 ¼ ATTCACTTCTTTAAT and x13 ¼ AACATACCCCTAATC

Therefore, for every possible dominating set of the graph in Fig. 1, the corresponding

library strand was synthesized by employing a mix-and-split combinatorial synthesis

technique [24]. Similarly, for any n-vertex graph, all of the library strands for repre-
senting every possible dominating set could also be synthesized using the same

technique.

3.3. The DNA algorithm for solving the dominating-set problem

The following DNA algorithm is proposed to solve the dominating-set problem.

Algorithm 1. Solving the dominating-set problem.

(1) Input (T0), where tube T0 includes solution space of DNA sequences to encode

all of the possible dominating sets for any n-vertex graph, G, with those tech-

niques mentioned in Section 3.2.

(2) Forall i = 1 to n, where n is the number of vertices in G.
(a) T 0 ¼ þðT 0; x1i Þ and R ¼ �ðT 0; x1i Þ.
(b) For each vertex Vj is adjacency to Vi.

(c) S ¼ þðR; x1j Þ and R ¼ �ðR; x1j Þ.
(d) T0 = [(T0,S).
EndFor.

(e) Discard the tube R.

EndForall.

(3) Forall i = 0 to n � 1.

For j = i down to 0.

(a) TONjþ1 ¼ þðT j; x1iþ1Þ and T j ¼ �ðT j; x1iþ1Þ.
(b) T jþ1 ¼ [ðT jþ1; TONjþ1Þ.
EndFor

EndForall

(4) For k = 1–n
(a) If (detect (Tk) =

0yes 0) then

(b) Read (Tk) and terminate the algorithm.
EndIf

EndFor

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1117
Theorem 3.1. From those steps in Algorithm 1, the dominating-set problem for any n-

vertex graph can be solved.

Proof. In Step 1, a test tube of DNA strands, that encode all 2n possible input bit

sequences xn, . . . , x1, is generated. The tube includes all 2
n possible dominating sets

for any n-vertex graph, G. h

According to the definition of dominating set [9,10], Step 2(a) applies ‘‘extraction’’

to form two test tubes: T0 and R. The first tube T0 contains all of the strands that have

xi = 1. The second tube R consists of all of the strands that have xi = 0. From the def-
inition of dominating set, tubeR represents sets,V � V1 which do not include the ver-

tex Vi. If there is no vertex adjacent to Vi, then Step 2(e) will discard tube R. This

means that all of the illegal dominating sets in R will be removed. Otherwise, Steps

2(c) and 2(d) will be executed z times, where z is the number of vertices adjacent (di-

rectly connected by an edge) to Vi. Each time Step 2(c) is executed, it uses extraction

to form two new test tubes: S andR. Tube S includes all of the strands that have xi = 0

and xj = 1. Tube R consists of all of the strands that have xi = 0 and xj = 0. It is indi-

cated from the definition of the dominating set that tube S contains the strands, which
represent those legal dominating sets. Therefore, Step 2(d) applies ‘‘merge’’ to pour

tube S into tube T0. After Steps 2(c)–(d) are repeated z times, tube T0 includes the

strands, which satisfy (Vi,Vj) 2 E, where Vi 2 V1 and Vj 2 V � V1. Tube R contains

the strands, which do not satisfy (Vi,Vj) 2 E, where Vi 2 V1 and Vj 2 V � V1. Hence,

Step 2(e) discards tube R. For other vertices in G, similar processing is also finished.

Therefore, the remaining strands in tube T0 represent legal dominating sets.

Each time outer loop of Step 3 is executed; the number of executions for the inner

loop is (i + 1) times. The first time the outer loop is executed; the inner loop is only
executed once. Therefore, Steps 3(a) and 3(b) will also be executed once. Step 3(a)

uses ‘‘extraction’’ to form two tubes: TON1 and T0. The first tube TON1 contains all

of the strands that have x1 = 1. The second tube T0 consists of all of the strands that

have x1 = 0. That is to say the first tube encodes every dominating set including the

first vertex and the second tube represents every dominating set not including the

first vertex. Hence, Step 3(b) applies ‘‘merge’’ to pour tube TON1 into tube T1. After

repeating execution of Steps 3(a) and (b), it finally produces n new tubes. Tube Tk for

n P k P 1 encodes those dominating sets that contain k vertices.
Because the dominating-set problem is to find a minimum-size dominating set,

tube T1 is detected with the ‘‘detection operation’’ from Step 4(a). If it returns a

‘‘yes’’, then tube T1 contains dominating sets in which the number of vertices is min-

imum. Therefore, Step 4(b) uses ‘‘read operation’’ to describe the �sequence� of a
molecular in tube T1 and terminates the algorithm. Otherwise, continue to repeat exe-

cution of Step 4(a) until a minimum-size dominating set is found in the tube detected.

