
BioSystems 80 (2005) 71–82

Is optimal solution of every NP-complete or NP-hard problem
determined from its characteristic for DNA-based computing�

Minyi Guoa,b,∗, Weng-Long Changc, Machael Hoc, Jian Lub, Jiannong Caod

a Department of Computer Software, The University of Aizu, Aizu-Wakamatsu City, Fukushima 965-8580, Japan
b State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, PR China

c Department of Information Management, Southern Taiwan University of Technology, Tainan County, Taiwan
d Department of Computing, Hong Kong Polytechnic University, Hong Kong

Received 1 July 2004; received in revised form 15 October 2004; accepted 16 October 2004

Abstract

Cook’s Theorem [Cormen, T.H., Leiserson, C.E., Rivest, R.L., 2001. Introduction to Algorithms, second ed., The MIT Press;
Garey, M.R., Johnson, D.S., 1979. Computer and Intractability, Freeman, San Fransico, CA] is that if one algorithm for an NP-
complete or an NP-hard problem will be developed, then other problems will be solved by means of reduction to that problem.
Cook’s Theorem has been demonstrated to be correct in a generaldigital electroniccomputer. In this paper, we first propose a
DNA algorithm for solving thevertex-cover problem. Then, we demonstrate that if the size of a reduced NP-complete or NP-hard
problem is equal to or less than that of the vertex-cover problem, then the proposed algorithm can be directly used for solving the
reduced NP-complete or NP-hard problem and Cook’s Theorem is correct on DNA-based computing. Otherwise, a new DNA
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lgorithm for optimal solution of a reduced NP-complete problem or a reduced NP-hard problem should be developed
haracteristic of NP-complete problems or NP-hard problems.
2004 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Adleman wrote the first paper in which it
as demonstrated that deoxyribonucleic acid (DNA)
trands could be applied for figuring out solutions to
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an instance of the NP-complete Hamiltonian path p
lem (HPP) (Adleman, 1994). Lipton wrote the secon
paper in which it was shown that the Adleman te
niques could also be used to solve the NP-com
satisfiability (SAT) problem (the first NP-comple
problem) (Lipton, 1995). Adleman and co-worke
proposedsticker for enhancing the Adleman–Lipto
model (Roweis et al., 1999).

In this paper, we usesticker to construct solutio
space of DNA library sequences for thevertex-cove
problem. Simultaneously, we also apply DNA ope
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tions in the Adleman–Lipton model to develop a DNA
algorithm. The main result of the proposed DNA algo-
rithm shows that the vertex-cover problem is solved
with biological operations in the Adleman–Lipton
model from the solution space of stickers. Furthermore,
if the size of a reduced NP-complete or a reduced NP-
hard problem is equal to or less than that of the vertex-
cover problem, then the proposed algorithm can be di-
rectly used for solving the reduced NP-complete, or
NP-hard problem.

The rest of this paper is organized as follows. In Sec-
tion 2, the Adleman–Lipton model is introduced and
the comparison is made with other models. In Section
3, the first DNA algorithm is proposed for solving the
vertex-cover problem from solution space of sticker
in the Adleman–Lipton model. In Section4, the ex-
perimental result of simulated DNA computing is also
given. Conclusions are drawn in Section5.

2. DNA model of computation

In Section2.1, a summary of DNA structure and
the Adleman–Lipton model is described in detail. In
Section2.2, the comparison of the Adleman–Lipton
model with other models is also introduced.

2.1. The Adleman–Lipton model

A DNA is a moleculethat plays the main role in
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Fig. 1. A schematic representation of a nucleotide.

clude adenineand guanine, abbreviated A and G.
Pyrimidines containcytosineandthymine, abbreviated
C and T. Because nucleotides are only distinguished
from their bases, they are simply represented as A, G,
C, or T nucleotides, depending upon the sort of base
that they have. The structure of a nucleotide is illus-
trated (in a very simplified way) inFig. 1. In Fig. 1, B
is one of the four possible bases (A, G, C, or T),P is the
phosphate group and the rest (the “stick”) is the sugar
base (with its carbons enumerated 1′ through 5′).

Nucleotides can link together in two different ways
(Sinden, 1994; Boneh et al., 1996; Paun et al., 1998).
The first method is that the 5′-phosphate group of
one nucleotide is joined with 3′-hydroxyl group of the
other forming aphos-phodiesterbond. The resulting
molecule has the 5′-phosphate group of one nucleotide,
denoted as 5′ end, and the 3′-OH group of the other nu-
cleotide available, denoted as 3′ end, for bonding. This
gives the molecule thedirectionality, and we can talk
about the direction of 5′ end to 3′ end or 3′ end to 5′ end.
The second way is that the base of one nucleotide inter-
acts with the base of the other to form a hydrogen bond.
This bonding is the subject of the following restriction
on the base pairing: A and T can pair together, and C
and G can pair together—no other pairings are possi-
ble. This pairing principle is called the Watson–Crick
complementarity (named after James D. Watson and
Francis H.C. Crick who deduced the famous double
helix structure of DNA in 1953, and won the Nobel
Prize for the discovery).
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NA based computing (Paun et al., 1998). In the bio-
hemical world of large and smallmolecules,polymers
ndmonomers, DNA is a polymer, which is strun

ogether from monomers calleddeoxyribonucleotide.
he monomers used for the construction of DNA
eoxyribonucleotides which each deoxyribonucleo
ontaining three components: asugar, a phosphate
roup and anitrogenousbase. This sugar has five c
on atoms—for the sake of reference there is a fi
umbering of them. Because the base also has car

o avoid confusion the carbons of the sugar are n
ered from 1′ to 5′ (rather than from 1 to 5). The pho
hate group is attached to the 5′ carbon, and the ba

s attached to the 1′ carbon. Within the sugar structu
here is a hydroxyl group attached to the 3′ carbon.

