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ABSTRACT
In this paper, it is demonstrated how the DNA (DeoxyriboNucleic Acid) operations
presented by Adleman and Lipton can be used to develop the parallel genetic algorithm
that solves the independent-set problem. The advantage of the genetic algorithm is the
huge parallelism inherent in DNA based computing. Furthermore, this work represents
obvious evidence for the ability of DNA based parallel computing to solve NP-complete
problems.

Keywords: DNA based computing, parallelism, parallel genetic algorithm, NP-complete
problems

1. Introduction

1t is nowadays possible to yield a soup of roughly 10'® DNA strands that fits in
a test tube through advances in molecular biology [1]. Basic biological operations
can be used to simultaneously operate 10'® bit information. This is to say that
there are 10'® data processors to be parallel executed. Hence, it is very obvious
that biological computing can provide very huge parallelism for dealing with the
problem in real world.

Adleman [2] demonstrated that each DNA strand could be applied to figure out
solutions for an instance of the NP-complete Hamiltonian path problem (HPP).
Lipton [3] proposed to apply DNA computing to resolve the NP-complete satisfia-
bility (SAT) problem. Mathematically, an independent set of a graph G = (V, E)
is a subset V1 € V of vertices such that each edge in F is incident on at most one
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vertex in V! [9]. The independent-set problem is to find a maximum-size indepen-
dent set in G. This problem has been shown to be an NP-complete problem [10].
In this paper, we demonstrate how the DNA (DeoxyriboNucleic Acid) operations
presented by Adleman and Lipton can be employed to generate a parallel genetic
algorithm to resolving the independent-set problem.

The paper is organized as follows. In Section 2, the DNA operations proposed
by Adleman and Lipton are in detail introduced. Section 3 describes the genetic
method for finding a maximum-size independent set to any undirected graph. In
Section 4, the experimental result of simulated DNA computing is also given. Con-
clusions are drawn in Section 5.

2. DNA Model of Computations

In subsection 2.1, the summary of DNA structure and the Adleman-Lipton
model is in detail described. In subsection 2.2, the comparison of the Adleman-
Lipton model with other models is also introduced.

2.1. The Adleman-Lipton Model

A DNA (DeoxyriboNucleic Acid) is the molecule that plays the main role in DNA
based computing [16]. In the biochemical world of large and small molecules, poly-
mers, and monomers, DNA is a polymer, which is strung together from monomers
called deoxyriboNucleotides. The monomers used for the construction of DNA are
deoxyribonucleotides, which each deoxyribonucleotide contains three components:
a sugar, a phosphate group, and a nitrogenous base. This sugar has five carbon
atoms - for the sake of reference there is a fixed numbering of them. Because the
base also has carbons, to avoid confusion the carbons of the sugar are numbered
from 1’ to 5 (rather than from 1 to 5). The phosphate group is attached to the 5’
carbon, and the base is attached to the 1’ carbon. Within the sugar structure there
is a hydroxyl group attached to the 3’ carbon.

Distinct nucleotides are detected only with their bases, which come in two sorts:
purines and pyrimidines. Purines include adenine and guanine, abbreviated A and
G [1,16]. Pyrimidines contain cyfosine and thymine, abbreviated C' and T'. Because
nucleotides are only distinguished from their bases, they are simply represented as
A,G,C, or T nucleotides, depending upon the sort of base that they have. The
structure of a nucleotide is illustrated (in a very simplified way) in Figure 1. In
Figure 1, B is one of the four possible bases (A4,G,C, or T), P is the phosphate
group, and the rest (the ”stick”) is the sugar base (with its carbons enumerated 1’
through 57).

The DNA operations proposed by Adleman and Lipton [2,3,11,12] are described
below. These operations will be used for figuring out solutions of the independent
set problem.



Solving the Independent-set Problem in o DNA-Based Supercomputer Model 471

P 0—0—0 0 0

5 4 32 1

Figure 1: A schematic representation of a nucleotide.