The graph in Fig. 1 is used to show the power of Algorithm 1. From Step 1 of Algo-

rithm 1 tube T0 is filled with eight library strands using the techniques mentioned in
Section 3.2. The eight library strands corresponds to eight possible dominating sets

for the graph in Fig. 1. All of the edges in the graph of Fig. 1 are (V1, V2) and

(V1, V3). The number of the vertices in the graph for Fig. 1 is three, so the number

1118 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
of executions for Step 2 of Algorithm 1 is three times. According to the first execution

of Step 2(a) of Algorithm 1, two tubes are generated. The first tube, T0 includes those

dominating sets: {V1}, {V2, V1}, {V3, V1} and {V3, V2, V1} and the second tube, R,

contains dominating sets:B, {V2}, {V3} and {V3, V2}. Because the number of the ver-

tices adjacent to vertex V1 is two, the number of executions for Step 2(b) of Algorithm
1 is two times. Due to the first execution of Step 2(c) of Algorithm 1, two tubes are

yielded. The first tube S, includes dominating sets: {V2} and {V3, V2} and the second

tube R, contains dominating sets: B and {V3}. Tube S contains the legal dominating

sets from definition of the dominating set. Hence, Step 2(d) of Algorithm 1 pours tube

S into tube T0. Now tube T0 includes dominating sets: {V1}, {V2, V1}, {V3, V1},

{V3, V2, V1}, {V2} and {V3, V2}. According to the second execution of Step 2(c) of

Algorithm 1, two tubes are produced. The first tube S, only consists of the dominating

set: {V3} and the second tube R, only contains the dominating set: B. It is obvious
from the definition of dominating set that tube S includes the legal dominating set.

Hence, Step 2(d) of Algorithm 1 again pours tube S into tubeT0. Now tubeT0 includes

dominating sets: {V1}, {V2, V1}, {V3, V1}, {V3, V2, V1}, {V2}, {V3, V2} and {V3}.

Since tube R contains the binary number 000, this does not satisfy the definition of

a dominating set, the strand in R represents an illegal dominating set. Therefore, Step

2(e) of Algorithm 1 discards the tube R. The same processing can be applied to deal

with the other two vertices V2 and V3 After every vertex is processed, the remaining

strands in tube T0 represent the legal dominating sets. That is to say that tube T0 con-
tains dominating sets: {V1}, {V2, V1}, {V3, V1}, {V3, V2} and {V3, V2, V1}.

Because the number of vertices in the graph for Fig. 1 is three, the number of exe-

cutions for the outer loop in Step 3 of Algorithm 1 is three times. The number of

executions for the inner loop in Step 3 of Algorithm 1 is dependent on the value

of the loop variable in the outer loop. After execution of Step 3(a) and (b) the first

time tube T1 contains dominating sets: {V1}, {V2, V1}, {V3, V1} and {V3, V2, V1}

and tube T0 only includes dominating set: {V3, V2}. After Step 3(a) and (b), it pro-

duces three new tubes. The three tubes T1, T2 and T3 respectively, include {V1},
{V2, V1}, {V3, V1}, {V3, V2}} and {{V3, V2, V1}}.

Because tube T1 is not empty, the ‘‘detection operation’’ for detecting tube T1 in

Step 4(a) in Algorithm 1 returns ‘‘yes’’. Therefore, Step 4(b) in Algorithm 1 reads the

answer from tube T1. Thus, a minimum-size dominating set for the graph in Fig. 1 is

{V1}.

3.4. The complexity of the proposed DNA algorithm

Theorem 3.2. The dominating-set problem for any undirected n-vertex graph G can be

solved with O(n2) biological operations in the Adleman–Lipton model.

