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Abstract

Cook’s Theorem [Cormen, T.H., Leiserson, C.E., Rivest, R.L., 2001. Introduction to Algorithms, second ed., The MIT Press;
Garey, M.R., Johnson, D.S., 1979. Computer and Intractability, Freeman, San Fransico, CA] is that if one algorithm for an NP-
complete or an NP-hard problem will be developed, then other problems will be solved by means of reduction to that problem.
Cook’s Theorem has been demonstrated to be correct in a geligital electroniccomputer. In this paper, we first propose a
DNA algorithm for solving thevertex-cover problenThen, we demonstrate that if the size of a reduced NP-complete or NP-hard
problem is equal to or less than that of the vertex-cover problem, then the proposed algorithm can be directly used for solving the
reduced NP-complete or NP-hard problem and Cook’s Theorem is correct on DNA-based computing. Otherwise, a new DNA
algorithm for optimal solution of a reduced NP-complete problem or a reduced NP-hard problem should be developed from the
characteristic of NP-complete problems or NP-hard problems.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction an instance of the NP-complete Hamiltonian path prob-
lem (HPP) Adleman, 1994 Lipton wrote the second

Adleman wrote the first paper in which it paper in which it was shown that the Adleman tech-

was demonstrated that deoxyribonucleic acid (DNA) niques could also be used to solve the NP-complete
strands could be applied for figuring out solutions to satisfiability (SAT) problem (the first NP-complete
problem) (ipton, 1995. Adleman and co-workers

T S— proposedsticker for enhancing the Adleman—Lipton
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tions in the Adleman-Lipton model to develop a DNA
algorithm. The main result of the proposed DNA algo-
rithm shows that the vertex-cover problem is solved
with biological operations in the Adleman-Lipton
model from the solution space of stickers. Furthermore,
if the size of a reduced NP-complete or a reduced NP-
hard problem is equal to or less than that of the vertex-
cover problem, then the proposed algorithm can be di-
rectly used for solving the reduced NP-complete, or
NP-hard problem.

The rest of this paper is organized as follows. In Sec-
tion 2, the Adleman-Lipton model is introduced and
the comparison is made with other models. In Section
3, the first DNA algorithm is proposed for solving the
vertex-cover problem from solution space of sticker
in the Adleman-Lipton model. In Sectioh the ex-
perimental result of simulated DNA computing is also
given. Conclusions are drawn in Section

2. DNA model of computation

In Section2.1, a summary of DNA structure and
the Adleman-Lipton model is described in detail. In
Section2.2, the comparison of the Adleman—Lipton
model with other models is also introduced.

2.1. The Adleman—Lipton model

A DNA is a moleculethat plays the main role in
DNA based computingRaun et al., 19981In the bio-
chemical world of large and smatioleculespolymers
and monomers DNA is a polymer, which is strung
together from monomers calleoxyribonucleotides
The monomers used for the construction of DNA are
deoxyribonucleotides which each deoxyribonucleotide
containing three components: saigar, a phosphate
group and anitrogenoushase. This sugar has five car-
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Fig. 1. A schematic representation of a nucleotide.

clude adenineand guanine abbreviated A and G.
Pyrimidines contairytosineandthymine abbreviated
C and T. Because nucleotides are only distinguished
from their bases, they are simply represented as A, G,
C, or T nucleotides, depending upon the sort of base
that they have. The structure of a nucleotide is illus-
trated (in a very simplified way) ifig. 1 In Fig. 1, B
is one of the four possible bases (A, G, C, orHs the
phosphate group and the rest (the “stick”) is the sugar
base (with its carbons enumeratédHhrough 5).

Nucleotides can link together in two different ways
(Sinden, 1994; Boneh et al., 1996; Paun et al., 1998
The first method is that the’phosphate group of
one nucleotide is joined with' 3iydroxyl group of the
other forming aphos-phodiestebond. The resulting
molecule has the’fsphosphate group of one nucleotide,
denoted as"®end, and the’30H group of the other nu-
cleotide available, denoted asshd, for bonding. This
gives the molecule thdirectionality, and we can talk
about the direction of'®nd to 3end or 3end to 5end.
The second way is that the base of one nucleotide inter-
acts with the base of the other to form a hydrogen bond.
This bonding is the subject of the following restriction
on the base pairing: A and T can pair together, and C
and G can pair together—no other pairings are possi-
ble. This pairing principle is called the Watson—Crick
complementarity (named after James D. Watson and
Francis H.C. Crick who deduced the famous double
helix structure of DNA in 1953, and won the Nobel
Prize for the discovery).