The Adleman-Lipton’s Model:

A (test) tube is a set of molecules of DNA (i.e. a multi-set of finite strings over
the alphabet {4, C, G, T}). Given a tube, one can perform the following operations:

1. it Extract. Given a tube P and a short single strand of DNA, S, produce two
tubes +(P, S) and —(P, S), where +(P, S) is all of the molecules of DNA in
P which consist of the short strand S and —(P,S) is all of the molecules of
DNA in P which do not contain the short strand S.

2. Separate. Given a tube P and length L for a double strand of DNA, generate
one tube x(P, L), where (P, L) is all of the molecules of DNA in P which

length is equal to L.

3. Merge. Given tubes P; and Ps, yield U(P1, P), where U(P;, Po) = Py U Py.
This operation is to pour two tubes into one, with no change of the individual
strands.

4. Anneal. The operation is to represent all of the operations that combine a
test tube of single stranded DNA with other prepared strands and let them
anneal together to form double strands.

5. Detect. Given a tube P, say 'yes’ if P includes at least one DNA molecule,
and say 'no’ if it contains none.

6. Append. Given a tube P and a short strand of DNA, Z, the operation will
append the short strand, Z, onto the end of every strand in the tube P.

7. Discard. Given a tube P, the operation will discard the tube P.

8. Read. Given a tube P, the operation is used to describe a single molecule,
which is contained in the tube P. Even if P contains many different molecules
each encoding a different set of bases, the operation can give an explicit de-
scription of exactly one of them.

2.2. The Comparison of the Adleman-Lipton Model with Other Models

Techniques in the Adleman-Lipton model could be used to solve the NP-complete
Hamiltonian path problem and satisfiability (SAT) problem in linearly increasing
time and exponentially increasing volumes of DNA [2,3]. Ouyang et al. [4] showed
that restriction enzymes could be used to solve the NP-complete clique problem
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(MCP). The maximum number of vertices that they can process is limited to 27
because the size of the pool with the size of the problem exponentially increases
[4]. Arita et al. [5] described new molecular experimental techniques for searching
a Hamiltonian path. Morimoto et al. [6] offered a solid-phase method to find-
ing a Hamiltonian path. Narayanan et al. [7] proved that the Adleman-Lipton
model was extended towards solving the travelling salesman problem. Shin et al.
[8] presented an encoding scheme that applies fixed-length codes for representing
integer and real values. Their method could also be employed towards ascertaining
the travelling salesman problem. Amos [13] proposed parallel filtering model for
resolving the Hamiltonian path problem, the sub-graph isomorphism problem, the
3-vertex-colorability problem, the clique problem and the independent-set problem.
Roweis et al. [14] proposed sticker-based model to enhance Adleman’s experiments.
Their model could be used for determining solutions to an instance of the set cover
problem. Perez-Jimenez et al. [15] employed sticker-based model to resolve knap-
sack problems. In our previous work, Chang and Guo [17,18,19,20] proved how the
DNA operations presented by Adleman and Lipton could be employed for devel-
oping DNA algorithms to resolving the dominating-set problem, the vertex cover
problem, the clique problem, the set cover problem, the problem of exact cover by
3-sets, the 3-dimensional matching problem and the set-packing problem.

3. DNA-Based Parallel Algorithm for Solving the Independent-set Prob-
lem

The independent-set problem asks: Given a network consisting of n vertices
and m edges, how many vertices are in a maximum-size independent set? For
example, the graph includes 6 vertices and 11 edges in Figure 2a. The graph
defines such a problem. All of the independent set for the graph in Figure 2a
includes {VO}7 {Vl}’ {V2}7 {V3}7 {Vzi}’ {‘/5}7 {Vb; V2}’ {%a V5}7 {Vla V?B} and {VL %}
It is very obvious that the independent set of the maximum size to the graph con-
tains {Vo, Va}, {Vo, V5 }, {V1, V3} and {V1, Vs }. Hence, the size of the independent-set
problem in this graph is two. Finding a maximum-size independent set is a NP-
complete problem, so it can be formulated as a ”search” problem [10]. Adleman
[2,12] designed a biological system that produces all of the possible paths, and then
he makes use of basic biological operations to select the Hamiltonian path from all
of the possible paths. Lipton applies Adleman’s model to generate all of the solu-
tions for the satisfiability problem, and then he employs DNA operations proposed
by Adleman to extract the answer from all of the solutions for the satisfiability
problem. Their models enlighten how to resolve computational search problems
(i.e., the NP-complete problems).

