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Fast Parallel Molecular Algorithms for DNA-Based
Computation: Factoring Integers
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Abstract—The RSA public-key cryptosystem is an algorithm
that converts input data to an unrecognizable encryption and
converts the unrecognizable data back into its original decryption
form. The security of the RSA public-key cryptosystem is based on
the difficulty of factoring the product of two large prime numbers.
This paper demonstrates to factor the product of two large prime
numbers, and is a breakthrough in basic biological operations
using a molecular computer. In order to achieve this, we propose
three DNA-based algorithms for parallel subtractor, parallel
comparator, and parallel modular arithmetic that formally verify
our designed molecular solutions for factoring the product of two
large prime numbers. Furthermore, this work indicates that the
cryptosystems using public-key are perhaps insecure and also
presents clear evidence of the ability of molecular computing to
perform complicated mathematical operations.

Index Terms—Biological parallel computing, DNA-based algo-
rithms, DNA-based computing, factoring integers, RSA public-key
cryptosystem.

I. INTRODUCTION

THE RSA public-key cryptosystem [34] is an algorithm that
converts input data to an unrecognizable encryption, and

converts the unrecognizable data back into its original decryp-
tion form. The construction of the RSA public-key cryptosystem
is based on the ease of finding large prime numbers. The security
for the cryptosystem using public-key is based on the difficulty
of factoring the product of two large prime numbers. The RSA
public-key cryptosystem is the most popular cryptosystem. No
method in a reasonable amount of time can be applied to break
the RSA public-key cryptosystem.

Feynman proposed molecular computation in 1961, but his
idea was not implemented by experiment for a few decades
[37]. In 1994 Adleman [2] succeeded in solving an instance of
the Hamiltonian path problem in a test tube, just by handling
DNA strands. Lipton [3] demonstrated that the Adleman tech-
niques could be used to solve the satisfiability problem (the first
NP-complete problem). Adleman et al. [14] proposed sticker for
enhancing the error rate of hybridization.
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Through advances in molecular biology [1], it is now pos-
sible to produce roughly 10 DNA strands that fit in a test tube.
Those 10 DNA strands can also be applied to represent 10
bits of information. In the future (perhaps after many years) if bi-
ological operations can be applied to deal with a tube with 10
DNA strands and they are run without errors, then 10 bits of
information can simultaneously be correctly processed. Hence,
in the future, it is possible that biological computing can provide
a huge amount of parallelism for dealing with many computa-
tionally intensive problems in the real world.

The fastest super computers currently available can execute
approximately 10 integer operations per second. This implies
that 128 10 bits of information can be simultaneously
processed in a second. The fastest super computers can process
128 10 bits of information in 1000 seconds. The extract

operation is one of basic biological operations of the longest
execution time. An extract operation could be approximately
done in 1000 s [12]. In the future, if an extract operation can
be used to deal with a tube with 10 DNA strands and it is run
without errors, then 10 bits of information can simultaneously
be correctly processed in 1000 s. If it becomes true in the future,
then basic biological operations will perhaps be faster than the
fastest super computer in the future. In [12], it was pointed out
that storing information in molecules of DNA allows for an in-
formation density of approximately 1 bit/nm . Videotape is a
kind of traditional storage media and its information density is
approximately 1 bit/10 nm . This implies that an information
density in molecules of DNA is better than that of traditional
storage media.

In this paper, we first construct solution spaces of DNA
strands for encoding every integer of bits. By using basic
biological operations, we then develop DNA-based algorithms
for a parallel subtractor, a parallel comparator, and a parallel
divider, respectively, to factor the product of two large prime
numbers of bits. We also show that cryptosystems based on
the dramatic difference between the ease of finding large prime
numbers of bits and the difficulty of factoring the product of
two large prime numbers of bits can be broken. Furthermore,
this work presents clear evidence of molecular computing
ability to finish parallel mathematical operations.

The rest of this paper is organized as follows. Section II first
introduces DNA models of computation proposed by Adleman
et al. and compares them with other models. Section III intro-
duces the DNA program to factor the product of two large prime
numbers of bits for solution spaces of DNA strands. Discus-
sion and conclusion are drawn in Section IV and Section V,
respectively.
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Fig. 1. A schematic representation of a nucleotide.

II. BACKGROUND

In this section we review the basic structure of the DNA mole-
cule and then discuss available techniques for dealing with DNA
that will be used to solve the problem of factoring integers. Si-
multaneously, several well-known DNA models are compared.

A. The Structure of DNA

From [1], [16], DNA (DeoxyriboNucleic Acid) is the mole-
cule that plays the main role in DNA-based computing. In the
biochemical world of large and small molecules, polymers, and
monomers, DNA is a polymer, which is strung together from
monomers called deoxyriboNucleotides. The monomers used
for the construction of DNA are deoxyribonucleotides. Each de-
oxyribonucleotide contains three components: a sugar, a phos-
phate group, and a nitrogenous base. The sugar has five carbon
atoms—for the sake of reference there is a fixed numbering of
them. Because the base also has carbons, to avoid confusion the
carbons of the sugar are numbered from 1 to 5 (rather than from
one to five). The phosphate group is attached to the 5 carbon,
and the base is attached to the 1 carbon. Within the sugar struc-
ture there is a hydroxyl group attached to the 3 carbon.

Distinct nucleotides are detected only with their bases, which
come in two sorts: purines and pyrimidines. Purines include
adenine and guanine, abbreviated and . Pyrimidines
contain cytosine and thymine, abbreviated and . Because
nucleotides are distinguished solely from their bases, they are
simply represented as , , , or nucleotides, depending
upon the kinds of base that they have. The structure of a
nucleotide, cited from [16], is illustrated (in a very simplified
way) in Fig. 1. In Fig. 1, B is one of the four possible bases ( ,

, , or ), P is the phosphate group, and the rest (the “stick”)
is the sugar base (with its carbons enumerated 1 through 5 ).

Nucleotides can be linked together in two different ways [1],
[16]. The first method is that the 5 -phosphate group of one nu-
cleotide is joined with 3 -hydroxyl group of the other forming
a phosphodiester bond. The resulting molecule has the 5 -phos-
phate group of one nucleotide, denoted as 5 end, and the 3 -OH
group of the other nucleotide available, denoted as 3 end, for
bonding. This gives the molecule the directionality, and we can
talk about the direction of 5 end to 3 end or 3 end to 5 end.
The second way is that the base of one nucleotide interacts with
the base of the other to form a hydrogen bond. This bonding is
the subject of the following restriction on the base pairing:
and can pair together, and and can pair together—no
other pairings are possible. This pairing principle is called the
Watson–Crick complementarity (named after J. D. Watson and
F. H. C. Crick, who deduced the famous double helix structure
of DNA in 1953 and won the Nobel Prize for the discovery).