Distinct nucleotides are detected only with th
ases, which come in two sorts: purines and py

dines (Sinden, 1994; Paun et al., 1998). Purines in
,

A DNA strand is essentially a sequence (polym
f four types of nucleotides detected by one of f
ases they contain. Two strands of DNA can form
er appropriate conditions) a double strand, if the
pective bases are the Watson–Crick complemen
ach other—A matches T and C matches G; als′
nd matches 5′ end. The length of a single strand
NA is the number of nucleotides comprising the s
le strand. Thus, if a single stranded DNA includes
ucleotides, then we say that it is a 20 mer (it is a p
er containing 20 monomers). The length of a do

tranded DNA (where each nucleotide is base paire
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counted in the number of base pairs. Thus, if we make
a double stranded DNA from a single stranded 20 mer,
then the length of the double stranded DNA is 20 base
pairs, also written 20 bp (for more discussion of the
relevant biological background refer toSinden, 1994;
Boneh et al., 1996; Paun et al., 1998).

In the Adleman–Lipton model (Adleman, 1994;
Lipton, 1995), splints were used to correspond to the
edges of a particular graph the paths of which repre-
sented all possible binary numbers. A s it stands, their
construction indiscriminately builds all splints that lead
to a complete graph. This is to say that hybridization
has higher probabilities of errors. Hence, Adleman et al.
(Roweis et al., 1999) proposed the sticker-based model,
which was an abstract model of molecular computing
based on DNAs with a random access memory and a
new form of encoding the information, to enhance the
Adleman–Lipton model.

The DNA operations in the Adleman–Lipton model
are described below (Adleman, 1994; Lipton, 1995;
Boneh et al., 1996; Adleman, 1996). These operations
will be used for figuring out solutions of the vertex-
cover problem.

The Adleman–Lipton model

A (test) tube is a set of molecules of DNA (i.e.,
a multi-set of finite strings over the alphabet{A, C,
G, T}). Given a tube, one can perform the following
o
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in the tubeP. Even if P contains many different
molecules each encoding a different set of bases,
the operation can give an explicit description of
exactly one of them.

2.2. Other related work and comparison with the
Adleman–Lipton model

Based on solution space ofsplint in the
Adleman–Lipton model, their methods (Narayanan
and Zorbala, 1998; Chang and Guo, 2002a, 2002b,
2002c, 2002d) could be applied towards solving the
traveling salesman problem, the dominating-set prob-
lem, the vertex-cover problem, the clique problem, the
independent-set problem, the 3-dimensional matching
problem and the set-packing problem. Those methods
for the problems show exponentially increasing vol-
umes of DNA and linearly increasing time.LaBean et
al. (2000)proposed ann1.89n volume, O(n2 +m2) time
molecular algorithm for the 3-coloring problem and a
1.51n volume, O(n2m2) time molecular algorithm for
the independent set problem, wheren andmare, sub-
sequently, the number of vertices and the number of
edges in the problems resolved.Fu (1997)presented
a polynomial-time algorithm with a 1.497n volume
for the 3-SAT problem, a polynomial-time algorithm
with a 1.345n volume for the 3-coloring problem and
a polynomial-time algorithm with a 1.229n volume for
the independent set. Though the size of those volumes
(Fu, 1997; LaBean et al., 2000) is lower, constructing
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1) Extract. Given a tubeP and a short single stran
of DNA, S, produce two tubes +(P,S) and−(P,S),
where +(P, S) is all of the molecules of DNA i
P, which contain the strandSas a sub-strand an
−(P,S) is all of the molecules of DNA inP, which
do not contain the short strandS.

2) Merge. Given tubesP1 andP2, yield ∪(P1, P2),
where∪(P1,P2) =P1∪P2. This operation is to pou
two tubes into one, with no change of the individ
strands.

3) Detect. Given a tubeP, say ‘yes’ ifP includes a
least one DNA molecule, and say ‘no’ if it conta
none.

4) Discard. Given a tubeP, the operation will discar
the tubeP.

5) Read. Given a tubeP, the operation is used
describe a single molecule, which is contai
hose volumes is more difficult and the time comple
o the methods is very higher.

Quyang et al. (1997)showed that restriction e
ymes could be used to solve the NP-complete c
roblem. The maximum number of vertices that t
an process is limited to 27 because the size of the
ith the size of the problem exponentially increa

Quyang et al., 1997). Shin et al. (1999)presente
n encoding scheme for decreasing error rate in
ridization. The method (Shin et al., 1999) could be
mployed towards ascertaining the traveling sales
roblem for representing integer and real values
xed-length codes.Arita et al. (1997)andMorimoto
t al. (1999), respectively, proposed new molecu
xperimental techniques and a solid-phase meth
nd a Hamiltonian path.Amos (1997)proposed para

el filtering model for resolving the Hamiltonian pa
roblem, the sub-graph isomorphism problem, th
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vertex-colorability problem, the clique problem and the
independent-set problem. Those methods (Arita et al.,
1997; Morimoto et al., 1999; Amos, 1997) have lower
error rate in real molecular experiments.

In the literature (Reif et al., 2000; LaBean et
al., 2000; LaBean and Reif, 2001), the methods for
DNA-based computing by self-assembly require to use
DNA nanostructures, called tiles, that have efficient
chemistries, expressive computational power, and con-
venient input and output (I/O) mechanisms. DNA tiles
have very lower error rate in self-assembly.Garzon and
Deaton (1999)introduced a review of the most impor-
tant advances in molecular computing.

Adleman and co-workers (Roweis et al., 1999) pro-
posed sticker-based model to enhance error rate in
hybridization in the Adleman–Lipton model. Their
model could be used for determining solutions to
an instance of the set cover problem.Perez-Jimenez
and Sancho-Caparrini (2001)employed sticker-based
model (Roweis et al., 1999) to solve knapsack prob-
lems. In our previous work,Chang and Guo (2004)and
Chang et al. (2003)also employed the sticker-based
model and the Adleman–Lipton model to deal with the
dominating-set problem and the set-splitting problem
for decreasing error rate of hybridization.

3. Using sticker for solving the vertex-cover
problem in the Adleman–Lipton model
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Fig. 2. The graphG of our problem.

in E, at lease one ofva andvb belongs toV1 (Cormen et
al., 2001; Garey and Johnson, 1979). The vertex-cover
problem is to find a minimum-size vertex cover from
G. The problem has been shown to be a NP-complete
problem (Garey and Johnson, 1979).

The graph inFig. 2 denotes such a problem. In
Fig. 2, the graphG contains three vertices and two
edges. The minimum-size vertex cover forG is {v1}.
Hence, the size of the vertex-cover problem inFig. 2
is one. It is indicated from (Garey and Johnson, 1979)
that finding a minimum-size vertex cover is an NP-
complete problem, and it can be formulated as a search
problem.