The first step of determining the independent-set problem is to yield a test
tube, which consists of all of the possible independent sets. It is assumed that
an undirected graph has n vertices, and an n-digit binary number represents each
possible independent set. A bit set to 1 represents a vertex in the independent set,
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Figure 2: The graph of our problem, in which the independent-set problem is
{V()’ ‘/2}, {VO, V5}7 {V17 ‘/E’)} a‘nd {‘/17 ‘/5}

and a bit set to 0 represents a vertex out of the independent set. For example, the
maximum-size independent set, {Vo, V2}, for the graph in Figure 2a is represented
by binary number 000101. By this way, all of the possible independent sets in an
undirected n-vertex graph are transformed into an ensemble of all n-digit binary
numbers.

To implement this way, we suggested that an unsigned integer X is represented
by a binary number z,_1,2Z,_2, -+, zo, where the value of z; is 1 or 0 for 0 <
¢ <n — 1. The integer X contains 2" kinds of possible values. Each possible value
represents an independent set. Therefore, it is very obvious that an unsigned integer
X forms 2™ independent sets. A bit x; in an unsigned integer X represents the i-th
vertex in an undirected graph. If the i-th vertex is in an independent set, then the
value of z; is set to 1. If the ¢-th vertex is out of an independent set, then the value
of z; is set to 0.

To generate a complete test tube, we design the data structure that is the form
of double-stranded DNA (dsDNA). It is assumed that 2} denotes the value of z; to
be 1 and z denotes to be 0. We encode all of the possible values for an unsigned
integer X, forming all of the possible independent sets, into a test tube of double-
stranded DNA as follows. First, we assign to each 27 a random 20-mer sequence of
DNA denoted O .The random 20-mer sequence of DNA used in [2,12] should also
suffice here. Next, we assign to each z} a random 30-mer sequence of DNA denoted
O}. The 30-mer sequence of DNA applied in [3,11] should also suffice here. The
first half of Of or O} is denoted by ¢; and the last half of Of or O} is also defined by
d;. Therefore, O? or O} can be represented by c;d;. Two adjacency bits, z; and z;,
are regarded as one edge from the i-th position to the j-th position. For each edge
from the i-th position to the j-th position, an oligonucleotide was created, where
denotes the sequence that is the Watson-Crick complement of d; and defines the
sequence that is the Watson-Crick complement of ¢;. Finally, a test tube is filled
with the following kinds of DNA strands:

1. For each bit, put many copies of a 5 — 3’ DNA sequence of the form ¢;d;
into the test tube.
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2. For each edge from the i-th position to the j-th position, place many copies
of a 3’ — 5’ DNA sequence of the form d;&;.

3. Put many copies of a 3 — 5 sequence complementary to the first half of the
initial bit (zp). Similarly, put many copies of a 3’ — 5’ sequence complemen-
tary to the last half of the last bit (z, — 1).

The oligonucleotides in the test tube were mixed together in a single ligation
reaction in [2,3,11,12]. The d;¢; served as splints to bring oligonucleotides associ-
ated with compatible edges together for ligation. Therefore, the ligation reaction
resulted in the formation of DAN molecules encoding all of the possible independent
sets. After the test tube above is generated, we design the following genetic method
to resolve a maximum-size independent set for any undirected graph.

Algorithm:

(1) Input(P), where the tube P is to encode all of the possible independent sets
for given an n-vertex graph G with edges ej,es,...,¢€,.