A DNA strand is essentially a sequence (polymer)
of four types of nucleotides detected by one of four

bon atoms—for the sake of reference there is a fixed bases they contain. Two strands of DNA can form (un-
numbering of them. Because the base also has carbonsger appropriate conditions) a double strand, if the re-
to avoid confusion the carbons of the sugar are num- spective bases are the Watson—Crick complements of
bered from 1to 5 (rather than from 1 to 5). The phos- each other—A matches T and C matches G; also 3
phate group is attached to thedarbon, and the base end matches’%end. The length of a single stranded
is attached to the’ tarbon. Within the sugar structure  DNA is the number of nucleotides comprising the sin-
there is a hydroxyl group attached to tHec8rbon. gle strand. Thus, if a single stranded DNA includes 20
Distinct nucleotides are detected only with their nucleotides, then we say thatitis a 20 mer (it is a poly-
bases, which come in two sorts: purines and pyrim- mer containing 20 monomers). The length of a double
idines Sinden, 1994; Paun et al., 199&urines in- stranded DNA (where each nucleotide is base paired) is
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counted in the number of base pairs. Thus, if we make
a double stranded DNA from a single stranded 20 mer,
then the length of the double stranded DNA is 20 base
pairs, also written 20 bp (for more discussion of the
relevant biological background refer 8inden, 1994;
Boneh et al., 1996; Paun et al., 1998

In the Adleman-Lipton modelAdleman, 1994;
Lipton, 1995, splints were used to correspond to the
edges of a particular graph the paths of which repre-
sented all possible binary numbe#ss it stands, their
construction indiscriminately builds all splints that lead
to a complete graph. This is to say that hybridization
has higher probabilities of errors. Hence, Adleman et al.
(Roweis etal., 1999roposed the sticker-based model,
which was an abstract model of molecular computing
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in the tubeP. Even if P contains many different
molecules each encoding a different set of bases,
the operation can give an explicit description of
exactly one of them.

2.2. Other related work and comparison with the
Adleman-Lipton model

Based on solution space ofplint in the
Adleman-Lipton model, their method¥Ndrayanan
and Zorbala, 1998; Chang and Guo, 2002a, 2002b,
2002c, 2002) could be applied towards solving the
traveling salesman problem, the dominating-set prob-
lem, the vertex-cover problem, the clique problem, the
independent-set problem, the 3-dimensional matching

based on DNAs with a random access memory and a problem and the set-packing problem. Those methods

new form of encoding the information, to enhance the
Adleman—Lipton model.

The DNA operations in the Adleman—-Lipton model
are described belowA@leman, 1994; Lipton, 1995;
Boneh et al., 1996; Adleman, 199 hese operations
will be used for figuring out solutions of the vertex-
cover problem.

The Adleman-Lipton model

A (test) tube is a set of molecules of DNA (i.e.,
a multi-set of finite strings over the alphabei, C,
G, T}). Given a tube, one can perform the following
operations:

(1) Extract Given a tubeP and a short single strand

of DNA, S produce two tubes P S) and—(P, ),

where +P, 9 is all of the molecules of DNA in

P, which contain the stran8as a sub-strand and

—(P, 9 is all of the molecules of DNA if®, which

do not contain the short straigd

Merge Given tubesP1 andP», yield U(P1, P»),

whereUJ(P1, P2) =P1UP5. This operation is to pour

two tubes into one, with no change of the individual

strands.

Detect Given a tubeP, say ‘yes’ if P includes at

least one DNA molecule, and say ‘no’ if it contains

none.

(4) Discard Given a tubd®, the operation will discard
the tubeP.

(5) Read Given a tubeP, the operation is used to
describe a single molecule, which is contained

)

®3)

for the problems show exponentially increasing vol-
umes of DNA and linearly increasing tini@Bean et

al. (2000)proposed an1.89" volume, Of2 + ) time
molecular algorithm for the 3-coloring problem and a
1.51" volume, O(?n?) time molecular algorithm for
the independent set problem, wherandm are, sub-
sequently, the number of vertices and the number of
edges in the problems resolvdel (1997)presented

a polynomial-time algorithm with a 1.497volume

for the 3-SAT problem, a polynomial-time algorithm
with a 1.34%3" volume for the 3-coloring problem and

a polynomial-time algorithm with a 1.2290lume for

the independent set. Though the size of those volumes
(Fu, 1997; LaBean et al., 20 lower, constructing
those volumes is more difficult and the time complexity
to the methods is very higher.

Quyang et al. (1997showed that restriction en-
zymes could be used to solve the NP-complete clique
problem. The maximum number of vertices that they
can process is limited to 27 because the size of the pool
with the size of the problem exponentially increases
(Quyang et al., 1997 Shin et al. (1999)resented
an encoding scheme for decreasing error rate in hy-
bridization. The methodShin et al., 1999 could be
employed towards ascertaining the traveling salesman
problem for representing integer and real values with
fixed-length codesArita et al. (1997)and Morimoto
et al. (1999) respectively, proposed new molecular
experimental techniques and a solid-phase method to
find a Hamiltonian pathAmos (1997)proposed paral-
lel filtering model for resolving the Hamiltonian path
problem, the sub-graph isomorphism problem, the 3-
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vertex-colorability problem, the clique problem and the 0
independent-set problem. Those methdiisté et al.,
1997; Morimoto et al., 1999; Amos, 19Piave lower @/ \®
error rate in real molecular experiments.
In the literature Reif et al., 2000; LaBean et Fig. 2. The grapl® of our problem.