3.2. Using sticker for constructing solution space
of DNA sequence for the vertex-cover problem

The first step in the Adleman–Lipton model is to
yield solution space of DNA sequences for those prob-
lems solved. Next, basic biological operations are used
to remove illegal solution and find legal solution from
solution space. Thus, the first step of solving the vertex-
cover problem is to generate a test tube, which includes
all of the possible vertex covers. Assume that ann-
digit binary number corresponds to each possible ver-
tex cover to anyn-vertex graph,G. Also suppose that
V1 is a vertex cover forG. If the ith bit in ann-digit
binary number is set to 1, then it represents that the
corresponding vertex is inV1. If the ith bit in ann-digit
b t the
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In Section 3.1, the vertex-cover problem is d
cribed. Applying sticker to constructing solution sp
f DNA sequences for the vertex-cover problem is

roduced in Section3.2. In Section3.3, one DNA algo
ithm is proposed to resolve the vertex-cover prob
n Section3.4, the complexity of the proposed alg
ithm is offered. In Section3.5, the range of applicatio
o famous Cook’s Theorem is described in molec
omputing.

.1. Definition of the vertex-cover problem

Assume that a graphGcan be represented asG= (V,
), whereV={v1, . . ., vn} is a set of vertices inG and
={(va, vb)|va andvb are, respectively, vertices inV}

s a set of edges inG. |V| =n is the number of vertex i
and|E| =m is the number of edge inE.
Mathematically, avertex coverof a graphG is a

ubsetV1 ⊆Vof vertices such that for each edge (va,vb)
inary number is set to 0, then it represents tha
orresponding vertex is out ofV1.

By this way, all of the possible vertex covers inG
re transformed into an ensemble of alln-digit binary
umbers. Hence, with the way above,Table 1denotes

he solution space for the graph inFig. 2. The binary
umber 000 inTable 1represents that the correspo

ng vertex cover is empty. The binary numbers 001,
nd 011 inTable 1represent that those correspond
ertex covers are{v1}, {v2} and{v2, v1}, respectively
he binary numbers 100, 101 and 110 inTable 1rep-
esent that those corresponding vertex covers, s
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Table 1
The solution space for the graph inFig. 2

3-Digit binary number The corresponding vertex-cover

000 Ø
001 {v1}
010 {v2}
011 {v2, v1}
100 {v3}
101 {v3, v1}
110 {v3, v2}
111 {v3, v2, v1}

quently, are{v3}, {v3, v1} and{v3, v2}. The binary
number 111 inTable 1represents that the correspond-
ing vertex cover is{v3, v2, v1}. Though there are eight
3-digit binary numbers for representing eight possi-
ble vertex covers inTable 1, not every 3-digit binary
number corresponds to alegal vertexcover. Hence, in
next section, basic biological operations are used to de-
velop an algorithm for removing illegal vertex covers
and finding legal vertex covers.

To implement this way, assume that an unsigned
integerX is represented by a binary numberxn, xn−1,
. . ., x1, where the value ofx1 is 1 or 0 for 1≤ i ≤n.
The integerX contains 2n kinds of possible values.
Each possible value represents a vertex cover for any
n-vertex graph,G. Hence, it is very obvious that an
unsigned integerX forms 2n possible vertex cover. A
bit xi in an unsigned integerX represents theith vertex
inG. If the ith vertex is in a vertex cover, then the value
of xi is set to 1. If theith vertex is out of a vertex cover,
then the value ofxi is set to 0.

To represent all possible vertex covers for the vertex-
cover problem,sticker(Roweis et al., 1999; Braich et
al., 1999) is used to construct solution space for that
problem solved. For every bit,xi , two distinct 15 base
value sequences are designed. One represents the valu
1 and another represents the value 0 forxi . For the sake
of convenience of presentation, assume thatx1

i denotes
the value ofxi to be 1 andx0

i defines the value ofxi
to be 0. Each of the 2n possible vertex covers is repre-
s g
o each
b ed
l li-
b d for
s mple-
m

It is pointed out fromRoweis et al. (1999)andBraich
et al. (1999)that errors in the separation of the library
strands are errors in the computation. Sequences must
be designed to ensure that library strands have little
secondary structure that might inhibit intended probe-
library hybridization. The design must also exclude se-
quences that might encourage unintended probe-library
hybridization. To help achieve these goals, sequences
were computer-generated to satisfy the following con-
straint (Braich et al., 1999):

(1) Library sequences contain only As, Ts and Cs.
(2) All library and probe sequences have no oc-

currence of 5 or more consecutive identical nu-
cleotides; i.e., no runs of more than 4 A’s, 4 T’s,
4 C’s or 4 G’s occur in any library or probe se-
quences.

(3) Every probe sequence has at least four mismatches
with all 15 base alignment of any library sequence
(except for with its matching value sequence).

(4) Every 15 base subsequence of a library sequence
has at least four mismatches with all 15 base align-
ment of itself or any other library sequence.

(5) No probe sequence has a run of more than seven
matches with any eight base alignment of any li-
brary sequence (except for with its matching value
sequence).

(6) No library sequence has a run of more than seven
matches with any eight base alignment of itself or
any other library sequence.

( se-
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ented by a library sequence of 15×nbases consistin
f the concatenation of one value sequence for
it. DNA molecules with library sequences are term

ibrary strands and a combinatorial pool containing
rary strands is termed a library. The probes use
eparating the library strands have sequences co
entary to the value sequences.
e

7) Every probe sequence has 4, 5 or 6 Gs in its
quence.

Constraint (1) is motivated by the assumption tha
rary strands composed only of As, Ts and Cs will h

ess secondary structure than those composed of A
s and Gs (Kalim, 1998). Constraint (2) is motivate
y two assumptions: first, that long homopolymer tr
ay have unusual secondary structure and second

he melting temperatures of probe-library hybrids
e more uniform if none of the probe-library hybr

nvolve long homopolymer tracts. Constraints (3)
5) are intended to ensure that probes bind only we
here they are not intended to bind. Constraints (4)

6) are intended to ensure that library strands have
ffinity for themselves. Constraint (7) is intended to
ure that intended probe-library pairings have unif
elting temperatures.
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The Adleman program (Braich et al., 1999) is modi-
fied for generating those DNA sequences to satisfy the
constraints above. For example, for representing the
three vertices in the graph inFig. 2, the DNA sequences
generated are:

• x0
1 = AAAACTCACCCTCCT;

• x0
2 = TCTAATATAATTACT;

• x0
3 = ATTCTAACTCTACCT;

• x1
1 = TTTCAATAACACCTC;

• x1
2 = ATTCACTTCTTTAAT; and

• x1
3 = AACATACCCCTAATC.