(2) Forall k = 1 to z, where z is the number of edges in the graph G.

(a) Let ex =< V;,V; >, where e is one edge in the graph G and V; and Vj
are vertices in the graph G.

(b) Bits z; and x;, respectively, represent V; and V.

(c) @' = +(P,z}) and Q = —(P,z}).

(d) @ = +(Q",z}) and Q° = ~(Q}, z}).

(e) P=U(Q,Q%.

(3) R' = Anneal (P), where the operation is to represent all of the operations
that combine a test tube of single stranded DNA with other prepared strands and
let them anneal together to form double strands.

(4) P = %(R',1), where [ is equal to the longest length for double strands of
DNA in the tube R!.

(5) If (detect (P) = ’yes’) then.

(a) Read(P), where the operation describes ’sequence’ of a molecular in the
tube P.

Theorem 1 In light of those steps in the Algorithm, the independent-set prob-
lem can be resolved with "polynominal” time complexity.

Proof. Clearly every element of the input tube P corresponds to an inde-
pendent set to a graph G. Any two vertices connected in the graph G cannot be
members of the same independent set. That is to say that the corresponding bits
cannot be set to 1. Therefore, Step (2) of the algorithm creates from the current
tube a new tube from which any two vertices connected in the graph G have been
removed. After 2 % z extractions, z merges, 1 anneal, 1 separation, 1 detection and
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1 read, the algorithm will output ’sequence’ of a molecule if at least one maximum-
size independent set is contained in the tube P. Thus, the algorithm answers the
independent-set problem for the graph G in ’linear’ time (in the number of edges)
which an electronic computer might require exponential time. This is the value of
parallelism; each step acts on as many 2" inputs simultaneously. 0.

The genetic algorithm can be used to finding a maximum-size independent set
for the graph in Figure 2a. Any two vertices in an independent set for the graph in
Figure 2a are disconnected each other. This is to imply that the adjacency vertices of
each edge in the graph in Figure 2a can not be the members of the same independent
set. In light of Step (1) of the algorithm, the tube P is filled with 64 double strands
of DNA, representing 64 possible independent sets for the graph in Figure 2a. All
of the edges in the graph in Figure 2a are < Vo, Vo >, < V5, V3 >, < Vo, Vi >, <
Vi, Vo >, < W, Vu >, < Vo, Va >, < Vo,V >, < Vo, V5>, < V3, Vs >, < V3, V5 > and
< V4, Vs >. The number of the edges in the graph in Figure 2a is eleven, so the
number of execution to Step (2) of the algorithm is 11 times. According to the first
execution of Steps 2a and 2b of the algorithm, the first edge e is < Vp, Vo > and
the number containing the first edge is * **1* 1 (* can be either 1 or 0). Therefore,
in light of Steps 2c, 2d and 2e, the number * % x1 * 1 are removed from the tube
P. Similarly, according to the remaining execution of Steps 2a to 2e, the numbers,
representing other ten edges, also are removed from the tube P. Therefore, the
remaining strands in the tube P are to represent legal independent sets. So, finding
a maximum-size independent set is to search the longest length of strands in the tube
P. Steps (3) and (4) of the algorithm are applied to find the answer from the tube P.
Steps 5 and 5a of the algorithm read the answer from the tube P. Thus, a maximum-
size independent set for the graph G in Figure 2a is {Vg, Va}, {Vo, V5}, {V1, Va} or
W1, V53

4. Experimental Results of Simulated DNA Algorithm

We developed a tool for simulating DNA computing and other molecular compu-
tation methods. The tool is applied towards designing the biological experiments,
such as code design for resolving the independent-set problem. The operations pre-
sented by Adleman and Lipton in Section 2 was implemented on the tool. Simulta-
neously, the parallel genetic algorithm proposed in Section 3 was also implemented
on the tool.