al., 2000; LaBean and Reif, 2001the methods for

DNA-based computing by self-assembly require to use .
DNA nanostructures, called tiles, that have efficient N E, atlease one of andvy belongs ta/* (Cormen et

chemistries, expressive computational power, and con- &l 2001; Garey and Johnson, 1§.7Bhe vertex-cover
venient input and output (1/0) mechanisms. DNA tiles problem is to find a minimum-size vertex cover from
have very lower error rate in self-assemi@arzonand G The problem has been shown to be a NP-complete
Deaton (1999)ntroduced a review of the most impor-  Problem Garey and Johnson, 1979
tant advances in molecular computing. _ The graph inFig. 2 de_notes such a problem. In
Adleman and co-worker&Roweis et al., 1999pro- Fig. 2 the gre}p_hG con_tams three vertlce§ and two
posed sticker-based model to enhance error rate in©d9€s. The minimum-size vertex cover 8iis {vi}.
hybridization in the Adleman—Lipton model. Their Hence, the size of the vertex-cover problentig. 2
model could be used for determining solutions to IS Oneé. Itis indicated fromGarey and Johnson, 1979
an instance of the set cover probleRerez-Jimenez ~ that finding a minimum-size vertex cover is an NP-
and Sancho-Caparrini (200&jnployed sticker-based complete problem, and it can be formulated as a search
model Roweis et al., 1999to solve knapsack prob-  Problem.
lems. In our previous workChang and Guo (2004nd
Chang et al. (2003also employed the sticker-based 3.2. Using sticker for constructing solution space
model and the Adleman-Lipton model to deal with the of DNA sequence for the vertex-cover problem
dominating-set problem and the set-splitting problem
for decreasing error rate of hybridization. The first step in the Adleman—Lipton model is to
yield solution space of DNA sequences for those prob-
lems solved. Next, basic biological operations are used
to remove illegal solution and find legal solution from
solution space. Thus, the first step of solving the vertex-
In Section3.1, the vertex-cover problem is de- cover problem is to generate a test tube, which includes

scribed. Applying sticker to constructing solution space 2!l Of the possible vertex covers. Assume thatran

of DNA sequences for the vertex-cover problem is in- digit binary number corresponds to each possible ver-
troduced in SectioB.2 In Section3.3, one DNA algo- telx_cover to anyr-vertex graph(G. Also suppose that
rithm is proposed to resolve the vertex-cover problem. V. iS @ vertex cover foG. If the ith bit in ann-digit

In Section3.4, the complexity of the proposed algo- Pinary number is set to 11 then it represents that the
rithm is offered. In SectioB.5, the range of application ~ corresponding vertex s ™. If theith bitin ann-digit

to famous Cook’s Theorem is described in molecular Pinary number is set to 0, then it represents that the
computing. corresponding vertex is out &

By this way, all of the possible vertex covers@

3.1. Definition of the vertex-cover problem are transformed into an ensemble ofratligit binary

numbers. Hence, with the way abov@able 1denotes

Assume that a grap® can be represented @s= (V, the solution space for the graphkilg. 2 The binary
E), whereV={v1, ..., v,} is a set of vertices i and number 000 irTable 1lrepresents that the correspond-

3. Using sticker for solving the vertex-cover
problem in the Adleman-Lipton model

E={(va, Vb)|Va andvy are, respectively, vertices Wi} ing vertex cover is empty. The binary numbers 001, 010
is a set of edges i6. |V| =nis the number of vertexin ~ and 011 inTable 1lrepresent that those corresponding
V and|E| =mis the number of edge iB. vertex covers arévs }, {vo} and{vz, v1}, respectively.

Mathematically, avertex coverof a graphG is a The binary numbers 100, 101 and 110Teble 1rep-
subseW! C Vof vertices such that for each edgg, (/) resent that those corresponding vertex covers, subse-
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Table 1 Itis pointed out fromRoweis et al. (1999 ndBraich

The solution space for the graphfig. 2 et al. (1999}hat errors in the separation of the library
3-Digit binary number The corresponding vertex-cover — strands are errors in the computation. Sequences must
000 ) be designed to ensure that library strands have little
001 {vi} secondary structure that might inhibit intended probe-
o1 {va} library hybridization. The design must also exclude se-
100 gz'}vl} guences that might encourage unintended probe-library
101 {va, 1} hybridization. To help achieve these goals, sequences
110 {va, v2} were computer-generated to satisfy the following con-
111 {vs, V2, v} straint Braich et al., 1999