Proof. Algorithm 1 can be applied for solving the dominating-set problem for any
undirected n-vertex graph G. Algorithm 1 includes three main steps. Step 2 is mainly

used to determine the legal dominating sets and to remove any illegal dominating

sets from all of the 2n possible library strands. From Algorithm 1, it is very obvious

that Step 2(a) takes n extraction operations and Step 2(e) takes n discarded opera-

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1119
tions. Since every vertex at most has (n � 1) adjacent vertices. Therefore, from Algo-

rithm 1 Step 2(c) takes n · (n � 1) extraction operations and Step 2(d) takes

n · (n � 1) merge operations. Step 3 is used to figure out the number of elements

in every legal dominating set. It is indicated from Algorithm 1 that Step 3(a) takes

(n · (n � 1)/2) extraction operations and Step 3(b) takes (n · (n � 1)/2) merge oper-
ations. Step 4 is used to find a minimum-size dominating set from legal dominating

sets. It is pointed out from Algorithm 1 that Step 4(a) at most takes n detection oper-

ations and Step 4(b) takes one reading operation. Hence, from the statements men-

tioned above, it is at once inferred that the time complexity of Algorithm 1 is O(n2)

biological operations in the Adleman–Lipton model. h

Theorem 3.3. The dominating set problem for any undirected n-vertices graph G can be

solved with sticker to construct O(2n) strands in the Adleman–Lipton model.

Proof. Refer to Theorem 3.2. h

Theorem 3.4. The dominating set problem for any undirected n-vertices graph G can be

solved with O(n) tubes in the Adleman–Lipton model.

Proof. Refer to Theorem 3.2. h

Theorem 3.5. The dominating set problem for any undirected n-vertices graph G can be
solved with the longest library strand, O(15 · n), in the Adleman–Lipton model.

Proof. Refer to Theorem 3.2. h
4. Experimental results of simulated DNA computing

We modified the Adleman program [22] using a Pentium II, 200MHz CPU and

64MB of main memory. The modified program was applied to generating DNA se-

quences for solving the dominating-set problem of any n-vertex graph. Because the

source code of the two functions srand48() and drand48() was not found in the orig-
inal Adleman program, we used the standard function srand() in C++ builder 6.0 to

replace the function srand48() and added the source code to the function drand48().

We also added subroutines to the Adleman program for simulating biological oper-

ations in the Adleman–Lipton model in Section 2. We added subroutines to the

Adleman program to simulate Algorithm 1 in Section 3.3.

The Adleman program was used to construct each 15-base DNA sequence for

every bit of the library. For each bit, the program generates two 15-base random

sequences (�1� and �0�) checking to see if the library strands satisfy the seven con-
straints in Section 3.2 with the new DNA sequences added. If the constraints are

satisfied, the new DNA sequences are �greedily� accepted. If the constraints are
not satisfied then mutations are introduced one by one into the new block until

1120 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
either: (A) the constraints are satisfied and the new DNA sequences are then ac-

cepted or (B) a threshold for the number of mutations is exceeded and the program

has failed and so it exits, printing the sequence found so far. If n-bits that satisfy the

constraints are found then the program has succeeded and it outputs these

sequences.
Consider the graph in Fig. 1. The graph includes three vertices: V1, V2 and V3.

DNA sequences generated by the modified Adleman program are shown in Table

2. This program took one mutation, one mutation and ten mutations to make the

new DNA sequences for V1, V2 and V3 With the nearest neighbor parameters, the

Adleman program was used to calculate the enthalpy, entropy, and free energy for

the binding of each probe to its corresponding region on a library strand. The energy

used is shown in Table 3. Only G really matters to the energy of each bit. For exam-

ple, delta G for the probe binding of �1� in the first bit is 24.3kcal/mol and the delta G
for the probe binding of �0� is 27.5kcal/mol.
The program simulated a mix-and-split combinatorial synthesis technique [24] to

synthesize the library strand to every possible dominating set. These library strands

are shown in Table 4 and represent eight possible dominating sets: B, {V1}, {V2},

{V2, V1}, {V3}, {V3, V1}, {V3, V2} and {V3, V2, V1}. The program also figured out

the average and standard deviation for the enthalpy, entropy and free energy over

all of the probe/library strand interactions. The energy levels are shown in Table

5. The standard deviation for delta G is small because it is partially enforced by
the constraint that there are 4, 5, or 6 Gs (the seventh constraint in Section 3.2) in

the probe sequences.
Table 2

Sequences chosen to represent the vertices in the graph in Fig. 1

Vertex 5 0 ! 3 0 DNA sequence

x03 ATTCTAACTCTACCT

x02 TCTAATATAATTACT

x01 AAAACTCACCCTCCT

x13 AACATACCCCTAATC

x12 ATTCACTTCTTTAAT

x11 TTTCAATAACACCTC

Table 3

The energy for binding each probe to its corresponding region of a library strand