A DNA strand is essentially a sequence (polymer) of four
types of nucleotides detected by one of four bases they contain.
Two strands of DNA can form (under appropriate conditions)
a double strand, if the respective bases are the Watson–Crick
complements of each other— matches and matches ;

also 3 end matches 5 end. The length of a single-stranded DNA
is the number of nucleotides composing the single strand. Thus,
if a single stranded DNA includes 20 nucleotides, then we say
that it is a 20 mer (i.e., it is a polymer containing 20 monomers).
The length of a double-stranded DNA (where each nucleotide is
base paired) is counted in the number of base pairs. Thus, if we
make a double-stranded DNA from a single stranded 20 mer,
then the length of the double stranded DNA is 20 base pairs,
also written 20 bp. Hybridization is a special technology term
for the pairing of two single DNA strands to make a double helix
and also takes advantages of the specificity of DNA base pairing
for the detection of specific DNA strands. (For more discussions
of the relevant biological background, refer to [1] and [16]).

B. Adleman’s Experiment for Solving the Hamiltonian Path
Problem

Assume a directed graph , where and are the
set of vertices and the set of edges respectively. In general, the
Hamiltonian path problem consists of deciding whether has a
Hamiltonian path or not. with designed vertices and
is said to have a Hamiltonian path if and only if there exists a
sequence of compatible “one way” edges (that is, a
“path”), which begins at , ends at , and enters every other
vertex exactly once [2].

Adleman’s experiment is used to solve the Hamil-
tonian path problem for a directed ,
where and

[2]. The first step of
Adleman’s experiment is to generate random paths through
the directed graph . To generate random paths, each vertex

in for was associated with a random 20-mer
sequence of DNA denoted . For each edge in , an
oligonucleotide was created which was the 3 10 mer
of (unless , in which case it was all of ) followed
by the 5 mer of (unless , in which case it was all
of ). The 20-mer sequence Watson–Crick complementary
to was denoted . For each vertex in (except
and ) and for each edge in , large quantities
of oligonucleotides and were mixed together in a
single ligation reaction. Here the oligonucleotides served
as splints to bring oligonucleotides associated with compatible
edges together for ligation. Consequently, the ligation reaction
resulted in the formation of DNA molecules that can be viewed
as encoding random paths through the directed graph . From
the random paths generated, basic biological operations are
applied to remove illegal paths and select a Hamiltonian path [2].

C. The Sticker-Based Model

The sticker-based model employs two basic groups of
single-stranded DNA molecules in its representation of a bit
string [14]. Consider a memory strand bases in length
subdivided into nonoverlapping regions each bases long
(thus, ). Each region is identified with exactly one
bit position (or equivalently one Boolean variable) during the
course of the computation. Adleman et al. [14] also designed

different sticker strands or simply stickers. Each sticker is
bases long and is complementary to one and only one of
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Fig. 2. An example of a sticker memory.

Fig. 3. Examples of memory complexes.

the memory regions. If a sticker is annealed to its matching
region on a given memory strand, then the bit corresponding
that particular region is on for that strand. If no sticker is
annealed to a region, then that region’s bit is off. Each memory
strand along with its annealed stickers (if any) represents one
bit string. Such partial duplexes are called memory complexes.
A large set of bit strings is represented by a large number of
identical memory strands each of which has stickers annealed
only at the required bit positions. Such a collection of memory
complexes is called as a tube.

In this model, a unique association of memory strands and
stickers represents each possible bit string. In the illustration
given in Fig. 2, we consider a memory strand of length ,
divided into regions, each of length . Thus, in this
case the necessary complexes are interpreted as containing four
bits of information. In particular, consider the memory com-
plexes depicted in Fig. 3. In the first memory complex, all re-
gions are off, whereas in the last complex the last two regions
are on. The binary numbers represented by these four memory
complexes are 0000, 0100, 1001, and 0011, respectively.

D. Adleman’s Experiment for Solution of a Satisfability
Problem

Adleman et al. [22], [46] performed experiments that were
applied to, respectively, solve a six-variable 11-clause for-
mula and a 20-variable 24-clause three-conjunctive normal
form (3-CNF) formula. A Lipton encoding [3] was used to
represent all possible variable assignments for the chosen
six-variable or 20-variable SAT problem. For each of the six
variables , two distinct 15 base value sequences
were designed. One represents true , , and another
represents false , for . Each of the truth
assignments was represented by a library sequence of 90 bases
consisting of the concatenation of one value sequence for each
variable. DNA molecules with library sequences are termed
library strands and a combinatorial pool containing library
strands is termed a library. The six-variable library strands
were synthesized by employing a mix-and-split combinatorial
synthesis technique [24]. The library strands were assigned
library sequences with at the 5 -end and at the 3 -end

. Thus synthesis began
by assembling the two 15 base oligonucleotides with sequences

and . This process was repeated until all 6 variables had
been treated.

The probes used for separating the library strands have se-
quences complementary to the value sequences. Errors in the
separation of the library strands are errors in the computation.
Sequences must be designed to ensure that library strands have
little secondary structure that might inhibit intended probe-li-
brary hybridization. The design must also exclude sequences
that might encourage unintended probe-library hybridization.
To help achieve these goals, sequences were computer-gener-
ated to satisfy the proposed seven constraints [22]. The similar
method also is applied to solve a 20-variable of 3-SAT [46].

E. DNA Manipulations

In the past decade, there have been revolutionary advances in
the field of biomedical engineering, particularly in recombinant
DNA and RNA manipulating. Due to the industrialization of
the biotechnology field, laboratory techniques for recombinant
DNA and RNA manipulation are becoming highly standard-
ized. Basic principles about recombinant DNA can be found in
[47]–[50]. In this subsection we describe eight biological oper-
ations that are useful for solving the problem of factoring inte-
gers. The method of constructing DNA solution space for the
problem of factoring integers is based on the proposed method
in [22], [46].

A (test) tube is a set of molecules of DNA (a multiset of finite
strings over the alphabet ). Given a tube, one can
perform the following operations.

1. Extract. Given a tube and a short single strand of
DNA, , the operation produces two tubes and

, where is all of the molecules of DNA
in which contain as a substrand and is all of
the molecules of DNA in which do not contain .

2. Merge. Given tubes and , yield , where
. This operation is to pour two tubes

into one, without any change in the individual strands.
3. Detect. Given a tube , if includes at least one DNA

molecule, we have “yes,” and if contains no DNA mol-
ecule, we have “no.”

4. Discard. Given a tube , the operation will discard .
5. Amplify. Given a tube , the operation

Amplify , will produce two new tubes
and so that and are totally a copy of (

and are now identical) and becomes an empty tube.
6. Append. Given a tube containing a short strand of DNA

, the operation will append onto the end of every
strand in .

7. Append-head. Given a tube containing a short strand
of DNA, , the operation will append onto the head of
every strand in .

8. Read. Given a tube , the operation is used to describe
a single molecule, which is contained in tube . Even
if contains many different molecules each encoding a
different set of bases, the operation can give an explicit
description of exactly one of them.
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F. Comparisons of Various Famous DNA Models

Based on solution space of splint in the Adleman–Lipton
model, their methods [7], [17]–[20], [35] could be applied toward
solving the traveling salesman problem, the dominating-set
problem, the vertex cover problem, the clique problem, the inde-
pendent-set problem, the three-dimensional matching problem,
the set-packing problem, the set-cover problem, and the problem
of exact cover by three-sets. Lipton et al. [51] indicated that
DNA-based computing had been shown to easily be capable
of breaking the data encryption standard from solution space of
splint.Themethodsusedforsolvingproblemshaveexponentially
increased volumes of DNA and linearly increased the time.