(1) Library sequences contain only As, Ts and Cs.
quently, are{vs}, {vs, vi} and{vs, vo}. The binary  (2) All library and probe sequences have no oc-

number 111 infable 1lrepresents that the correspond- currence of 5 or more consecutive identical nu-
ing vertex cover ifvs, V2, v1 }. Though there are eight cleotides; i.e., no runs of more than 4 As, 4 T’s,
3-digit binary numbers for representing eight possi- 4 C’s or 4 G’s occur in any library or probe se-
ble vertex covers imable 1 not every 3-digit binary guences.

number corresponds tolegal vertexcover. Hence, in  (3) Every probe sequence has at least four mismatches
next section, basic biological operations are usedtode-  with all 15 base alignment of any library sequence

velop an algorithm for removing illegal vertex covers (except for with its matching value sequence).
and finding legal vertex covers. (4) Every 15 base subsequence of a library sequence
To implement this way, assume that an unsigned has at least four mismatches with all 15 base align-
integerX is represented by a binary number Xn_1, ment of itself or any other library sequence.
..+, X1, where the value ok; is 1 or O for 1<i<n. (5) No probe sequence has a run of more than seven
The integerX contains 2 kinds of possible values. matches with any eight base alignment of any li-
Each possible value represents a vertex cover for any  brary sequence (except for with its matching value
n-vertex graphG. Hence, it is very obvious that an seqguence).
unsigned integeX forms 2" possible vertex cover. A (6) No library sequence has a run of more than seven
bit x; in an unsigned integeX represents thigh vertex matches with any eight base alignment of itself or
in G. Iftheith vertex is in a vertex cover, then the value any other library sequence.
of x; is setto 1. If theth vertex is out of a vertex cover,  (7) Every probe sequence has 4, 5 or 6 Gs in its se-
then the value of® is set to 0. guence.
Torepresentall possible vertex covers for the vertex-
cover problemsticker(Roweis et al., 1999; Braich et Constraint (1) is motivated by the assumption that li-

al., 1999 is used to construct solution space for that brary strands composed only of As, Ts and Cs will have
problem solved. For every bit;, two distinct 15 base  less secondary structure than those composed of As, Ts,
value sequences are designed. One represents the valugs and GsKalim, 199§. Constraint (2) is motivated

1 and another represents the value OfoFor the sake by two assumptions: first, that long homopolymer tracts
of convenience of presentation, assume thatenotes  may have unusual secondary structure and second, that
the value ofx; to be 1 andx? defines the value af; the melting temperatures of probe-library hybrids will
to be 0. Each of the™2possible vertex covers is repre- be more uniform if none of the probe-library hybrids
sented by a library sequence of % bases consisting  involve long homopolymer tracts. Constraints (3) and
of the concatenation of one value sequence for each(5) are intended to ensure that probes bind only weakly
bit. DNA molecules with library sequences are termed where they are notintended to bind. Constraints (4) and
library strands and a combinatorial pool containing li- (6) are intended to ensure that library strands have alow
brary strands is termed a library. The probes used for affinity for themselves. Constraint (7) is intended to en-
separating the library strands have sequences comple-ssure that intended probe-library pairings have uniform
mentary to the value sequences. melting temperatures.
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The Adleman progranBraich et al., 199pis modi-

fied for generating those DNA sequences to satisfy the
constraints above. For example, for representing the

three vertices in the graphlfig. 2 the DNA sequences
generated are:

x9=AAAACTCACCCTCCT;
x) = TCTAATATAATTACT;
x3=ATTCTAACTCTACCT;

x1 =TTTCAATAACACCTC;
x3=ATTCACTTCTTTAAT; and
x3=AACATACCCCTAATC.

Therefore, for every possible vertex cover to the
graph inFig. 2, the corresponding library strand is syn-
thesized by employing a mix-and-split combinatorial
synthesis techniqueCikras et al., 1998 Similarly,
for any n-vertex graph, all of the library strands for
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@ 72N =+(Tj, x}, 1) andT; = —(To, x}, ).

(0) Tjs1=U(Tj41, TOH)-
EndFor
EndFor
(4) Fork=1ton
(a) If (detect Tk) ='yes’) then
(b) Read Tk) and terminate the algorithm.
EndIf
EndFor

Theorem 3.1. From those steps in Algorithm the
vertex-cover problem for any n-vertex graph G can be
solved

Proof 1. In Step 1, a test tube of DNA strands that
encode all 2 possible input bit sequencasg, . . ., X1,

is generated. It is very clear that the test tube includes
all 2™ possible vertex covers for amyvertex graphg.

representing every possible vertex cover could be also  From the definition of vertex coveCprmen et al.,

synthesized with the same technique.

3.3. The DNA algorithm for solving the
vertex-cover problem

The following DNA algorithm is proposed to solve
the vertex-cover problem:

Algorithm 1.

(1) Input (To), where the tub&g includes solution space
of DNA sequences to encode all of the possible ver-
tex covers for any-vertex graph(s, with those tech-
nigues mentioned in Secti@2

(2) Fork=1 tom, wherem s the number of edges in
G.