Therefore, for every possible vertex cover to the
graph inFig. 2, the corresponding library strand is syn-
thesized by employing a mix-and-split combinatorial
synthesis technique (Cukras et al., 1998). Similarly,
for any n-vertex graph, all of the library strands for
representing every possible vertex cover could be also
synthesized with the same technique.

3.3. The DNA algorithm for solving the
vertex-cover problem

The following DNA algorithm is proposed to solve
the vertex-cover problem:

A .

( e
ver-
-

( in

ts

E
(

(a)T ON
j+1 = +(Tj , x1

i+1) andTj =−(T0, x1
i+1).

(b) Tj+1 =∪(Tj+1, T ON
j+1).

EndFor
EndFor
(4) Fork= 1 ton

(a) If (detect (Tk) = ‘yes’) then
(b) Read (Tk) and terminate the algorithm.
EndIf

EndFor

Theorem 3.1. From those steps in Algorithm 1, the
vertex-cover problem for any n-vertex graph G can be
solved.

Proof 1. In Step 1, a test tube of DNA strands that
encode all 2n possible input bit sequencesxn, . . ., x1,
is generated. It is very clear that the test tube includes
all 2n possible vertex covers for anyn-vertex graph,G.

From the definition of vertex cover (Cormen et al.,
2001; Garey and Johnson, 1979), Step 2(a) applies “ex-
traction” operation from the tubeT0 to form two test
tubes:θ1 and θ. The first tubeθ1 contains all of the
strands that havexi = 1. The second tubeθ consists
of all of the strands that havexi = 0. It is very clear
from the definition of vertex cover that the tubeθ rep-
resents those sets which do not include the vertexvi .
Next, Step 2(b) uses “extraction” operation from the
tubeθ to form two new test tubes:θ2 andθ3. The test
tubeθ2 includes all of the strands that havexi = 0 and
x s
t f-
i
t tex
c tion
t
2 e
i ertex
c

ex-
e p is
( xe-
c ere-
f ime.
S test
t f
t
o t
lgorithm 1. Solving the vertex-cover problem

1) Input (T0), where the tubeT0 includes solution spac
of DNA sequences to encode all of the possible
tex covers for anyn-vertex graph,G, with those tech
niques mentioned in Section3.2.

2) Fork= 1 tom, wherem is the number of edges
G.
Assume thatek is (vi , vj), whereek is one edge inG
andvi andvj are vertices inG. Also suppose that bi
xi andxj , respectively, representvi andvj .
(a) θ1 = +(T0, x1

i ) andθ =−(T0, x1
i ).

(b) θ2 = +(θ, x1
j ) andθ3 =−(θ, x1

j ).
(c) T0 =∪(θ1, θ2)

ndFor
3) For i = 0 ton− 1

For j = I down to 0
j = 1. The test tubeθ3 consists of all of the strand
hat havexi = 0 andxj = 0. It is indicated from the de
nition of vertex cover that the tubesθ1 and θ2 con-
ain the strands, which satisfy the definition of ver
over. Therefore, Step 2(c) applies “merge” opera
o pour the tubesθ1 andθ2 into the tubeT0. After Steps
(a)–2(c) are repeated to execute m times, the tubT0

ncludes the strands, which represent those legal v
overs.
When each time of the outer loop in Step 3 is

cuted, the number of execution for the inner loo
i + 1) times. The first time of the outer loop is e
uted, the inner loop is only executed one time. Th
ore, Step 3(a) and 3(b) will also be executed one t
tep 3a uses “extraction” operation to form two

ubes:T ON
1 andT0. The first tubeT ON

1 contains all o
he strands that havex1 = 1. The second tubeT0 consists
f all of the strands that havex1 = 0. That is to say tha
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the first tube encodes every vertex cover including the
first vertex and the second tube represents every vertex
cover not including the first vertex. Hence, Step 3(b)
applies “merge” operation to pour the tubeT ON

1 into the
tubeT1. After repeat to execute Steps 3(a) and 3(b), it
finally producesnnew tubes. The tubeTk for n≥ k≥ 1
encodes those vertex covers that containk vertices.
Because the vertex-cover problem is to find a
minimum-size vertex-cover, the tubeT1 first is de-
tected with “detection” operation in Step 4(a). If it
returns “yes”, then the tubeT1 contains those ver-
tex covers, which size is minimum. Therefore, Step
4(b) uses “read” operation to describe sequence of
a molecular in the tubeT1 and the algorithm is ter-
minated. Otherwise, repeat to execute Step 4(a) un-
til a minimum-size vertex cover is found in the tube
detected.

The graph inFig. 1is used to show the power of Al-
gorithm 1. It is pointed out from Step 1 in Algorithm 1
that the tubeT0 is filled with eight library stands with
the techniques mentioned in Section3.2, representing
eight possible vertex covers for the graph inFig. 1.
All of the edges in the graph inFig. 1are (v1, v2) and
(v1,v3). So, the number of execution to Steps 2(a)–2(c)
in Algorithm 1 is two times. From the first execution of
Step 2a in Algorithm 1, two tubes are generated. The
first tube,θ1, includes those vertex covers:{v1}, {v2,
v1}, {v3, v1} and{v3, v2, v1} and the second tube,θ,
also contains those vertex covers:Ø, {v2}, {v3} and
{v3, v2}. Next, from the first execution of Step 2(b) in
A
i
s :
a s
w tep
2
t r-
t
a d to
d -
c t
t e
c
{

i p in
S r of
e is

dependent on the value of the loop variable in the outer
loop. After the execution of the first time to Step 3(a)
and Step 3(b) is finished, the tubeT1 contains those
vertex covers:{v1}, {v2, v1}, {v3, v1} and{v3, v2, v1}
and the tubeT0 includes only the vertex cover:{v3,v2}.
After repeating Steps 3(a) and 3(b), it finally produces
three new tubes. The three tubesT1, T2 andT3, respec-
tively, include{{v2, v1}, {v3, v1}, {v3, v2}} and{{v3,
v2, v1}}.