Bach et al. [33] proposed a volume, time
molecular algorithm for the three-coloring problem and a
volume, time molecular algorithm for the independent
set problem, where and are, subsequently, the number of ver-
ticesandthenumberofedgesintheproblemsresolved.Fu[21]pre-
sented a polynomial-time algorithm with a volume for the
three-SAT problem, a polynomial-time algorithm with a
volumefor the three-coloringproblem,andapolynomial-timeal-
gorithmwitha volumefor theindependentset.Thoughthe
size of those volumes [21], [33] is lower, constructing those vol-
umes is more difficult and the time complexity is higher.

Quyang et al. [4] showed that enzymes could be used to solve
the NP-complete clique problem. Because the maximum number
of vertices that they can process is limited to 27, the maximum
number of DNA strands for solving this problem is 2 [4]. Shin
et al. [8] presented an encoding scheme for decreasing the error
rate of hybridization. This method [8] can be employed toward
ascertaining the traveling salesman problem for representing
integers and real values with fixed-length codes. Arita et al. [5]
and Morimoto et al. [6] proposed a new molecular experimental
technique and a solid-phase method to find a Hamiltonian path.
Amos [13] proposed a parallel filtering model for resolving the
Hamiltonian path problem, the subgraph isomorphism problem,
the three-vertex-colorability problem, the clique problem, and
the independent-set problem. The methods in [5], [6], and [13]
have lowered the error rate in real molecular experiments. In
[26], [27], and [30], the methods for DNA-based computing by
self-assembly require theuseofDNAnanostructures, called tiles,
to own expressive computational power and convenient input and
output (I/O) mechanisms. That is, DNA tiles have lower error rate
in self-assembly.

One of the earliest attempts to perform arithmetic operations
(addition of two positive binary numbers) using DNA is by
Guarneiri et al. [38], utilizing the idea of encoding differently
bit values zero and one as single-stranded DNAs, based upon
their positions and the operands in which they appear. Gupta
et al. [39] performed logic and arithmetic operations using the
fixed bit encoding of the full corresponding truth tables. Qiu and
Lu [40] applied substitution operation to insert results (by en-
coding all possible outputs of bit by bit operation along with
second operand) in the operand strands. Ogihara and Ray [41],
as well as Amos and Dunne [42] proposed methods to realize
any Boolean circuit (with bounded fan in) using DNA strands
in a constructive fashion. Other new suggestions to perform all
basic arithmetic operations are by Atanasiu [43] using P sys-
tems and by Frisco [44] using splicing operation under gen-

eral H systems, and by Hubert and Schuler [45]. Barua et al.
[31] proposed a recursive DNA algorithm for adding two binary
numbers, which require biosteps using only dif-
ferent type of DNA strands, where is the size of the binary
string representing the larger of the two numbers.

Adleman et al. [14] proposed a sticker-based model to
enhance the error rate of hybridization in the Adleman–Lipton
model. Their model can be used for determining solutions of
an instance in the set cover problem. Simultaneously, Adleman
et al. [52] also pointed out that the data encryption standard
could be easily broken from solution space of stickers in the
sticker-based model. Perez-Jimenez et al. [15] employed the
sticker-based model [14] to resolve knapsack problems. In
our previous work, Chang et al. [25], [32], [36], [53] also
employed the sticker-based model and the Adleman–Lipton
model for dealing with Cook’s theorem [9], [10], the set-split-
ting problem, the subset-sum problem, and the dominating-set
problem for decreasing the error rate of hybridization.

III. FACTORING THE PRODUCT OF TWO LARGE PRIME

NUMBERS OF BITS

A. RSA Public-Key Cryptosystem

In the RSA cryptosystem [34], a participant creates his public
and secret keys with the following steps. The first step is to select
at random two large prime numbers and , assuming that the
length of and are both bits. The second step is to compute

by the equation . The third step is to select a small
odd integer that is relatively prime to , which is equal
to . The fourth step is to compute as the
multiplicative inverse of , module . The fifth step is to
publish the pair as his RSA public key. The sixth
step is to keep secret the pair as his secret key. A
method to factor as in a reasonable amount of time has
not been found.

B. Solution Space of DNA Strands for Every Unsigned Integer
of Bits

Suppose that an unsigned integer of bits is represented
as a -bit binary number, , where the value of each
bit is either one or zero for . The bits and

represent, respectively, the most significant bit and the least
significant bit for . The range of the value to an unsigned
integer of bits is from 0 to . From [22], [46], for every
bit , two distinct 15 base value sequences are designed. One
represents the value zero for and the other represents the
value one for . For convenience, we assume that denotes
the value of to be one and defines the value of to be
zero. The following algorithm is used to construct the solution
space of DNA strands for different unsigned integer values.

Procedure InitialSolution(T )

(1) For j = k down to 1

(1a) Amplify(T , T , T ).

(1b) Append(T , m ).

(1c) Append(T , m ).

(1d) T = [(T ; T ).

EndFor

EndProcedure
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TABLE I
RESULT FOR TUBE T IS GENERATED BY THE ALGORITHM

INITIALSOLUTION(T )

Consider that the number of bits for is 3 bits. Eight values
for are, respectively, 000, 001, 010, 011,100, 101 110, and
111. Tube is an empty tube and is regarded as an input tube
for the algorithm InitialSolution . Because the value for
is three, Steps (1a) through (1d) will be run three times. After
the first execution of Step (1a) is finished, tube , tube

, and tube . Next, after the first execution for
Step (1b) and Step (1c) is performed, tube and tube

. After the first execution of Step (1d) is run, tube
, tube , and tube . Then, after

the second execution of Step (1a) is finished, tube , tube
, and tube . After the rest of

operations are performed, tube , tube , and the
result for tube is shown in Table I. Lemma 1 is applied to
demonstrate correction of the algorithm InitialSolution .

Lemma 1: The algorithm InitialSolution is used to con-
struct the solution space of DNA strands for different un-
signed integer values.

Proof: The algorithm InitialSolution is implemented
by means of the amplify, append, and merge operations. Each
execution of Step (1a) is used to amplify tube and to generate
two new tubes, and , which are copies of . Tube
then becomes empty. Then, Step (1b) is applied to append a
DNA sequence, representing the value one for , onto the end
of every strand in tube . This is to say that those integers
containing the value one to the th bit appear in tube . Step
(1c) is also employed to append a DNA sequence, representing
the value zero for , onto the end of every strand in tube .
That implies that these integers containing the value zero to the
th bit appear in tube . Next, Step (1d) is used to pour tubes

and into tube . This indicates that DNA strands in tube
include DNA sequences of and . At the end

of Step (1), tube consists of DNA sequences representing
different unsigned integer values.