Assume thagy is (vi, vj), whereeg is one edge i
andv; andy; are vertices irs. Also suppose that bits
X andx;, respectively, represemtandy;.

(@) 61 =+(To, x1) ando = —(To, x1).

(b) 62=+(6, x7) and6®=—(6, x}).

(c) To=U(6?, 62

EndFor

(3) Fori=0ton—1
Forj=1downto O

Solving the vertex-cover problem.

2001; Garey and Johnson, 19/Step 2(a) applies “ex-
traction” operation from the tub&p to form two test
tubes:#! and6. The first tubed! contains all of the
strands that havej =1. The second tubé consists

of all of the strands that hawe =0. It is very clear
from the definition of vertex cover that the tubeep-
resents those sets which do not include the veviex
Next, Step 2(b) uses “extraction” operation from the
tubed to form two new test tube®? and#®. The test
tube6? includes all of the strands that haxe= 0 and

¥ =1. The test tub&?® consists of all of the strands
that havex; =0 andx =0. It is indicated from the def-
inition of vertex cover that the tube® and6? con-
tain the strands, which satisfy the definition of vertex
cover. Therefore, Step 2(c) applies “merge” operation
to pour the tubeg! andé? into the tubeTy. After Steps
2(a)—2(c) are repeated to execute m times, the Tgbe
includes the strands, which represent those legal vertex
covers.

When each time of the outer loop in Step 3 is ex-
ecuted, the number of execution for the inner loop is
(i+1) times. The first time of the outer loop is exe-
cuted, the inner loop is only executed one time. There-
fore, Step 3(a) and 3(b) will also be executed one time.
Step 3a uses “extraction” operation to form two test
tubes:TON andTo. The first tubeT’>N contains all of
the strands that hawg = 1. The second tubk, consists
of all of the strands that have = 0. That is to say that
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the first tube encodes every vertex cover including the

i

dependent on the value of the loop variable in the outer

first vertex and the second tube represents every vertexloop. After the execution of the first time to Step 3(a)

cover not including the first vertex. Hence, Step 3(b)
applies “merge” operation to pour the tuBﬁN into the
tubeT;. After repeat to execute Steps 3(a) and 3(b), it
finally produces new tubes. The tub& forn> k> 1
encodes those vertex covers that conkaiertices.
Because the vertex-cover problem is to find a
minimume-size vertex-cover, the tubg first is de-
tected with “detection” operation in Step 4(a). If it
returns “yes”, then the tub&; contains those ver-
tex covers, which size is minimum. Therefore, Step

and Step 3(b) is finished, the tulig contains those
vertex covers{vq }, {vo, v1}, {va, v1} and{vs, v2, v1 }
and the tubdy includes only the vertex covefvs, vo }.
After repeating Steps 3(a) and 3(b), it finally produces
three new tubes. The three tubias T, andTs, respec-
tively, include{{vz, v1}, {vs, v1}, {va, v2} } and{{vs,
Vo, Vi}}.

Because the tubE, is not empty, “detection” opera-
tion for detecting the tub&; in Step 4(a) in Algorithm
1 returns “yes”. Therefore, Step 4(b) in Algorithm 1

4(b) uses “read” operation to describe sequence of reads the answer from the tubg Thus, a minimum-

a molecular in the tub@; and the algorithm is ter-

minated. Otherwise, repeat to execute Step 4(a) un-

til @ minimume-size vertex cover is found in the tube
detected.

The graph irFig. 1is used to show the power of Al-
gorithm 1. It is pointed out from Step 1 in Algorithm 1
that the tubeTly is filled with eight library stands with
the techniques mentioned in Secti®2, representing
eight possible vertex covers for the graphFig. 1
All of the edges in the graph iRig. 1are {1, v2) and
(v1,v3). So, the number of execution to Steps 2(a)-2(c)
in Algorithm 1 is two times. From the first execution of
Step 2a in Algorithm 1, two tubes are generated. The
first tube,s?, includes those vertex coverdz }, {va,
vi}, {vs, vi} and{vs, v2, v1} and the second tubé,
also contains those vertex cove@; {v»}, {v3} and
{v3, v2}. Next, from the first execution of Step 2(b) in
Algorithm 1, two tubes are yielded. The first tutsé,
includes those vertex coversi; } and{vs, v2} and the
second tubeg®, also contains those vertex covegs:
and{vs}. The tubesg' andé?, consist of the strands
which satisfy the definition of vertex cover. Hence, Step
2(c) of Algorithm 1 pours the tube! andé? into the
tubeTy. Therefore, the tub®& now includes those ver-
tex covers{vi}, {va, va}, {vs3, v1}, {v3, v2, 1 }, {W2}
and{vs, v2}. The same processing can be applied to
deal with other edgev{, vs). After every edge is pro-
cessed, the remaining strands in the tiibeepresent
the legal vertex covers. That is to say that the tiipe
contains those vertex coverss }, {vo, vi}, {v3, v1},
{V3, Vz} and{V3, Vo2, Vl}.