Vertex Enthalpy energy (H) Entropy energy (S) Free energy (G)

x03 105.2 277.1 22.4

x02 104.8 283.7 19.9

x01 113.7 288.7 27.5

x13 112.6 291.2 25.6

x12 107.8 283.5 23

x11 105.6 271.6 24.3

Table 4

DNA sequences chosen represent all possible dominating sets

5 0-ATTCTAACTCTACCTTCTAATATAATTACTAAAACTCACCCTCCT-3 0

3 0-TAAGATTGAGATGGAAGATTATATTAATGATTTTGAGTGGGAGGA-5 0

5 0-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3 0

3 0-TAAGATTGAGATGGAAGATTATATTAATGAAAAGTTATTGTGGAG-5 0

5 0-ATTCTAACTCTACCTATTCACTTCTTTAATAAAACTCACCCTCCT-3 0

3 0-TAAGATTGAGATGGATAAGTGAAGAAATTATTTTGAGTGGGAGGA-5 0

5 0-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAACACCTC-30

3 0-TAAGATTGAGATGGATAAGTGAAGAAATTAAAAGTTATTGTGGAG-5 0

5 0-AACATACCCCTAATCTCTAATATAATTACTAAAACTCACCCTCCT-3 0

3 0-TTGTATGGGGATTAGAGATTATATTAATGATTTTGAGTGGGAGGA-5 0

5 0-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3 0

3 0-TTGTATGGGGATTAGAGATTATATTAATGAAAAGTTATTGTGGAG-50

5 0-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT-3 0

3 0-TTGTATGGGGATTAGTAAGTGAAGAAATTATTTTGAGTGGGAGGA-5 0

5 0-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3 0

3 0-TTGTATGGGGATTAGTAAGTGAAGAAATTAAAAGTTATTGTGGAG-5 0

Table 5

The energy over all probe/library strand interactions

Enthalpy energy (H) Entropy energy (S) Free energy (G)

Average 108.283 282.633 23.7833

Standard deviation 3.58365 6.63867 2.41481

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1121
The Adleman program was employed for computing the distribution of the differ-

ent types of potential mishybridizations. The distribution of the types of potential

mishybridizations is the absolute frequency of a probe-strand match of length k from

0 to the bit length 15 (for DNA sequences) where probes are not supposed to match

the strands. The distribution was, subsequently, 106, 152, 183, 215, 216, 225, 137, 94,

46, 13, 4, 1, 0, 0, 0 and 0. It is pointed out from the last four zeros that there are 0

occurrences where a probe matches a strand at 12, 13, 14, or 15 places. This shows

that the third constraint in Section 3.2 has been satisfied. Hence, the number of
matches peaks at 5 (225). That is to say that there are 225 occurrences where a probe

matches a strand at five places.

It is indicated from the number of the vertices in the graph of Fig. 1, the number

of simulations for Step 2 is three times. In Step 2(a) of the first simulation, two dif-

ferent arrays were used to store the results generated by Step 2(a). In Steps 2(c) and

2(d) of simulation, legal solutions were remained and merged in arrays. In Step 2(e)

of simulation, all of the illegal solutions produced by Step 2(c) were discarded. Re-

peat the execution of Step 2 of simulation until all of the vertices in the graph in Fig.
1 were processed. Thus, the result generated by Step 2 is shown in Table 6.

Table 6

DNA sequences generated by Step 2 represent legal dominating sets

50-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3 0

50-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAACACCTC-3 0

50-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3 0

50-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT-3 0

50-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3 0

1122 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
The goal of Step 3 in Algorithm 1 is to compute all of the legal dominating sets,

which include how many vertices. Due to the number of the vertices shown in Fig. 1,

the number of simulation for Steps 3(a) and 3(b) is six times. In Step 3(a) of the first

simulation, two different arrays were used to store the results generated by Step 3(a).

This means that the dominating sets in tube, T ON1 , contain V1 and the dominating

sets in tube, T0 do not include V1. In Step 3(b) of the first simulation, those domi-

nating sets in TON1 were merged into the tube T1. Repeating the execution of Step

3 of the simulation until all of the vertices in the graph in Fig. 1 were processed.
Therefore, the results generated by Step 3 are shown in Tables 7–9. The goal of Step

4 is to find a minimum-size dominating set. Because the number of the vertices is

three, Step 4(a) was simulated no more than three times. The step was simulated

by explicitly examining whether every tube generated in Step 3 was empty. The first
Table 7