From InitialSolution , it takes amplify operations,
append operations, merge operations, and three test tubes to
construct the solution space of DNA strands. A value sequence
for every bit contains 15 bases. Therefore, the length of a DNA
strand, encoding an unsigned integer value of bits, is
bases consisting of the concatenation of one value sequence for
each bit.

C. The Construction to the Product of Two Large Prime
Numbers of Bits

Assume that the length for , the product of two large prime
numbers of bits, denoted in Section III-A, is bits. Also
suppose that the product is used to represent the minuend
(dividend) and the difference for successive compare, shift, and
subtract operations in a divider. When is divided by , an

TABLE II
RESULT FOR TUBE T IS GENERATED BY THE ALGORITHM

INITIALPRODUCT(T )

unsigned integer of bits denoted in Section III-B, is one
of two large prime numbers if the remainder is equal to zero.
Assume that in a divider the length of a dividend is bits
and the length of a divisor is bits, where . It is
very obvious that the division instruction is finished through
successive compare, shift, and subtract operations of at most

times. Therefore, suppose that is represented as a
-bit binary number, , where the value of

each bit is either one or zero for and
. The bits and , respectively, rep-

resent the most significant bit and the least significant bit for .
One binary number and another binary number

are, respectively, applied to represent the
minuend and the difference for the successive compare, shift,
and subtract operations of the th time. This is to say that the
binary number is the minuend for the suc-
cessive compare, shift, and subtract operations of the th
time.

For every bit , two distinct 15 base value sequences were
designed. One represents the value zero for and the other
represents the value one for . For convenience, we assume
that denotes the value of to be one and defines
the value of to be zero. The following algorithm is used to
construct a DNA strand for the value of .

Procedure InitialProduct(T )

(1) For q = 1 to 2 � k

(1a) Append-head(T ; n ; q).

EndFor

EndProcedure

Consider that the number of bits for is 6 bits and the value
for is 001 111. Tube with the result shown in Table I is
regarded as an input tube for the algorithm, InitialProduct .
Because the value for is six, Step (1a) will be executed six
times. After each operation for Step (1a) is performed, the result
is shown in Table II. Lemma 2 is used to prove correction of the
algorithm InitialProduct .

Lemma 2: A DNA strand for the value of can be con-
structed from InitialProduct .

Proof: Refer to Lemma 1.
From InitialProduct , it takes append-head oper-

ations and one test tube to construct a DNA strand. The length
of the DNA strand, encoding the value of , is bases con-
sisting of the concatenation of one value sequence for each bit.
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TABLE III
RESULT IS GENERATED BY ONEBITCOMPARATOR(T ; T ; T ; d; o; j)

D. The Construction of a Parallel Comparator

A division operation for a dividend of bits and a divisor
of bits for are carried out by successive compare,
shift, and subtract operations of at most times. This
indicates that compare and shift operations must be finished be-
fore the corresponding subtraction operation is done. Therefore,
the algorithm OneBitComparator is pre-
sented to perform the function of a 1-bit parallel comparator and
the algorithm ParallelComparator also is
proposed to perform the function of a -bit parallel comparator.

Procedure OneBitComparator(T ; T ; T ; d; o; j)

(1) T = +(T ; n ) and T =

�(T ; n ).

(2) T = +(T ;m ) and T =

�(T ;m ).

(3) T = +(T ;m ) and T =

�(T ;m ).

(4) T = [(T ; T ; T ).

(5) T = [(T ; T ).

(6) T = [(T ; T ).

EndProcedure

Consider that the first execution for the algorithm
OneBitComparator is invoked. The
values for , and are, respectively, one, one, and one. Tube

, tube

tube , and three tubes are regarded as input tubes. After
each operation in the algorithm is performed, the result is shown
in Table III. Lemma 3 is used to show correction of the algorithm
OneBitComparator .

Lemma 3: The algorithm OneBitCompara-
tor can be applied to perform the
function of a 1-bit parallel comparator.

Proof: The algorithm OneBitCompara-
tor is implemented by the extract
and merge operations. The execution of Step (1) employs
the extract operation to form two test tubes: and .
The first tube includes all of the strands that have

. The second tube consists
of all of the strands that have .
Next, on the execution of Step (2), it also uses the extract
operation to form two test tubes: and . The first tube
includes all of the strands that have

and . The second tube consists of
all of the strands that have and

. The execution of Step (3) uses the extract
operation to form two test tubes: and . The first tube
includes all of the strands that have
and . The second tube consists of
all of the strands that have and

. Because the corresponding bits of
the dividend and the divisor in are both one and the
corresponding bits of the dividend and the divisor in are
both zero, next, the execution of Step (4) uses the merge
operations to pour and into . In , the corresponding
bit of the dividend is one and the corresponding bit of the
divisor is zero, so the execution of Step (5) also applies the
merge operations to pour into . Next, in , since the
corresponding bit of the dividend is zero and the corresponding
bit of the divisor is one, the execution of Step (6) employs the
merge operations to pour into .

From OneBitComparator , it takes three
extract operations, three merge operations, and nine test tubes
to finish the function of a 1-bit parallel comparator.

Procedure ParallelComparator(T ; T ; T ; T ; d; o)

(1) For j = 1 to o � 1

(1a) T = +(T ; n ) and T =

�(T ; n ).

(1b) T = [(T ; T ).

(1c) If (Detect(T )= “yes”) then

(1d) T = [(T ; T ).

Else

(1e) Terminate the algorithm.

EndIf

EndFor

(2) T = [(T ; T ).

(3) For j = o to k + o � d

(3a) OneBitComparator(T ; T ; T ; d; o; j).

(3b) If (Detect(T ) = “no”) then

(3c) Terminate the algorithm.

EndIf

EndFor

EndProcedure

Consider that the first execution for the algorithm
ParallelComparator is invoked. The
values for and are, respectively, one and one. Tube

tube , tube , tube , and four tubes
are regarded as input tubes. Because the value for the upper
bound in Step (1) is zero, Steps (1a) through (1e) are not run.
After the first execution for Step (2), Step (3a) and Step (3b)
is finished, a “no” is returned from Step (3b). Therefore, the
algorithm is terminated from Step (3c). The result is shown in
Table IV. Lemma 4 is used to show correction of the algorithm
ParallelComparator .

Lemma 4: The algorithm ParallelComparator
can be used to finish the function of a -bit

parallel comparator.
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TABLE IV
RESULT IS GENERATED BY PARALLELCOMPARATOR(T ; T ; T ; T ; d; o)

Proof: Step (1) is the first loop and is used to compare the
most significant bits of the dividend with zeros
for the th compare and shift operations. The first execution of
Step (1a) employs the extract operation to form two test tubes:

and . The first tube includes all of the strands that have
. The second tube consists of all of the

strands that have . In , the corresponding
bit of the dividend is one and the shift bit of the divisor is zero, so
the first execution of Step (1b) uses the merge operations to pour

into . The first execution of Step (1c) employs the detect
operations to check whether tube contains any DNA strand
or not. If a “yes” is returned, then the first execution of Step (1d)
applies the merge operations to pour into . Otherwise, the
algorithm is terminated in Step (1e). Repeat the execution of each
step in the loop until the number of the execution for the loop is
performed.