In simulations, the rule of code design for resolving the independent-set prob-
lem is equal to that of vertex color. It is assumed that four bases, {4,C,G, T},
represents four different colors. The same base (color) did not construct two adja-
cency nucleotides in single-stranded DNA. To avoid common nucleotides in different
strands, if a kind of color sequence was used to generate a new strand, then it was
removed for other strands and hence could not be employed to yield other new
strands. According to the rule, single strand of DNA for every vertex (i.e., the
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corresponding bit) in the graph in Figure 2a is shown in Table 1. Similarly, single
strand of DNA to each edge, regarded as the splint, is also shown in Table 2. A
3’ — 5’ sequence complementary to the first half of the initial bit (z3 ) and a 3’ — 5’
sequence complementary to the first half of the initial bit ( x}) are, respectively,
ACTCGTATAC and AGTGAGACATGATCG. Similarly, a 3 — 5 sequence
complementary to the last half of the last bit (z0_, ) and a 3’ — 5’ sequence com-
plementary to the last half of the last bit (z}_,) are, respectively, CTGCTCTACG
and GAGTCGTCATGAGCA.

| Vertex | 5 — 3’ DNA Sequence |
) TGAGCATATGCATGTCGATC
z} TCACTCTGTACTAGCGCTATCGTCATAGTA
zy GATCAGCACTGCTAGTCACA
xl ATCGACGCATCGCTCACGTGTGCGTGCTGC
z3 TAGTGTAGCGAGATATGICT
T3 GCGATGTCGCTCGTGCAGCGAGACGAGACA
3 AGCACTGAGTATCACTACGT
zi GTATCGATCAGTGATGTGACATAGAGTAGA
x5 CACTATCTGATAGCGAGCTA
T3 ACTGTACGAGTGTCTATAGACTCAGTGCAC
z9 CGTAGCACTCGACGAGATGC
zi CTGCGAGTACACACACTCAGCAGTACTCGT

Table 1: Sequences chosen to represent the vertices in the graph in Figure 2a.

In simulations, 32 copies of DNA sequences, representing every bit in Table 1
or every edge in Table 2, are generated. Similarly, 32 copies of a 3’ — 5’ sequence
complementary to the first half of the initial bit (zJ ) and 32 copies of a 3’ — 5’
sequence complementary to the first half of the initial bit (z} ) are also yielded.
Next, 32 copies of a 3’ — 5’ sequence complementary to the last half of the last bit
(29 _; ) and 32 copies of a 3’ — 5’ sequence complementary to the last half of the last
bit ( zl_; ) are also produced. The hybridization process and the ligation process
were emulated as realistic as biological processes. Therefore, the tube for the graph
in Figure 2a was generated in simulations. The tube contained 64 different double
strands of DNA. That is to say that the tube consists of 64 different independent
sets.

In simulations, a file was used to store 64 different sequences of DNA. In the
genetic algorithm, Step 1 of simulation is to read the sequences from the file and the
sequences were stored in arrays. In light of the number of the edges in the graph G
in Figure 2a, the number of the execution for Step 2 is equal to the number of the
edges. In Steps 2(a) and 2(b) of simulation, two different sequences, representing
adjacency vertices of the same edge, were found from Table 1 and were applied for
removing illegal independent sets. In Steps 2(c) and 2(d) of simulation, the first
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sequence was regarded as a sub-string and was employed to separate the solutions
into two parts. The solutions in the first part did not contain the independent
sets, which include two adjacency vertices of the same edge. The solutions in
the second part consisted of the independent sets, which contain two adjacency
vertices of the same edge. Because the solutions in the second part were illegal,
they were discarded. In Step 2(e) of simulation, all of the legal solutions produced
by Steps 2(c) and 2(d) were stored in arrays. Repeat the execution of Step 2
until all of the edges in the graph G were processed. Since the legal solutions
generated by Steps 2(a) to 2(e) were single strands of DNA, the aim of Step 3 is
to form double strands of DNA to the legal solutions. Therefore, this process was
simulated by explicitly producing the corresponding complementary sequences for
the single strands of DNA. In Step 4, the longest sequence from the legal solutions
is chosen as a maximum-size independent set. The longest sequence is a maximum-
size independent set because in the proposed encoding scheme the code length of V;
was set to 30 if the value of V; is equal to 1. Hence this process was simulated by
explicitly finding the longest sequence from the legal solutions. The goal of Step 5
is to check whether there are the longest sequences in the legal solutions. Thus, this
process was simulated by explicitly examining whether the set of the legal solutions
is empty. This process generated a resulted value, ‘yes’, if the set of the legal
solutions is non-empty. A resulted value, 'no’, was generated by this process if the
set of the legal solutions is empty. If this process generated a resulted value, 'yes’,
then in Step 5(a) of simulation, a legal solution from the set of the legal solutions
was selected. If a 30-mer sequence in Table 1 was the sub-string of the selected
solution, then the corresponding vertex was in a maximum-size independent set.
Otherwise, the corresponding vertex was out of a maximum-size independent set.