Because the tubeT1 is not empty, “detection” opera-
tion for detecting the tubeT1 in Step 4(a) in Algorithm
1 returns “yes”. Therefore, Step 4(b) in Algorithm 1
reads the answer from the tubeT1. Thus, a minimum-
size vertex cover for the graph inFig. 1 is {v1}. �

3.4. The complexity of the proposed DNA
algorithm

The following theorems describe time complexity of
Algorithm 1, volume complexity of solution space in
Algorithm 1, the number of the tube used in Algorithm
1 and the longest library strand in solution space in
Algorithm 1.

Theorem3.2. The vertex-cover problem for any undi-
rectedn-vertexgraphGwithmedgescanbesolvedwith
O(n2)biological operations in the Adleman–Lipton
model,where n is the number of vertices in G and m is
at most equal to(n(n− 1)/2).

P he
v
G 2 is
m o re-
m
l us
t -
t 3
i ent
i o-
r
o
o ver-
t om
A on”
o tion.
H is at
o 1
lgorithm 1, two tubes are yielded. The first tube,θ2,
ncludes those vertex covers:{v2} and{v3, v2} and the
econd tube,θ3, also contains those vertex coversØ
nd{v3}. The tubes,θ1 andθ2, consist of the strand
hich satisfy the definition of vertex cover. Hence, S
(c) of Algorithm 1 pours the tubeθ1 andθ2 into the

ubeT0. Therefore, the tubeT0 now includes those ve
ex covers:{v1}, {v2, v1}, {v3, v1}, {v3, v2, v1}, {v2}
nd{v3, v2}. The same processing can be applie
eal with other edge (v1, v3). After every edge is pro
essed, the remaining strands in the tubeT0 represen
he legal vertex covers. That is to say that the tubT0
ontains those vertex covers:{v1}, {v2, v1}, {v3, v1},
v3, v2} and{v3, v2, v1}.
Because the number of vertex in the graph inFig. 1

s three, the number of execution to the outer loo
tep 3 in Algorithm 1 is three times. The numbe
xecution to the inner loop in Step 3 in Algorithm 1
roof 2. Algorithm 1 can be applied for solving t
ertex-cover problem for any undirectedn-vertex graph
. Algorithm 1 includes three main steps. Step
ainly used to determine legal vertex covers and t
ove illegal vertex covers from all of the 2n possible

ibrary strands. From Algorithm 1, it is very obvio
hat Steps 2(a) and 2(b) take2×m “extraction” opera
ions and Step 2(c) takesm “merge” operations. Step
s mainly applied to figure out the number of elem
n every legal vertex cover. It is indicated from Alg
ithm 1 that Step 3(a) takes (n(n− 1)/2) “extraction”
perations and Step 3(b) takes (n(n− 1)/2) “merge”
perations. Step 4 is used to find a minimum-size

ex cover from legal vertex cover. It is pointed out fr
lgorithm 1 that Step 4(a) at most takes n “detecti
perations and Step 4(b) takes one “read” opera
ence, from the statements mentioned above, it
nce inferred that the time complexity of Algorithm
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is O(n2) biological operations in the Adleman–Lipton
model. �

Theorem 3.3. The vertex-cover problem for any
undirected n-vertices graph G with m edges can be
solved with sticker to constructO(2n ) strands in the
Adleman–Lipton model, where n is the number of ver-
tices in G.

Proof 3. Refer to Theorem 3.2. �

Theorem3.4. The vertex-cover problem for any undi-
rected n-vertices graph G with m edges can be solved
with O(n) tubes in the Adleman–Lipton model, where
n is the number of vertices in G.

Proof 4. Refer to Theorem 3.2. �

Theorem 3.5. The vertex-cover problem for any
undirected n-vertices graph G with m edges can be
solved with the longest library strand, O(15×n), in
the Adleman–Lipton model, where n is the number of
vertices in G.

Proof 5. Refer to Theorem 3.2. �

3.5. Range of application to Cook’s Theorem in
DNA computing

Cook’s Theorem (Cormen et al., 2001; Garey and
Johnson, 1979) is that if one algorithm for one NP-
c rob-
l ob-
l cor-
r me
t n
a t
—
p as-
s
T s it
o P-
c
l f ap-
p ing

T
p -
d no-
m ter.

If the size of a reducedNP-complete problem or a
reducedNP-hard problem is not equal to or less than
that of the vertex-cover problem, then a newDNAalgo-
rithm for optimal solution of the reducedNP-complete
problem or the reducedNP-hard problem should be de-
veloped from the characteristic ofNP-complete prob-
lems orNP-hard problems.

Proof 6. We transform the 3-SAT problem to the
vertex-cover problem with a polynomial time al-
gorithm (Cormen et al., 2001). Suppose thatU is
{u1, u2, · · · , un} andC is {c1, c2, · · · , cm}. U andC
are any instance for the 3-SAT problem. We construct
a graphG= (V, E) and a positive integerK≤ |V| such
thatG has a vertex cover of sizeK or less if and only
if C is satisfiable.

For each variableui inU, there is a truth-setting com-
ponentTi = (Vi , Ei), with Vi ={ui , u1

i } andEi ={{ui ,
u1

i }}, that is, two vertices joined by a single edge. Note
that any vertex cover will have to contain at least one
of ui andu1

i in order to cover the single edge inEi .
For each clausecj in C, there is a satisfaction testing
componentSj = (V 1

j , E1
j ), consisting of three vertices

and three edges joining them to form a triangle:

V 1
j = {aj[j], a2[j], a3[j]}

E1
j = {{aj[j], a2[j]}, {a1[j], a3[j]}, {a2[j], a3[j]}}

N ast
t
T hich
l m-
m van-
t For
e
d es
e

E

T ver
p
G

V

omplete problem will be developed, then other p
ems will be solved by means of reduction to that pr
em. Cook’s Theorem has been demonstrated to be
ect in a general digital electronic computer. Assu
hat a collectionC is {c1, c2, · · · , cm} of clauses o
finite setU of variables,{u1, u2, · · · , un}, such tha
cx— is equal to 3 for 1≤ x≤m. The 3-satisfiability

roblem (3-SAT) is to find whether there is a truth
ignment forU that satisfies all of the clauses inC.
he simple structure for the 3-SAT problem make
ne of the most widely used problems for other N
ompleteness results (Cormen et al., 2001). The fol-

owing theorems are used to describe the range o
lication for Cook’s Theorem in molecular comput

heorem 3.6. Assume that any otherNP-complete
roblems or any otherNP-hard problems can be re
uced to the vertex-cover problem with a poly
ial time algorithm in a general electronic compu
ote that any vertex cover will have to contain at le
wo vertices fromV 1

j in order to cover the edges inE1
j .