After each operation in the first loop is finished, tube con-
tains the strands that have the comparative result (“=”) for the
most significant bits of the dividend with zeros for
the th compare and shift operations. Step (2) uses the merge op-
eration to pour into . When the first execution of Step (3a)
calls the algorithm OneBitComparator to
finish the comparative result of the corresponding bit for the

-bit dividend and the -bit divisor for in a di-
vider. After Step (3a) is performed, the comparative results are,
respectively, represented in , , and . On the first execu-
tion of Step (3b), it uses the detect operations to check whether
there is any DNA sequence in . If a “no” is returned, then the
execution of Step (3c) is used to terminate the algorithm. Oth-
erwise, Steps (3a) through (3b) are repeated to execute until the
corresponding bits of the -bit dividend and the -bit di-
visor for in a divider are all processed. Finally, tube

contains the strands with the comparative result of greater
than (“ ”), tube includes the strands with the comparative
result of equal (“=”) and tube consists of the strands with
the comparative result of less than (“ ”).

From ParallelComparator , it takes
extract operations,

merge operations, detect operations, and 11 tubes
to finish the function of a -bit parallel comparator.

E. The Construction of a Parallel 1-Bit Subtractor

A 1-bit subtractor is a function that forms the arithmetic sub-
traction of three input bits. It consists of three inputs and two
outputs. Two of the input bits, respectively, represent minuend

and subtrahend bits to be subtracted. The third input represents
the borrow bit from the previous higher significant position. The
first output gives the value of the difference for minuend and
subtrahend bits to be subtracted. The second output gives the
value of the borrow bit to minuend and subtrahend bits to be
subtracted. The truth table of the 1-bit subtractor is as follows.

Suppose that a 1-bit binary number denoted in Sec-
tion III-C is used to represent the first input of a 1-bit subtractor
for and . Also assume that a
1-bit binary number denoted in Section III-C is applied
to represent the first output of a 1-bit subtractor. Suppose that
a 1-bit binary number denoted in Section III-B is also
employed to represent the second input of a 1-bit subtractor
for . Also assume that a 1-bit binary number is
employed to represent the second output of a 1-bit subtractor.
Also suppose that a 1-bit binary number is employed to
represent the third input of a 1-bit subtractor.

For every bit and to and
, two distinct DNA sequences are designed

to represent the value zero or one of every corresponding bit.
For convenience, we assume that contains the value of
to be one and contains the value of to be zero. Also
suppose that denotes the value of to be one and

defines the value of to be zero. Similarly, assume
that contains the value of to be one and
contains the value of to be zero. The following algorithm
is proposed to finish the function of a parallel 1-bit subtractor.

Procedure ParallelOneBitSubtractor(T ; o; q; j)

(1) T = +(T ; n ) and T = �(T ; n ).

(2) T = +(T ;m ) and T = �(T ;m ).

(3) T = +(T ;m ) and T = �(T ;m ).

(4) T = +(T ; b ) and T = �(T ; b ).

(5) T = +(T ; b ) and T = �(T ; b ).

(6) T = +(T ; b ) and T = �(T ; b ).

(7) T = +(T ; b ) and T = �(T ; b ).

(8a) If (Detect(T ) = “yes”) then

(8) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(9a) If (Detect(T ) = “yes”) then

(9) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(10a) If (Detect(T ) = “yes”) then

(10) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(11a) If (Detect(T ) = “yes”) then

(11) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(12a) If (Detect(T ) = “yes”) then

(12) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(13a) If (Detect(T ) = “yes”) then

(13) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf
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(14a) If (Detect(T ) = “yes”) then

(14) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(15a) If (Detect(T ) = “yes”) then

(15) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(16) T = [(T ; T ; T ; T ; T ; T ; T ; T ).

EndProcedure

Consider that the first execution for the algorithm Par-
allelOneBitSubtractor invokes tube

and it is regarded as an input tube. The values for , , and
are, respectively, three, two, and one. After each operation in
the algorithm is performed, the result is shown in Table VI.
Lemma 5 is applied to show correction of the algorithm
ParallelOneBitSubtractor .

Lemma 5: The algorithm ParallelOneBitSubtrac-
tor can be applied to finish the function of a
parallel 1-bit subtractor.

Proof: The algorithm ParallelOneBitSubtrac-
tor is implemented by means of the extract,
append-head, and merge operations. The execution of Step
(1) employs the extract operation to form two test tubes:
and . The first tube includes all of the strands that have

. The second tube consists of all of the strands that
have . In Step (2), the extract operation is used to form
two test tubes: and . The first tube includes all of the
strands that have and . The second tube
consists of all of the strands that have and .
Next, the execution of Step (3) uses the extract operation to
form two test tubes: and . The first tube includes all
of the strands that have and . The second
tube consists of all of the strands that have and

. The execution of Step (4) uses the extract operation
to form two test tubes: and . The first tube includes
all of the strands that have , and .
The second tube consists of all of the strands that have

, and . Then, on the execution
of Step (5), it applies the extract operation to form two test
tubes: and . The first tube includes all of the strands
that have , and . The second tube

TABLE V
TRUTH TABLE OF A 1-BIT SUBTRACTOR

consists of all of the strands that have ,
and . On the execution of Step (6), it employs the
extract operation to form two test tubes: and . The first
tube includes all of the strands that have ,
and . The second tube consists of all of the
strands that have , and . Next, the
execution of Step (7) uses the extract operation to form two test
tubes: and . The first tube includes all of the strands
that have , and . The second tube

consists of all of the strands that have ,
and . After finishing Steps (1) to (7), eight different
inputs of a 1-bit subtractor in Table V, respectively, have been
poured into tubes through .

Steps (8a), (9a), (10a), (11a), (12a), (13a), (14a), and (15a)
are, respectively, used to check whether contains any DNA
strand for tubes , , , , , , , and or not.
If any “yes” is returned for those steps, then the corresponding
append-head operations will be run. Next, the execution of
Step (8) uses the append-head operations to append
and onto the head of every strand in . On the execution
of Step (9), it applies the append-head operations to append

and onto the head of every strand in . Then, the
execution of Step (10) employs the append-head operations to
append and onto the head of every strand in . On
the execution of Step (11), it uses the append-head operations
to append and onto the head of every strand in

. Next, the execution of Step (12) uses the append-head
operations to append and onto the head of every
strand in . On the execution of Step (13), it uses the ap-
pend-head operations to append and onto the head
of every strand in . Then, the execution of Step (14) applies
the append-head operations to append and onto the
head of every strand in . On the execution of Step (15), it
employs the append-head operations to append and
onto the head of every strand in . After finishing Steps (8)
to (15), eight different outputs of a 1-bit subtractor in Table V,
respectively, are appended into tubes through . Finally,
the execution of Step (16) applies the merge operation to pour
tubes through into . Tube contains the strands
finishing the subtraction of a bit.