Because the number of vertex in the grapffig. 1
is three, the number of execution to the outer loop in
Step 3 in Algorithm 1 is three times. The number of
execution to the inner loop in Step 3 in Algorithm 1 is

size vertex cover for the graph Fig. lis {v1}. O
3.4. The complexity of the proposed DNA
algorithm

The following theorems describe time complexity of
Algorithm 1, volume complexity of solution space in
Algorithm 1, the number of the tube used in Algorithm
1 and the longest library strand in solution space in
Algorithm 1.

Theorem 3.2. The vertex-cover problem for any undi-
rected n-vertex graph G with m edges can be solved with
O(n?)biological operations in the Adleman—Lipton
mode] where n is the number of vertices in G and m is
at most equal tgn(n — 1)/2).

Proof 2. Algorithm 1 can be applied for solving the
vertex-cover problem for any undirectedrertex graph

G. Algorithm 1 includes three main steps. Step 2 is
mainly used to determine legal vertex covers and to re-
move illegal vertex covers from all of thé'2ossible
library strands. From Algorithm 1, it is very obvious
that Steps 2(a) and 2(b) takex m“extraction” opera-
tions and Step 2(c) takes“merge” operations. Step 3

is mainly applied to figure out the number of element
in every legal vertex cover. It is indicated from Algo-
rithm 1 that Step 3(a) takesi(h — 1)/2) “extraction”
operations and Step 3(b) take¥r(— 1)/2) “merge”
operations. Step 4 is used to find a minimum-size ver-
tex cover from legal vertex cover. Itis pointed out from
Algorithm 1 that Step 4(a) at most takes n “detection”
operations and Step 4(b) takes one “read” operation.
Hence, from the statements mentioned above, it is at
once inferred that the time complexity of Algorithm 1
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is O(n?) biological operations in the Adleman-Lipton If the size of a reducédPcomplete problem or a
model. O reducedNP-hard problem is not equal to or less than

that of the vertex-cover problem, then a new DNA algo-
Theorem 3.3. The vertex-cover problem for any rithm for optimal solution of the reducétP-complete
undirected n-vertices graph G with m edges can be problem or the reduceédP-hard problem should be de-
solved with sticker to constru€@(2") strands in the veloped from the characteristic MP-complete prob-
Adleman-Lipton modgwhere n is the number of ver-  lems oNP-hard problems
ticesin G

Proof 3. Refer to Theorem 3.2. [J Proof 6. We transform the 3-SAT problem to the
vertex-cover problem with a polynomial time al-
OIgorithm Cormen et al., 2001 Suppose that) is
{ur, up, -+, upy andCis {c1,c2, -+, cm}. UandC
are any instance for the 3-SAT problem. We construct
a graphG=(V, E) and a positive integek < |V| such

Theorem 3.4. The vertex-cover problem for any undi-
rected n-vertices graph G with m edges can be solve
with O(n) tubes in the Adleman—Lipton modelhere

n is the number of vertices in.G

Proof 4. Refer to Theorem 3.2. [ thatG has a vertex cover of siz€ or less if and only

if Cis satisfiable.
Theorem 3.5. The vertex-cover problem for any For each variablg; in U, there is a truth-setting com-
undirected n-vertices graph G with m edges can be ponentT; = (V;, E), with Vi ={u;, u}} andEj = {{u;,
solved with the longest library strapn@®(15x n), in ul}}, thatis, two vertices joined by a single edge. Note
the Adleman-Lipton modekhere n is the number of  that any vertex cover will have to contain at least one
vertices in G of u; and ull in order to cover the single edge i.

For each clause; in C, there is a satisfaction testing
component§ =(V7, E}), consisting of three vertices
and three edges joining them to form a triangle:

Proof 5. Refer to Theorem 3.2. O

3.5. Range of application to Cook’s Theorem in
DNA computin . . .
puting V= {a;l], a2l . asl )

Cook’'s TheoremCormen et al., 2001; Garey and
Johnson, 197is that if one algorithm for one NP- g1 — 1,11, aol j1}, {aal 1, aalj]}, (a2l /], aslj1}}
complete problem will be developed, then other prob-
lems will be solved by means of reduction to that prob- Note that any vertex cover will have to contain at least
lem. Cook’s Theorem has been demonstrated to be cor-two vertices fromV! in order to cover the edges ift.
rect in a general digital electronic computer. Assume The only part of the construction that depends on which
that a collectionC is {c1, c2,---, ¢ } Of clauses on literals occur in which clauses is the collection of com-
a finite setU of variables{u1, us, - - -, u, }, such that munication edges. These are best viewed from the van-
—Cx— is equal to 3 for & x <m. The 3-satisfiability tage point of the satisfaction testing components. For
problem (3-SAT) is to find whether there is a truth as- each clause; in C, assume that the three literalsgns
signment forU that satisfies all of the clauses denoted agj, yj andz. Then the communication edges
The simple structure for the 3-SAT problem makes it emanating fron§ are given by:
one of the most widely used problems for other NP-
completeness result€6rmen et al., 2001 The fol- E? = {{aal j]. x;}, {2l . y;}. aslj]. ;1)
lowing theorems are used to describe the range of ap-

plication for Cook’s Theorem in molecular computing The con;truction of our instance to the vertex-cover
problem is completed by setting=n+ (2 x m) and