5. Conclusions

The main result of this paper is that DNA based computers can be employed for
resolving the independent-set problem to any undirected graph. The design of DNA
codes and each operation in the algorithm proposed are finished through computer
simulations. The size of all of the possible independent sets is 2™, where n is the
number of vertices in any undirected graph. Due to the limit of memory space and
hard-disk space, the value of n should be less than or equal to 22 in the simulation.

The genetic algorithms are grouped in two ways [11]. First, the genetic algo-
rithms are classified in light of how the volume changes during the molecular com-
putation. Decreasing Volume Algorithms decrease the number of strands in a test
tube when the algorithms execute, in Constant Volume Algorithms, the number of
strands constant is maintained throughout the computation, and Mized Algorithms
are those fitting in neither of the previous classes. Second, an algorithm is said
to be Uniform if the following condition is satisfied in every test tube during the
computation: any two different strands have the same number of copies in the test
tube. According to [11], dealing with a constant volume and uniform algorithm is
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| Splint | 3’ — 5 DNA Sequence |
T2, T TCATCTCGTAACAGCGAGTC
T3, T TCATCTCGTAACAGCGAGTC
T5, T AGACTACTGCAGATGACAGCGAGTC

AGACTACTGCAGATGCAGTGCATCTGTGAG
GCTATCTAGCCTACAGTCTG
GCTATCTAGCTGCGATCGACTGTCG
CGCTCAGACTGTACACTACAGTCTG
CGCTCAGACTGTACATGCGATCGACTGTCG
CGACAGCATGGCTGTGCTAT
CGACAGCATGTATCGTGATAGATGTC
TGICACGCTCTGCTCGCTGTGCTAT
TGTCACGCTCTGCTCTATCGTGATAGATGT
CTCGCGTGAGTCGACTACAG
CTCGCGTGAGCGATCATACGATAGA
ACTATCTCATCTCACTCGACTACAG
ACTATCTCATCTCACCGATCATACGATAGA
TAGCTGACACGTCTACGCGT
TAGCTGACACGACAGAGTGCAGCTA
CATGTGTATGTAGTAGTCTACGCGT
CATGTGTATGTAGTAGACAGAGTGCAGCTA

8
8

8
5

5
a

8
5

8
8

8
5

5

8
4

g
S

g
B

8
8

8
]

8
8

8
8

5
I

e | e | o | | | e [ e e | e | e | e e e e e

8
= = = O O R D O O 02 4100 00 S0 O i =L O OO R Gt cr e
8 8
O HO QO HO O HH O = I H R O 0 O 0o - G0 O {00 O s O s s O

A/—\/-\A/\/‘\/—\/\A?f\f\/\/—\/—\/—\/—\/‘\/‘\/—\

8

Table 2: Sequences chosen are regarded as the splint for adjacency bits in Table 1

easier than manipulating other algorithms. Because the algorithm proposed is uni-
form and constant volume, it is shown from the simulation that the implementation
to a constant volume and uniform algorithm is easier than that of other algorithm
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