DNA sequence represents that dominating set only containing one vertex

50-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3 0

Table 8

DNA sequences represent those dominating sets including two vertices

50-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAACACCTC-3 0

50-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3 0

50-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT-3 0

Table 9

DNA sequence represents that dominating set containing three vertices

50-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3 0

Table 10

DNA sequence represents the minimum-size dominating set

50-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3 0

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1123
simulation for Step 4(a) generated a resulted value, yes, since the tube T1 is not

empty. Therefore Step 4(b) of simulation, the minimum-size dominating set from

the tube T1 was shown in Table 10.
5. Conclusions and future work

The present method for solving the dominating-set problem is based on biological

operations in the Adleman–Lipton model and the solution space of stickers in the

sticker-based model and thus is similar to the proposed method based on the solu-

tion space of splints to solving the same problem [17]. The proposed algorithm

has three advantages from the Adleman–Lipton model and the sticker-based model.

First, the proposed algorithm actually has a lower rate of errors for hybridization
because we modified the Adleman program to generate good DNA sequences for

constructing the solution space of stickers to the dominating-set problem. Only sim-

ple and fast biological operations in the Adleman–Lipton model were employed to

solve the problem. Secondly, those biological operations in the Adleman–Lipton

model had been performed in a fully automated manner in their lab. The full auto-

mation manner is essential not only for the speedup of computation but also for

error-free computation. Thirdly, in the proposed algorithm the number of tubes,

the longest length of DNA library strands and the number of DNA library strands,
respectively, are O(n), O(15 · n) and O(2n) strands. This implies that the proposed

algorithm can be easily performed in a fully automated manner in a lab. Further-

more, the present algorithm generates 2n library strands, which satisfies the seven

constraints in Section 3.2, which corresponds to 2n possible dominating sets. This al-

lows the present algorithm to be applied to a larger instance of the dominating-set

problem.

Currently, there are lots of NP-complete problems that cannot be solved because

it is very difficult to support basic biological operations using mathematical opera-
tions. We are not sure whether molecular computing can be applied to dealing with

every NP-complete problem. Therefore, in the future, our main work is to solve

other NP-complete problems that were unresolved with the Adleman–Lipton model

and the sticker model.
References

[1] R.R. Sinden, DNA Structure and Function, Academic Press, New York, 1994.

[2] L. Adleman, Molecular computation of solutions to combinatorial problems, Science 266 (Novem-

ber) (1994) 1021–1024.

[3] R.J. Lipton, DNA solution of hard computational problems, Science 268 (1995) 542–545.

[4] Q. Quyang, P.D. Kaplan, S. Liu, A. Libchaber, DNA solution of the maximal clique problem,

Science 278 (1997) 446–449.

[5] M. Arita, A. Suyama, M. Hagiya, A heuristic approach for Hamiltonian path problem with

molecules, in: Proceedings of 2nd Genetic Programming (GP-97), 1997, pp. 457–462.

1124 M. Guo et al. / Parallel Computing 30 (2004) 1109–1125
[6] N. Morimoto, M. Arita, A. Suyama, Solid phase DNA solution to the Hamiltonian path problem,

DIMACS (Series in Discrete Mathematics and Theoretical Computer Science) 48 (1999) 93–206.

[7] A. Narayanan, S. Zorbala, DNA algorithms for computing shortest paths, in: J.R. Koza et al. (Eds.),

Genetic Programming 1998: Proceedings of the Third Annual Conference, 1998, pp. 718–724.

[8] S.-Y. Shin, B.-T. Zhang, S.-S. Jun, Solving traveling salesman problems using molecular program-

ming, in: Proceedings of the 1999 Congress on Evolutionary Computation (CEC99), vol. 2, 1999, pp.

994-1000.

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest. Introduction to algorithms, MIT Press, Cambridge, UK,

ISBN 0-262-03141-8.

[10] M.R. Garey, D.S. Johnson, Computer and intractability, Freeman, San Fransico, CA, 1979.

[11] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, On the computational power of DNA, in: Discrete

Applied Mathematics, Special Issue on Computational Molecular Biology, vol. 71, 1996, pp. 79–94.

[12] L.M. Adleman, On constructing a molecular computer, DNA Based Computers, in: R. Lipton, E.

Baum (Eds.), DIMACS series in Discrete Mathematics and Theoretical Computer Science, American

Mathematical Society, 1996, pp. 1–21.

[13] M. Amos, DNA Computation, Ph.D. Thesis, Department of Computer Science, The University of

Warwick, 1997.

[14] S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov, M.F. Goodman, P.W.K. Rothemund, L.M.