Theorem 3.6. Assume that any othdP-complete G=(V, E), where
problems or any oth&P-hard problems can be re-

duced to the vertex-cover problem with a polyno- y — <6 Ei> U ( U v.l>
mial time algorithm in a general electronic computer. i= =17
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and Table 2
Sequences chosen to represent the vertices in the graph in Fig. 2
n m m
E=|UE; Ul U El. Ul U Vé . Vertex DNA sequence
i=1 j=1 7 j=1 5 -
x3 5-ATTCTAACTCTACCT-3
Therefore, the number of vertex and the number of x5 5-TCTAATATAATTACT-3’
. . 0
edge inG are, respectively, ((& n)+(3 x m)) and ! 5-AAAACTCACCCTCCT-3

x3 5-AACATACCCCTAATC-3
x3 5-ATTCACTTCTTTAAT-3
xi 5-TTTCAATAACACCTC-3

(n+ (6 x m)). This implies that Algorithm 1 is used
to solve the reduced 3-SAT problem, then it will take
O(4x n?+12x mx n+9x n?) biological operations
with O(22™3™) DNA strands. However, from the char-
acteristic of the 3-SAT problem, Lipton’s algorithm The Adleman program is used for constructing each
will only take O(m) biological operations with O(2 15-base DNA sequence for each bit of the library. For
DNA strands. Therefore, it is inferred that if the size each bit, the program is app||ed for generating two 15-
of a reduced NP-complete problem or a reduced NP- pase random sequences (for 1 and 0) and checking to
hard problem is not equal to or less than that of the see if the library strands satisfy the seven constraints
vertex-cover problem, then a new DNA algorithm for  jn Section3.2with the new DNA sequences added. If
optimal solution of the reduced NP-complete problem the constraints are satisfied, the new DNA sequences
or the reduced NP-hard problem should be developed are greedily accepted. If the constraints are not satis-
from the characteristic of NP-complete problems or fied then mutations are introduced one by one into the
NP-hard problems. new block until either (A) the constraints are satisfied
From Theorem 3.3-3.6, if the size of a reduced NP- and the new DNA sequences are then accepted or (B)
complete problem or a reduced NP-hard problem is g threshold for the number of mutations is exceeded
equal to or less than that of the vertex-cover prob- and the program has failed and then it exits, printing
lem, then Algorithm 1 can be directly used for solv- the sequence found so farrkbits that satisfy the con-
ing the reduced NP-complete or the reduced NP-hard straints are found then the program has succeeded and
problem. Otherwise, a new DNA algorithm for opti- it outputs these sequences.

mal solution of a reduced NP-complete problem ora  Consider the graph iffig. 2 The graph includes

reduced NP-hard problem should be developed aCCOfd-three VerticesyL Vo and v3. DNA seguences gener-

ing to the characteristic of NP-complete or NP-hard ated by the Adleman program modified were shown in

problems. [ Table 2 This program, respectively, took one mutation,
one mutation and 10 mutations to make new DNA se-
guences fovy, v2 andvs. With the nearest neighbor pa-

4. Experimental results of simulated DNA rameters, the Adleman program was used to calculate

computing the enthalpy, entropy and free energy for the binding
of each probe to its corresponding region on a library

We finished the modification of the Adleman pro-  strand. The energy was shownTable 3 Only G re-

gram @raich et al., 1999 This modified program is  ally matters to the energy of each bit. For example, the
applied to generate DNA sequences for solving the

vertex-cover problem. Because the source code of thee 3

two functionssrand4§) anddrand4&) was not found The energy for the binding of each probe to its corresponding region
in theoriginal Adleman program, we use the standard on a library strand

functionsrand) in C++ builder 6.0 to replace the func-  vertex Enthalpy energyH) Entropy energy$) Free energy®)

tion srand4g) and added the source code to the func- o) 105.2 2771 o
tiondrand4§g). We also added subroutines to the Adle- 9 104.8 283.7 19
man program for simulating biological operations in 2 113.7 288.7 25
the Adleman—Lipton model in Secti¢h We add sub- X% 112.6 291.2 2%