From ParallelOneBitSubtractor , it takes seven
extract operations, 16 append-head operations, 16 detect oper-
ations, one merge operation, and 15 test tubes to compute the
subtraction of a bit. Two output bits of a 1-bit subtractor encode
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the difference bit and the borrow bit to the subtraction of a bit.
A value sequence for every output bit contains 15 bases. There-
fore, the length of a DNA strand, encoding two output bits, is
30 base pairs.

F. The Construction of a Binary Parallel Subtractor

The 1-bit subtractor introduced in Section III-E figures out
the difference bit and the borrow bit for two input bits and a
previous borrow bit. A minuend of bits and a subtrahend of
bits for can finish subtractions of at most times by
means of this 1-bit subtractor. A binary parallel subtractor is a
function that performs the arithmetic subtraction for a minuend
of bits and a subtrahend of bits for . The following
algorithm is proposed to finish the function of a binary parallel
subtractor.

Procedure BinaryParallelSubtractor(T ; d; o; q)

(1) For j = 1 to k � d + 1

(1a) ParallelOneBitSubtractor(T ; o; 2 � k � (o �

1) � (k � d + 1 � j); j).

EndFor

EndProcedure

Consider that the first execution for the algorithm
BinaryParallelSubtractor invokes tube

and it is regarded as an input tube. The values for , , and are,
respectively, one, three, and two. Because the value of the upper
bound in Step (1) is three, the algorithm, ParallelOneBitSubtrac-
tor , in Step (1a)
will be invoked three times. After the first execution of Step (1a)
is run, the result for tube is shown in Table VI. Finally,
after the third execution for Step (1a) is performed, the result is
shown in Table VII. Lemma 6 is applied to prove correction of
the algorithm BinaryParallelSubtractor .

Lemma 6: The algorithm BinaryParallelSubtrac-
tor can be applied to finish the function of a
binary parallel subtractor.

Proof: Step (1) is the only loop and is mainly used to finish
the function of a binary parallel subtractor. On the first execu-
tion of Step (1a), it calls the procedure ParallelOneBitSubtractor

to compute the arith-
metic subtraction of the least significant bit to the minuend and
the subtrahend with the result left in . Step (1a) is repeated

TABLE VI
RESULT IS GENERATED BY PARALLELONEBITSUBTRACTOR(T ; o; q; j)

TABLE VII
RESULT IS GENERATED BY BINARYPARALLELSUBTRACTOR(T ; d; o; q)

until the most significant bit in the minuend and the subtrahend
is processed. Tube contains the strands finishing the sub-
traction operations of at most bits.

From BinaryParallelSubtractor , it takes
extract operations, append-head op-

erations, detect operations, merge
operations, and 15 test tubes to compute the arithmetic subtrac-
tion of at most bits. The length of a DNA strand, encoding the
difference bit and the borrow bit for the minuend and the sub-
trahend, is bases.

G. The Construction of a Binary Parallel Divider

A binary parallel divider is a function that performs the arith-
metic division for a dividend of bits and a divisor of
bits for . The quotient obtained from the dividend
and the divisor can be at most up to bits long. The re-
mainder obtained from the dividend and the divisor can also be
at most up to bits long. Because we only check whether the re-
mainder is equal to zero, therefore, the quotient can be ignored.
The following algorithm is proposed to finish the function of a
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binary parallel divider. The second parameter, , in the proce-
dure is used to represent the th division operation.

Procedure BinaryParallelDivider(T ; d)

(1) For o = 1 to k + d

(1a0) Append-head(T ; b ).

(1a) ParallelComparator(T ; T ; T ; T ; d; o).

(1b) T = [(T ; T ).

(1c) If (Detect(T ) = “yes”) then

(2) For q = 1 to (2 � k)� (o� 1)� (k � d)� 1

(2a) T = +(T ; n ) and

T = �(T ; n ).

(2a1) If (Detect(T ) = “yes”) then

(2b) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(2b1) If (Detect(T ) = “yes”) then

(2c) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(2d) T = �(T ; T ).

EndFor

(3) BinaryParallelSubtractor(T ; d; o; q).

(4) For q = (2 � k)� (o � 1) + 1 to 2 � k

(4a) Append-head(T ; n ) and

Append-head(T ; b ).

EndFor

EndIf

(4b) If (Detect(T ) = “yes”) then

(5) For q = 1 to 2 � k

(5a) T = +(T ; n ) and

T = �(T ; n ).

(5a1) If (Detect(T ) = “yes”) then

(5b) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(5b1) If (Detect(T ) = “yes”) then

(5c) Append-head(T ; n ) and

Append-head(T ; b ).

EndIf

(5d) T = [(T ; T ).

EndFor

EndIf

(6) T = [(T ; T ).

EndFor

EndProcedure

Consider that the first execution for the algorithm
BinaryParallelDivider invokes tube

and it is regarded as an input tube. The value for is one. Be-
cause the value of the upper bound in Step (1) is four, each oper-
ation embedded in Step (1) will be run four times. After the first
execution for Step (1a0), Step (1a) and Step (1b) is performed,
tube , tube , tube , tube and
the result for tube is shown in Table IV. A “no” is returned
from the first execution of Step (1c), so Steps (2a) through (2d)

are not run. A “yes” is returned from the first execution of Step
(4b), so Steps (5a) through (5d) will be run six times. After each
operation embedded in Step (5) is finished and the first execu-
tion for Step (6) is also performed, tube , tube ,
tube , tube , and tube

Next, the second execution of each operation in the algorithm
is performed, tube , tube , , tube ,
tube , tube , and tube

After the third execution for Steps (1a0) through Step (1c) is
finished, a “yes” is returned from the third execution of Step
(1c). Because the value of the upper bound in Step (2) is one,
each operation embedded in Step (2) will be run one time. After
those operations embedded in Step (2) are run, tube ,
tube , and tube

After the first execution for Step (3) invokes the algo-
rithm, BinaryParallelSubtractor , the result is
shown in Table VII. Next, after the rest of operations in
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TABLE VIII
RESULT IS GENERATED BY BINARYPARALLELDIVIDER(T ; d)

BinaryParallelDivider are performed, tube ,
tube , , tube , tube ,
tube , and the result for tube is shown in
Table VIII. Lemma 7 is used to show correction of the algo-
rithm BinaryParallelDivider .

Lemma 7: The algorithm BinaryParallelDivider can
be applied to finish the function of a binary parallel divider.