Adleman, A sticker based model for DNA computation, in: L. Landweber, E. Baum (Eds.), 2nd

Annual Workshop on DNA Computing, DIMACS: Series in Discrete Mathematics and Theoretical

Computer Science, American Mathematical Society, Princeton University, 1999, pp. 1–29.

[15] M.J. Perez-Jimenez, F. Sancho-Caparrini, Solving knapsack problems in a sticker based model, in:

7th Annual Workshop on DNA Computing, DIMACS: Series in Discrete Mathematics and

Theoretical Computer Science, American Mathematical Society, 2001.

[16] G. Paun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing Paradigms, Springer-

Verlag, New York, 1998, ISBN: 3-540-64196-3.

[17] W.-L. Chang, M. Guo, Solving the dominating-set problem in Adleman–Lipton�s Model, in: The
Third International Conference on Parallel and Distributed Computing, Applications and Technol-

ogies, Japan, 2002, pp. 167–172.

[18] W.-L. Chang, M. Guo, Solving the clique problem and the vertex cover problem in Adleman–Lipton�s
model, in: IASTED International Conference, Networks, Parallel and Distributed Processing, and

Applications, Japan, 2002, pp. 431–436.

[19] W.-L. Chang, M. Guo, Solving NP-complete problem in the Adleman–Lipton Model, in: The

Proceedings of 2002 International Conference on Computer and Information Technology, Japan,

2002, pp. 157–162.

[20] W.-L. Chang, M. Guo, Resolving the 3-dimensional matching problem and the set packing problem

in Adleman–Lipton�s model, in: IASTED International Conference, Networks, Parallel and

Distributed Processing, and Applications, Japan, 2002, pp. 455–460.

[21] B. Fu, Volume Bounded Molecular Computation, Ph.D. Thesis, Department of Computer Science,

Yale University, 1997.

[22] R.S. Braich, C. Johnson, P.W.K. Rothemund, D. Hwang, N. Chelyapov, L.M. Adleman. Solution of

a satisfiability problem on a gel-based DNA computer, in: Proceedings of the 6th International

Conference on DNA Computation in the Springer-Verlag Lecture Notes in Computer Science series.

[23] K. Mir, A restricted genetic alphabet for DNA computing, in: E.B. Baum, L.F. Landweber (Eds.),

DNA Based Computers II: DIMACS Workshop, June 10–2, 1996, volume 44 of DIMACS: Series in

Discrete Mathematics and Theoretical Computer Science, Providence, RI, 1998, pp. 243–246.

[24] A.R. Cukras, D. Faulhammer, R.J. Lipton, L.F. Landweber, Chess games: a model for RNA-based

computation, in: Proceedings of the 4th DIMACS Meeting on DNA Based Computers, Held at the

University of Pennsylvania, June 16–19, 1998, pp. 27–37.

[25] W.-L. Chang, M. Guo, Solving the set cover problem and the problem of exact cover by 3-sets in the

AdlemanLipton model, Biosystems 72 (3) (2003) 263–275.

[26] W.-L. Chang, M.(S.-H.) Ho, M. Guo, Molecular solutions for the subset-sum problem on DNA-

based supercomputing, Biosystems 73 (2) (2004) 117–130.

M. Guo et al. / Parallel Computing 30 (2004) 1109–1125 1125
[27] M. Ho, W.-L. Chang, M. Guo, Is Cook�s theorem correct for DNA-based computing—towards

solving the NP-complete problems on a DNA-based supercomputer model, Journal of Parallel and

Distributed Scientific and Engineering Computing, in press.

[28] W.-L. Chang, M. Guo, M. Ho, Solving the set-splitting problem in sticker-based model and the

Adleman–Lipton model. Future Generation Computer System, in press.

[29] R.P. Feynman, in: D.H. Gilbert (Ed.), Minaturization, Reinhold Publishing Corporation, New York,

1961, pp. 282–296.

	Fast parallel molecular solution to the dominating-set problem on massively parallel bio-computing
	Introduction
	DNA model of computation
	The Adleman ndash Lipton model
	Comparison of the Adleman ndash Lipton model with other models

	Using sticker for solving the dominating-set problem in the Adleman ndash Lipton model
	Definition of the dominating-set problem
	Using sticker for constructing solution space of DNA sequence for the dominating-set problem
	The DNA algorithm for solving the dominating-set problem
	The complexity of the proposed DNA algorithm

	Experimental results of simulated DNA computing
	Conclusions and future work
	References