x3 107.8 283.5 23

routines to the Adleman programto simulate Algorithm K

1in Section3.3. 1 105.6 271.6 28




80 M. Guo et al. / BioSystems 80 (2005) 71-82

Table 4
DNA sequences chosen represent all possible vertex covers

5-ATTCTAACTCTACCTTCTAATATAATTACTAAAACTCACCCTCCT-3' 3-TAAGATTGAGATGGAAGATTATATTAATGATTTTGAGT
5’-i'lc';Tc(;?I'iié:FSCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3/ 3-TAAGATTGAGATGGAAGATTATATTAATGAAAAGTTAT
5’-;$IS'SA’:%?CTACCTATTCACTTCTTTAATAAAACTCACCCTCCT—3 3-TAAGATTGAGATGGATAAGTGAAGAAATTATTTTGAGT
5’-i?T%ériiéfCTACCTATTCACTTCTTTAATTTTCAATAACACCTC-3’ 3-TAAGATTGAGATGGATAAGTGAAGAAATTAAAAGTTAT
5’-;i-(l;isAACGC;?ZCTAATCTCTAATATAATTACTAAAACTCACCCTCCT—3’ 3-TTGTATGGGGATTAGAGATTATATTAATGATTTTGAGT
5 -ifggi(éégCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3 " 3-TTGTATGGGGATTAGAGATTATATTAATGAAAAGTTAT
5’-;i-(l;isA%%zCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT—3 3-TTGTATGGGGATTAGTAAGTGAAGAAATTATTTTGAGT
5’-ifgg'i(éégcTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3’ 3-TTGTATGGGGATTAGTAAGTGAAGAAATTAAAAGTTAT
TGTGGAG-8

delta G for the probe binding a ‘1’ in the first bit is,  Table 6
thus. estimated to be 24.3 kcal/mol and the délfar DNA sequences generated by Step 2 represent legal vertex covers
the probe binding a ‘0’ is estimated to be 27.5 kcal/mol. 5-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACA
The program simulated a mix-and-split combinato- 5 i'(l':'ng';'iACTCTACCTATTCACTTCTTTAATTTTCAATAAC
rial synthesis techniqu€(ikras et al., 19980 synthe- 'ACCTC_g
size the library strand to every possible vertex cover. g aacATACCCCTAATCTCTAATATAATTACTTTTCAATAAC

Those library strands are shownTiable 4 and repre- ACCTC-3

sent eight possible vertex cove@; {vi}, {v2}, {vz, 5'-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACC
CTCCT-3

vi}, {va}, {V3, v1}, {v3, v2} and{vs, v, v1}, respec-

: . : : 5'-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAAC

tively. The program is also applied to figure out the av- ACCTC-3

erage and standard deviation for the enthalpy, entropy
and free energy over all probe/library strand interac-
tions. The energy is shown ifable 5 The standard
deviation for deltaG is small because this is partially
enforced by the constraint that there are 4, 5 @%
(the seventh constraint in Secti8r®) in the probe se-
qguences.

The Adleman program is employed for computing
the distribution of the types of potential mishybridiza-
tions. The distribution of the types of potential mishy-
bridizations is the absolute frequency of a probe-strand places
match of lengthk from O to the bit length 15 (for DNA '

sequences) where probes are not supposed to match The results for simulation of Step 2—4 were, respec-
q P PP tively, shown inTables 6-10From the tuber;, the

answer was found to b }.

the strands. The distribution is, subsequently, 106, 152,
183, 215, 216, 225, 137,94, 46, 13,4,1,0,0, 0 and 0.
Itis pointed out from the last four zeros that there are 0
occurrences where a probe matches a strand at 12, 13,
14 or 15 places. This shows that the third constraint in
Section3.2 has been satisfied. Clearly, the number of
matches peaks at 5 (225). That is to say that there are
225 occurrences where a probe matches a strand at 5

Table 5

The energy over all probe/library strand interactions Table 7
Enthalpy Entropy Free energy DNA sequence generated by Step 3 represents that vertex cover only
energy H) energy (S) (G) containing one vertex

Average 10883 282633 237833 5-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACA

Standard deviation .38365 663867 241481 CCTC-3
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Table 8 sticker. Furthermore, this work represents clear evi-
!DNA sequences generated by Step 3 represent those vertex covergjance for the ability of DNA based computing to solve
including two vertices NP—compIete problems
5-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAA Currently, there still are lots of NP-complete prob-

CACCTC-3 . .
A ACATACCCCTAATCTCTAATATAATTACTTTTCAATAAC lems not to be solved because it is very difficult to use

ACCTC-3 basic biological operations for replacing mathematical
5-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACC operations. We are not sure whether molecular comput-
CTCCT-3 ing can be applied for dealing with every NP-complete
problem. Therefore, in the future, our main work is to
Table 9 solve other unsolved NP-complete problems with the
DNA sequence generated by Step 3 represents that vertex cover con-Adleman—Lipton model and the sticker model, or de-
taining three vertices velop a new model.
5-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAAC
ACCTC-3
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