he only part of the construction that depends on w
iterals occur in which clauses is the collection of co

unication edges. These are best viewed from the
age point of the satisfaction testing components.
ach clausecj inC, assume that the three literals incj is
enoted asxj , yj andzj . Then the communication edg
manating fromSj are given by:

2
j = {{a1[j], xj}, {a2[j], yj}, {a3[j], zj}}.
he construction of our instance to the vertex-co
roblem is completed by settingK=n+ (2×m) and
= (V, E), where

=
(

n∪
i=1

Ei

)
∪

(
m∪

j=1
V 1

j

)
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and

E =
(

n∪
i=1

Ei

)
∪

(
m∪

j=1
E1

j

)
∪

(
m∪

j=1
V 2

E

)
.

Therefore, the number of vertex and the number of
edge inG are, respectively, ((2×n) + (3×m)) and
(n+ (6×m)). This implies that Algorithm 1 is used
to solve the reduced 3-SAT problem, then it will take
O(4×n2 + 12×m×n+ 9×n2) biological operations
with O(22n+3m) DNA strands. However, from the char-
acteristic of the 3-SAT problem, Lipton’s algorithm
will only take O(m) biological operations with O(2n )
DNA strands. Therefore, it is inferred that if the size
of a reduced NP-complete problem or a reduced NP-
hard problem is not equal to or less than that of the
vertex-cover problem, then a new DNA algorithm for
optimal solution of the reduced NP-complete problem
or the reduced NP-hard problem should be developed
from the characteristic of NP-complete problems or
NP-hard problems.

From Theorem 3.3–3.6, if the size of a reduced NP-
complete problem or a reduced NP-hard problem is
equal to or less than that of the vertex-cover prob-
lem, then Algorithm 1 can be directly used for solv-
ing the reduced NP-complete or the reduced NP-hard
problem. Otherwise, a new DNA algorithm for opti-
mal solution of a reduced NP-complete problem or a
reduced NP-hard problem should be developed accord-
ing to the characteristic of NP-complete or NP-hard
problems. �
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Table 2
Sequences chosen to represent the vertices in the graph in Fig. 2

Vertex DNA sequence

x0
3 5′-ATTCTAACTCTACCT-3′

x0
2 5′-TCTAATATAATTACT-3 ′

x0
1 5′-AAAACTCACCCTCCT-3′

x1
3 5′-AACATACCCCTAATC-3′

x1
2 5′-ATTCACTTCTTTAAT-3′

x1
1 5′-TTTCAATAACACCTC-3′

The Adleman program is used for constructing each
15-base DNA sequence for each bit of the library. For
each bit, the program is applied for generating two 15-
base random sequences (for 1 and 0) and checking to
see if the library strands satisfy the seven constraints
in Section3.2with the new DNA sequences added. If
the constraints are satisfied, the new DNA sequences
are greedily accepted. If the constraints are not satis-
fied then mutations are introduced one by one into the
new block until either (A) the constraints are satisfied
and the new DNA sequences are then accepted or (B)
a threshold for the number of mutations is exceeded
and the program has failed and then it exits, printing
the sequence found so far. Ifn-bits that satisfy the con-
straints are found then the program has succeeded and
it outputs these sequences.

Consider the graph inFig. 2. The graph includes
three vertices:v1, v2 andv3. DNA sequences gener-
ated by the Adleman program modified were shown in
Table 2. This program, respectively, took one mutation,
one mutation and 10 mutations to make new DNA se-
quences forv1, v2 andv3. With the nearest neighbor pa-
rameters, the Adleman program was used to calculate
the enthalpy, entropy and free energy for the binding
of each probe to its corresponding region on a library
strand. The energy was shown inTable 3. Only G re-
ally matters to the energy of each bit. For example, the

Table 3
The energy for the binding of each probe to its corresponding region
o

V

x

x

x

x

x

x

. Experimental results of simulated DNA
omputing

We finished the modification of the Adleman p
ram (Braich et al., 1999). This modified program
pplied to generate DNA sequences for solving
ertex-cover problem. Because the source code o
wo functionssrand48() anddrand48() was not found
n theoriginal Adleman program, we use the stand
unctionsrand() in C++ builder 6.0 to replace the fun
ion srand48() and added the source code to the fu
iondrand48(). We also added subroutines to the Ad
an program for simulating biological operations

he Adleman–Lipton model in Section2. We add sub
outines to the Adleman program to simulate Algorit
in Section3.3.
n a library strand

ertex Enthalpy energy (H) Entropy energy (S) Free energy (G)
0
3 105.2 277.1 22.4
0
2 104.8 283.7 19.9
0
1 113.7 288.7 27.5
1
3 112.6 291.2 25.6
1
2 107.8 283.5 23
1
1 105.6 271.6 24.3
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Table 4
DNA sequences chosen represent all possible vertex covers

5′-ATTCTAACTCTACCTTCTAATATAATTACTAAAACTCACCCTCCT-3′ 3′-TAAGATTGAGATGGAAGATTATATTAATGATTTTGAGT
GGGAGGA-5′

5′-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACACCTC-3 ′ 3′-TAAGATTGAGATGGAAGATTATATTAATGAAAAGTTAT
TGTGGAG-5′

5′-ATTCTAACTCTACCTATTCACTTCTTTAATAAAACTCACCCTCCT-3′ 3′-TAAGATTGAGATGGATAAGTGAAGAAATTATTTTGAGT
GGGAGGA-5′

5′-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAACACCTC-3′ 3′-TAAGATTGAGATGGATAAGTGAAGAAATTAAAAGTTAT
TGTGGAG-5′

5′-AACATACCCCTAATCTCTAATATAATTACTAAAACTCACCCTCCT-3′ 3′-TTGTATGGGGATTAGAGATTATATTAATGATTTTGAGT
GGGAGGA-5′

5′-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAACACCTC-3 ′ 3′-TTGTATGGGGATTAGAGATTATATTAATGAAAAGTTAT
TGTGGAG-5′

5′-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACCCTCCT-3′ 3′-TTGTATGGGGATTAGTAAGTGAAGAAATTATTTTGAGT
GGGAGGA-5′

5′-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAACACCTC-3′ 3′-TTGTATGGGGATTAGTAAGTGAAGAAATTAAAAGTTAT
TGTGGAG-5′

deltaG for the probe binding a ‘1’ in the first bit is,
thus, estimated to be 24.3 kcal/mol and the deltaG for
the probe binding a ‘0’ is estimated to be 27.5 kcal/mol.