Proof: The division to a dividend of bits and a
divisor of bits for is finished through of successive
compare, shift, and subtract operations of at most times.
When the first compare, shift, and subtract operations, the least
significant position for the dividend and the divisor is subtracted,
the input borrow bit must be zero. Step (1) is the main loop and
is applied to finish the function of a binary parallel divider. So
each execution of Step (1a0) uses the append-head operation
to append 15-based DNA sequences for representing onto
the head of every strand in . On each execution of Step (1a),
it calls ParallelComparator to compare
the divisor with the corresponding bits of the dividend. After it
is finished, three tubes are generated and are, respectively, ,

, and . The first tube includes the strands with the
comparative result of greater than (“ ”). The second tube
includes the strands with the comparative result of equal (“=”).
The third tube consists of the strands with the comparative
result of less than (“ ”). Next, each execution of Step (1b)
employs the merge operation to pour tubes and into

. On each execution Step (1c) applies the detect operation
to check whether tube contains any DNA strand or not.
If a “yes” is returned, then Step (2) through Step (4a) will be
run. Otherwise, those steps will not be executed. Step (2) is a
loop and is used mainly to reserve the least significant

bits of the dividend. This implies

that the least significant
bits of the minuend (dividend) for the th compare, shift, and
subtract operations are reserved. And they are equal to the least
significant bits of the difference
for the same operations. Therefore, on each execution of Step
(2a), it uses the extract operation to form two test tubes:
and . The first tube includes all of the strands that have

. The second tube consists of all of the strands that
have . On each execution Step (2a1) uses the detect
operation to test if tube contains any DNA strand. If a “yes” is
returned,thenStep(2b)willberun.Otherwise,thatstepwillnotbe
executed.Next, each execution of Step (2b) uses the append-head
operations to append and onto the head of every
strand in . Each execution of Step (2b1) applies the detect
operation to examine if tube contains any DNA strand. If a
“yes” is returned, then Step (2c) will be run. Otherwise, that step
will not be executed. On each execution of Step (2c), it applies the
append-head operations to append and onto the head
of every strand in . Then, each execution of Step (2d) employs
the merge operation to pour tubes and into . Tube

contains the strands finishing compare, shift, and subtract
operations of a bit. Repeat execution of Steps (2a) through (2d)
until the least significant bits
of the minuend (dividend) are processed. Tube contains
the strands finishing compare, shift, and subtract operations of
the least significant bits of
the minuend (dividend).

Next, when each execution of Step (3) calls the algorithm
BinaryParallelSubtractor to finish compare, shift,
and subtract operations of bits. Step (4) is a loop and
it is used to finish compare, shift, and subtract operations of the
most significant bits in the minuend (dividend). Because
the most significant bits in the minuend (dividend) for the
th compare, shift, and subtract operations are all zero, the most

significant bits of the difference to the th compare, shift,
and subtract operations are equal to the most significant
bits of the minuend to the same operations. On each execution
of Step (4a), it applies the append-head operations to append

and onto the head of every strand in . Repeat
execution of Step (4a) until the most significant bits
of the minuend are processed. Tube contains the strands
finishing the th compare, shift, and subtract operations for the
comparative result of greater than or equal to (“ ”).

Next, each execution of Step (4b) applies the detect opera-
tion to check whether tube contains any DNA strand or not.
If a “yes” is returned, then Step (5) through Step (5d) will be
run. Otherwise, those steps will not be executed. Since con-
sists of all of the strands with the comparative result of less than
(“ ”). This implies that the bits of the difference to the
th compare, shift, and subtract operations are equal to the

bits of the minuend to the same operations. Step (5) is a loop and
is employed to finish the th compare, shift, and subtract oper-
ations for tube . On each execution of Step (5a), it employs
the extract operation to form two test tubes: and . The
first tube includes all of the strands that have . The
second tube consists of all of the strands that have .
On each execution Step (5a1) uses the detect operation to test
if tube contains any DNA strand. If a “yes” is returned, then
Step (5b) will be run. Otherwise, that step will not be executed.
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Next, each execution of Step (5b) uses the append-head opera-
tions to append and onto the head of every strand in

. Each execution of Step (5b1) applies the detect operation to
examine whether tube contains any DNA strand or not. If a
“yes” is returned, then Step (5c) will be run. Otherwise, that step
will not be executed. On each execution of Step (5c), it applies
the append-head operations to append and onto the
head of every strand in . Then, each execution of Step (5d)
applies the merge operation to pour tubes and into .
Tube contains the strands finishing compare, shift, and sub-
tract operations of a bit. Repeat execution of Steps (5a) through
(5d) until the bits are processed. Tube contains the
strands finishing compare, shift, and subtract operations of the

bits for the th compare, shift, and subtract operations to
the comparative result of less than (“ ”).

Next, each execution of Step (6) applies the merge operation
to pour tubes and into . Tube contains the strands
finishing the th compare, shift, and subtract operations of
bits for the comparative results of greater than or equal to or
less than. Repeat execution of the steps above until successive
compare, shift, and subtract operations of at most times
are processed. Tube contains the strands finishing a division
for a dividend of bits and a divisor of bits for .

From BinaryParallelDivider , it takes
extract operations,

append-head operations,
merge operations,

detect
operations, and 22 tubes to compute the division operation. The
length of a DNA strand, encoding the difference bits and the
borrow bits, is bases.

H. Finding Two Large Prime Numbers of Bits

The following DNA algorithm is applied to find two large
prime numbers of bits.

Algorithm 1: Finding two large prime numbers of

k bits

(1) InitialSolution(T ).

(2) InitialProduct(T ).

(3) For d = 1 to k

(3a) T = +(T ;m ) and

T = �(T ;m ).

(3b) BinaryParallelDivider(T ; d).

(3c) For q = 1 to k � d + 1

(3d) T = +(T n ) and

T = �(T ; n ).

(3e) Discard(T ).

(3f) If (Detect(T ) = “no”) then

(3g) Terminate the execution of the

second (inner) loop.

EndIf

EndFor

(3h) If (Detect(T ) = “yes”) then

(3i) Read(T ) and then terminate

the algorithm.

EndIf

(3j) T = [(T ; T ).

EndFor

EndAlgorithm

Consider that the value for is 001 111. Algorithm 1 is used
to factor into three and five. Tube is an empty tube and is
regarded as an input tube for Algorithm 1. After the execution
for Step (1) is performed, the result for tube is shown in
Table I. Next, after the execution for Step (2) is finished, the
result for tube is shown in Table II. Because the value for
is three, each operation embedded in Step (3) will be at most run
three times. After the first execution for Step (3a) is performed,
tube

and tube

Next, after the first execution of Step (3b) is finished, the result
for tube is shown in Table VIII.

Since the value of the upper bound in Step (3c) is three, each
operation embedded in Step (3c) will be at most run three times.
Next, after the first execution of Step (3d) is run, tube

and tube

Next, after the first execution for Step (3e) is performed, tube
. A “yes” is returned from the first execution of Step

(3f), so the first execution for Step (3g) is not run.
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Next, after the rest of operations for Steps (3d) through (3f)
are performed, tube

and tube . A “yes” is returned from the first execution of
Step (3h). Next, the answer is five from the first execution of Step
(3i) and Algorithm 1 is terminated from the first execution of Step
(3i). Since one of two primers is five, another primer is equal to
three. Theorem 1 is used to show correction of Algorithm 1.

Theorem 1: From those steps in Algorithm 1, the difficulty
of factoring the product of two large prime numbers of bits is
solved.

Proof: On the execution of Step (1), it calls
InitialSolution to construct solution space of DNA strands
for every unsigned integer of bits. This means that tube
includes strands encoding different integer values. Next,
the execution of Step (2) calls InitialProduct to append
DNA sequences of encoding , the product of two large prime
numbers of bits, onto the head of every strand in tube .
This implies that the front bits and the last bits of
every strand in , respectively, represent the dividend and the
divisor of a division instruction after Step (2) is performed.