The program simulated a mix-and-split combinato-
rial synthesis technique (Cukras et al., 1998) to synthe-
size the library strand to every possible vertex cover.
Those library strands are shown inTable 4, and repre-
sent eight possible vertex covers:Ø, {v1}, {v2}, {v2,
v1}, {v3}, {v3, v1}, {v3, v2} and{v3, v2, v1}, respec-
tively. The program is also applied to figure out the av-
erage and standard deviation for the enthalpy, entropy
and free energy over all probe/library strand interac-
tions. The energy is shown inTable 5. The standard
deviation for deltaG is small because this is partially
enforced by the constraint that there are 4, 5 or 6Gs
(the seventh constraint in Section3.2) in the probe se-
quences.

The Adleman program is employed for computing
the distribution of the types of potential mishybridiza-
tions. The distribution of the types of potential mishy-
bridizations is the absolute frequency of a probe-strand
match of lengthk from 0 to the bit length 15 (for DNA
sequences) where probes are not supposed to match

Table 5
The energy over all probe/library strand interactions

Enthalpy
energy (H)

Entropy
energy (S)

Free energy
(G)

Average 108.283 282.633 23.7833
S

Table 6
DNA sequences generated by Step 2 represent legal vertex covers

5′-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACA
CCTC-3′

5′-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAAC
ACCTC-3′

5′-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAAC
ACCTC-3′

5′-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACC
CTCCT-3′

5′-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAAC
ACCTC-3′

the strands. The distribution is, subsequently, 106, 152,
183, 215, 216, 225, 137, 94, 46, 13, 4, 1, 0, 0, 0 and 0.
It is pointed out from the last four zeros that there are 0
occurrences where a probe matches a strand at 12, 13,
14 or 15 places. This shows that the third constraint in
Section3.2 has been satisfied. Clearly, the number of
matches peaks at 5 (225). That is to say that there are
225 occurrences where a probe matches a strand at 5
places.

The results for simulation of Step 2–4 were, respec-
tively, shown inTables 6–10. From the tubeT1, the
answer was found to be{v1}.

Table 7
DNA sequence generated by Step 3 represents that vertex cover only
containing one vertex

5′-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAACA
CCTC-3′
tandard deviation 3.58365 6.63867 2.41481
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Table 8
DNA sequences generated by Step 3 represent those vertex covers
including two vertices

5′-ATTCTAACTCTACCTATTCACTTCTTTAATTTTCAATAA
CACCTC-3′

5′-AACATACCCCTAATCTCTAATATAATTACTTTTCAATAAC
ACCTC-3′

5′-AACATACCCCTAATCATTCACTTCTTTAATAAAACTCACC
CTCCT-3′

Table 9
DNA sequence generated by Step 3 represents that vertex cover con-
taining three vertices

5′-AACATACCCCTAATCATTCACTTCTTTAATTTTCAATAAC
ACCTC-3′

Table 10
DNA sequence generated by Step 4 represents the minimum-size
vertex cover

5′-ATTCTAACTCTACCTTCTAATATAATTACTTTTCAATAAC
ACCTC-3′

5. Conclusions

Cook’s Theorem is that if one algorithm for an NP-
complete or an NP-hard problem will be developed,
then other problems will be solved by means of re-
duction to that problem. Cook’s Theorem has been
demonstrated to be right in a general digit electronic
computer. In this paper, we showed that, from Theo-
rem 3.3 to 3.6, if the size of a reduced NP-complete
problem is equal to or less than that of the vertex-cover
problem, then Cook’s Theorem is right in molecular
computing. Otherwise, a new DNA algorithm for op-
timal solution of a reduced NP-complete problem or
a reduced NP-hard problem should be developed from
the characteristic of NP-complete problems or NP-hard
problems.

Chang and Guo (2002b, 2002d)applied splints to
constructing solution space of DNA sequence for solv-
ing the vertex-cover problem in the Adleman–Lipton.
This causes that hybridization has higher probabili-
ties for errors. Adleman and co-workers (Roweis et al.,
1999) proposedstickerto decrease probabilities of er-
rors to hybridization in the Adleman–Lipton. The main
result of the proposed algorithms shows that the vertex-
cover problem is solved with biological operations in
the Adleman–Lipton model from solution space of

sticker. Furthermore, this work represents clear evi-
dence for the ability of DNA based computing to solve
NP-complete problems.

Currently, there still are lots of NP-complete prob-
lems not to be solved because it is very difficult to use
basic biological operations for replacing mathematical
operations. We are not sure whether molecular comput-
ing can be applied for dealing with every NP-complete
problem. Therefore, in the future, our main work is to
solve other unsolved NP-complete problems with the
Adleman–Lipton model and the sticker model, or de-
velop a new model.

References

Sinden, R.R., 1994. DNA Structure and Function. Academic Press.
Adleman, L., 1994. Molecular computation of solutions to combina-

torial problems. Science 266, 1021–1024.
Lipton, R.J., 1995. DNA solution of hard computational problems.

Science 268, 542–545.
Quyang, Q., Kaplan, P.D., Liu, S., Libchaber, A., 1997. DNA solution

of the maximal clique problem. Science 278, 446–449.
Arita, M., Suyama, A., Hagiya, M., 1997. A heuristic approach for

Hamiltonian path problem with molecules. In: Proceedings of
Second Genetic Programming (GP-97), pp. 457–462.

Morimoto, N., Arita, M., Suyama, A., 1999. Solid phase DNA solu-
tion to the Hamiltonian path problem. In: Series in Discrete Math-
ematics and Theoretical Computer Science, vol. 48, pp. 93–206.