Step (3) is two level loops and is mainly used to factor the
product of two large prime numbers of bits. On each execu-
tion of Step (3a), it uses the extract operation to form two tubes:

and . The first tube includes all of the strands that have
. This is to say that the th bit of every

divisor in is equal to one. The second tube consists of
all of the strands that have . This indicates that the

th bit of every divisor in is equal to zero. Because
the front bits of every divisor in are all zeros, therefore, the

th division instruction is not applied to compute the remainder
of every strand in . Next, each execution of Step (3b) calls
BinaryParallelDivider . The procedure is used to finish a
division instruction. After Step (3b) is performed, the remainder
of every strand in is computed. Step (3c) is the inner loop and
is mainly employed to judge whether the remainder of a division
operation is equal to zero. On each execution of Step (3d), it uses
the extract operation to form two tubes: and . The first
tube includes all of the strands that have . This
means that the th bit of every remainder in is equal to zero.
The second tube consists of all of the strands that have

. This implies that the th bit of every remainder
in is equal to one. Since the strands in encode every
remainder that is not equal to zero, Step (3e) is used to discard

. Then, each execution of Step (3f) applies the detect oper-
ation to check whether tube contains any DNA strand or not.
If a “no” is returned, then this indicates that all of the remain-
ders in for the th division operation are not equal to zero.
Therefore, Step (3g) is employed to terminate the execution of
the inner loop. If a “yes” is returned, then repeat the steps until
the number of the execution of the inner loop is performed.

After the inner loop is performed, Step (3h) is applied to de-
tect whether contains any DNA strands or not. If it returns a
“yes,” then DNA sequences in represent the remainders that
are equal to zero. Hence, Step (3i) is used to find the answer
(one of two large prime numbers) from . Simultaneously, the
algorithm is terminated. If it returns a “no,” then Step (3j) is
employed to pour tube into tube . This is to say that
reserves the strands that have . Repeat the steps
until the number of the execution of the outer loop is performed.
Finally, the strands in encode every strand that is zero. This
indicates that the only two large prime numbers of bits are in

. Therefore, it is inferred that the difficulty of factoring the
product of two large prime numbers of bits is solved from
those steps in Algorithm 1.

I. Breaking the RSA Public-Key Cryptosystem

The RSA public-key cryptosystem can be used to encrypt mes-
sages sent between two communicating parties so that an eaves-
dropper who overhears the encrypted message will not be able to
decodethem.Assumethattheencryptedmessageoverheardisrep-
resented as (the corresponding cipher-text). An eavesdropper
only needs to use the following algorithm to decode them.

Algorithm 2: Breaking the RSA Public-key

Cryptosystem

(1) Call Algorithm 1.

(2) Compute the secret key d, from the multi-

plicative inverse of

e, module (p� 1) � (q � 1) on a classical computer.

(3) Decode the messages overheard through the

decryption

function, C (module n) on a classical computer.

EndAlgorithm

Theorem 2: From the steps in Algorithm 2, an eavesdropper
can decode the encrypted message overheard.

Proof: Refer to Algorithm 1.

J. The Complexity of Algorithm 1

Lemma 8: Suppose that the length of , the product of two
large prime numbers of bits is bits. The difficulty of
factoring can be solved with biological operations so-
lution space of DNA strands.

Proof: Refer to Algorithm 1.
Lemma 9: Suppose that the length of , the product of two

large prime numbers of bits, is bits. The difficulty
of factoring can be solved with library strands from
solution space of DNA strands.

Proof: Refer to Algorithm 1.
Lemma 10: Suppose that the length of , the product of two

large prime numbers of bits, is bits. The difficulty of
factoring can be solved with (1) tubes from solution space
of DNA strands.

Proof: Refer to Algorithm 1.
Lemma 11: Suppose that the length of , the product of two

large prime numbers of bits, is bits. The difficulty of
factoring can be solved with the longest library strand, ,
from solution space of DNA strands.

Proof: Refer to Algorithm 1.
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IV. DISCUSSION

The proposed algorithm (Algorithm 1) for factoring the
product of two large prime numbers of bits is based on
biological operations from solution space of DNA strands. This
algorithm has several advantages from biological operations
and solution space of DNA strands. First, the Adleman program
[22], [46] was used to generate good DNA sequences to con-
struct the solution space of DNA strands. Good DNA sequences
were applied to decrease a rate of errors for hybridization. This
indicates that the proposed algorithm actually has a lower rate
of errors for hybridization.

Second, basic biological operations were employed to finish
the function of a -bit parallel comparator, the function of a
parallel subtractor, and the function of a parallel divider. This
means that the proposed algorithm has the computational ca-
pability of mathematics to finish subtraction (“ ”) and division
(“ ”). Basic biological operations had been performed in a fully
automated manner in their lab. The full automation manner is
essential not only for the speedup of computation but also for
error-free computation.

Third, in Algorithm 1 for factoring the product of two large
prime numbers of bits, the number of tubes, the longest length
of DNA strands, the number of DNA strands, and the number of
biological operations, respectively, are (1), , , and

. This implies that the proposed algorithm can be easily
performed in a fully automated manner in a lab. Fourthly, after

is factored as from Algorithm 1, decoding an encrypted
message overheard is performed on a classical computer. This
is to say that decoding an overheard encrypted message can be
easily implemented on a classical computer after is factored
as .

V. CONCLUSION

A general digital computer mainly contains the CPU and
memory. The main function for the CPU is to perform mathe-
matical computational tasks and the main function to memory is
to store each data needed for mathematical computational tasks.
However, on a general molecular computer, each data needed
for mathematical computational tasks is encoded by means of a
DNA strand and performing mathematical computational tasks
is by means of a DNA algorithm (including a series of basic bi-
ological operations) on those DNA strands. The execution time
for any basic biological operation is very longer than that of a
digital mathematical instruction. Hence, in order to significantly
improve the execution time for any basic biological operation,
Adleman [2] indicated that exponential DNA strands are neces-
sary. This implies that by means of a basic biological operation
on exponential DNA strands can be used to perform exponential
digital mathematical instructions.

The paper is the first paper that demonstrates that the difficult
problem for factoring the product of two large prime numbers of

bits can be solved on a DNA-based computer. The proposed
algorithm takes a number of steps that is polynomial in the input
size, e.g., the number of binary digits of the product (integer) to
be factored. Simultaneously, the paper also shows that humans’
mathematical operations can directly be performed with basic
biological operations. The property for the difficulty of factoring

the product of two large prime numbers is the basis of cryp-
tosystems using public key. However, the property seems to be
incorrect on a molecular computer. This indicates that the cryp-
tosystems using public key are perhaps insecure. Furthermore,
the first example of molecular cryptanalysis for cryptosystems
based on public key is proposed in the paper.

Currently the future of molecular computers is unclear. It is
possible that in the future molecular computers will be the clear
choice for performing massively parallel computations. How-
ever, there are still many technical difficulties to overcome be-
fore this becomes a reality. We hope that this paper helps to
demonstrate that molecular computing is a technology worth
pursuing.
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