Narayanan, A., Zorbala, S., 1998. DNA algorithms for computing
shortest paths. In: Koza, J.R., et al. (Eds.), Genetic Programming
1998: Proceedings of the Third Annual Conference, pp. 718–724.

S ales-
gs of
, vol.

C n to

G Free-

B pu-
ol.
biol-

A NA
Dis-
rican

A t of

R an,
sed
e-
nual
hin, S.-Y., Zhang, B.-T., Jun, S.-S., 1994. Solving traveling s
man problems using molecular programming. In: Proceedin
the 1999 Congress on Evolutionary Computation (CEC99)
2, pp. 994–1000.

ormen, T.H., Leiserson, C.E., Rivest, R.L., 2001. Introductio
Algorithms, second ed. The MIT Press.

arey, M.R., Johnson, D.S., 1979. Computer and Intractability.
man, San Fransico, CA.

oneh, D., Dunworth, C., Lipton, R.J., Sgall, J., 1996. On the com
tational power of DNA. In: Discrete Applied Mathematics, v
71, pp. 79–94 (special issue on computational molecular
ogy).

dleman, L.M., 1996. On constructing a molecular computer. D
based computers. In: Lipton, R., Baum, E. (Eds.), Series in
crete Mathematics and Theoretical Computer Science Ame
Mathematical Society, pp. 1–21.

mos, M., 1997. DNA computation, Ph.D. Thesis, Departmen
Computer Science, The University of Warwick.

oweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodm
M.F., Rothemund, P.W.K., Adleman, L.M., 1999. Sticker Ba
Model for DNA Computation, Princeton University, In: Landw
ber, L., Baum, E. (Eds.), In: Proceedings of the second an



82 M. Guo et al. / BioSystems 80 (2005) 71–82

workshop on DNA Computing, Series in Discrete Mathematics
and Theoretical Computer Science, American Mathematical So-
ciety, pp. 1–29.

Perez-Jimenez, M.J., Sancho-Caparrini, F., 2001. Solving Knapsack
Problems in a Sticker Based Model. In: Proceedings of the Sev-
enth Annual Workshop on DNA Computing, DIMACS: Series in
Discrete Mathematics and Theoretical Computer Science, Amer-
ican Mathematical Society.

Paun, G., Rozenberg, G., Salomaa, A., 1998. DNA Computing: New
Computing Paradigms. Springer–Verlag, New York.

Chang, W.-L., Guo, M., 2002a. Solving the dominating-set problem
in Adleman–Liptons Model. In: The Third International Confer-
ence on Parallel and Distributed Computing, Applications and
Technologies, Japan, pp. 167–172.

Chang, W.-L., Guo, M., 2002b. Solving the clique problem and the
vertex-cover problem in Adleman–Lipton’s Model. In: IASTED
International Conference on Networks, Parallel and Distributed
Processing, and Applications, Japan, pp. 431–436.

Chang, W.-L., Guo, M., 2002c. Solving NP-complete problem in
the Adleman–Lipton Model. In: The Proceedings of 2002 Inter-
national Conference on Computer and Information Technology,
Japan, pp. 157–162.

Chang, W.-L., Guo, M., 2002d. Solving the 3-dimensional match-
ing problem and the set packing problem in Adleman–Lipton’s
Model. In: IASTED International Conference on Networks, Par-
allel and Distributed Processing, and Applications, Japan, pp.
455–460.

Fu, B., 1997. Volume bounded molecular computation, Ph.D. Thesis,
Department of Computer Science, Yale University.

Braich, R.S., Johnson, C., Rothemund, P.W.K., Hwang, D.,
Chelyapov, N., Adleman, L.M., 1999. Solution of a satisfiabil-
ity problem on a gel-based DNA computer. In: Proceedings of

the sixth International Conference on DNA Computation in the
Springer–Verlag Lecture Notes in Computer Science Series.

Kalim, M., Restricted genetic alphabet for DNA computing, In: Eric,
B., Baum, Landweber, L.F., 1998. DNA Based Computers II: DI-
MACS Workshop, June 10–12, 1996, volume 44 of DIMACS:
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Providence, RI, pp. 243–246.

Cukras, A.R., Faulhammer, D., Lipton, R.J., Landweber, L.F., 1998.
Chess games: a model for RNA-based computation. In: Proceed-
ings of the fourth DIMACS Meeting on DNA Based Computers,
University of Pennsylvania, pp. 27–37.

Chang, W.-L., Guo, M., 2004. Using sticker for solving the
dominating-set problem in the Adleman–Lipton Model. IEICE
Trans. Inf. Syst. E-87D (7), 1782–1788.

Reif, J.H., LaBean, T.H., Seeman, 2000. Challenges and applications
for self-assembled DNA-nanostructures. In: Proceedings of the
Sixth DIMACS Workshop on DNA Based Computers, Leiden,
Holland.

LaBean, T.H., Winfree, E., Reif, J.H., 2000. Experimental progress
in computation by self-assembly of DNA tilings. Theor. Comput.
Sci. 54, 123–140.

LaBean, T.H., Reif, J.H., 2001. Logical computation using algorith-
mic self-assembly of DNA triple-crossover molecules. Nature
407, 493–496.

Garzon, M.H., Deaton, R.J., 1999. Biomolecular Computing and
Programming. IEEE Trans. Evolut. Comput. 3, 236–250.

Chang, W.-L., Guo, M., Ho, M., 2003. Solving the set-splitting prob-
lem in sticker-based model and the Adleman–Lipton Model. In:
The 2003 International Symposium on Parallel and Distributed
Processing and Applications, Aizu City, Japan, LNCS 2745, pp.
185–196.


	Is optimal solution of every NP-complete or NP-hard problem determined from its characteristic for DNA-based computing
	Introduction
	DNA model of computation
	The Adleman-Lipton model
	The Adleman-Lipton model
	Other related work and comparison with the Adleman-Lipton model

	Using sticker for solving the vertex-cover problem in the Adleman-Lipton model
	Definition of the vertex-cover problem
	Using sticker for constructing solution space of DNA sequence for the vertex-cover problem
	The DNA algorithm for solving the vertex-cover problem
	The complexity of the proposed DNA algorithm
	Range of application to Cooks Theorem in DNA computing

	Experimental results of simulated DNA computing
	Conclusions
	References


