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Abstract The RSA public-key cryptosystem is an algorithm that converts a plain-
text to its corresponding cipher-text, and then converts the cipher-text back into its
corresponding plain-text. In this article, we propose five DNA-based algorithms—
parallel adder, parallel subtractor, parallel multiplier, parallel comparator, and parallel
modular arithmetic—that construct molecular solutions for any (plain-text, cipher-
text) pair for the RSA public-key cryptosystem. Furthermore, we demonstrate that an
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eavesdropper can decode an encrypted message overheard with the linear steps in the
size of the encrypted message overheard.

Keywords The RSA public-key cryptosystem · Plain-text · Cipher-text ·
Biomolecular computing · DNA-based computing

1 Introduction

The RSA public-key cryptosystem [1] is the primary cryptosystem used for security
on the Internet and World Wide Web. Feynman [2] first offered molecular computa-
tions in 1961, but his idea was implemented for several decades. In 1994, Adleman [3]
succeeded in solving an instance of the Hamiltonian path problem in a test tube by
handling DNA strands. DNA-based algorithms had been offered to solve many com-
putational problems, and these contained satisfiability [4], maximal clique [5], three-
vertex-colouring [6], parallelism of three molecular operations by dealing with sev-
eral natural questions [7], the energy barrier problem without pseudoknots and tem-
porary arcs [8], the optimization problem nucleic acid sequence design [9], the maxi-
mum cut problem [10], and the binary integer programming problem [11]. From [12],
several circuits that amplify nucleic acid signals were constructed and characterized.
One potentially significant area of application for DNA algorithms is the breaking
of encryption schemes [13, 14]. In [15], they introduced methods for controlling the
asymptotic turnover of strand displacement-based DNA catalysts and showed how
these could be used to construct linear classifier systems. From [16], the DNA-based
algorithms are proposed to perform molecular verification of rule-based systems.
From [17–19] DNA-based arithmetic algorithms are proposed, and from [20] DNA-
based algorithms for constructing DNA databases are also offered.

DES (the United States Data Encryption Standard) is one of the most widely used
cryptographic systems. It produces a 64-bit ciphertext from a 64-bit plaintext under
the control of a 56-bit key. A cryptanalyst obtains a plaintext and its corresponding
ciphertext and wishes to determine the key used to perform the encryption. The most
naive approach to this problem is to try all 256 keys, encrypting the plaintext under
each key until a key that produces the ciphertext is found and is called the plaintext-
ciphertext attack. Adleman and his coauthors [14] provided a description of such an
attack using the sticker model of molecular computation. Start with approximately
256 identical ssDNA memory strands each 11,580 nucleotides long. Each memory
strand contains 579 contiguous blocks each 20 nucleotides long. As it is appropri-
ate in the sticker model, there are 579 stickers—one complementary to each block.
Memory strands with annealed stickers are called memory complexes. When the 256
memory complexes have half of their sticker positions occupied at the end of the
computation, they weigh approximately 0.7 g and, in solution at 5 g/liter, would oc-
cupy approximately 140 ml. Hence, the volume of the 1303 tubes needs be no more
than 140 ml each. It follows that the 1303 tubes occupy, at most, 182 L and can, for
example, be arrayed in 1 m long and wide and 18 cm deep.

Adleman and his coauthors [14] indicated that at the end of computation for break-
ing DES, 256× (56 key bits + 64 ciphertext bits) pairs were generated and processed.
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Adleman and his coauthors [14] also pointed out that this codebook for breaking
DES has approximately 263 (8 × 1018) bits of information (the equivalent of ap-
proximately one billion 1 gigabyte CDs). The actual running time for the algorithm
of breaking DES depends on how fast the operations can be performed. If each oper-
ation requires 1 day, then the computation for breaking DES will require 18 years. If
each operation requires 1 hour, then the computation for breaking DES will require
approximately 9 months. If each operation can be completed in 1 minute, then the
computation for breaking DES will take 5 days. Finally, if the effective duration of a
step can be reduced to 1 second, then the effort for breaking DES will require 2 hours.
While it has been argued that special purpose electronic hardware [14] or massively
parallel supercomputers (the IBM Blue Gene/L machine is capable of 183.5 TFLOPS
or 183.5 × 1012 floating-point operations per second) might be used to break DES
in a reasonable amount of time, it appears that today’s most powerful sequential ma-
chines would be unable to accomplish the task.

The rest of the paper is organized as follows: in Sect. 2, we introduce DNA models
of computation proposed by Adleman and his coauthors in detail. In Sect. 3, we give
a high-level description of our DNA-based algorithm for the encryption function. By
breaking this down into submodules in Sect. 4, we prove the operation of the various
novel algorithms for arithmetic, shifted and comparative operations. In Sect. 5, based
on our DNA-based algorithm to the encryption function, we also give a high-level de-
scription of our DNA-based algorithm for finding the corresponding plain-text from
a cipher-text. In Sect. 6, we demonstrate that the time complexity of our DNA-based
algorithm is cubic on the input size. In Sect. 7, we show how the basic operations
within our model may be implemented by means of using standard laboratory opera-
tions on DNA strands. In Sect. 8, we conclude with a brief discussion.

2 Background

In this section, we review the basic structure of the DNA molecule and then discuss
available techniques for dealing with DNA that will be used to figure out any (plain-
text, cipher-text) pair in the RSA public-key cryptosystem.

2.1 The structure of DNA

From [6, 21, 22], it is indicated that DNA (deoxyribonucleic acid) encodes the genetic
information of cellular organisms. It includes polymerchains, commonly referred to
as DNA strands. Strands may be synthesized to order by an automated process. Each
strand may be viewed as a sequence of nucleotides, or bases, attached to a sugar-
phosphate “backbone.” The four DNA nucleotides are adenine, guanine, cytosine,
and thymine, commonly abbreviated to A, G, C, and T, respectively. Each strand has,
in light of chemical convention, a 5′ and a 3′ end, thus any single strand has a natural
orientation. This orientation (and, hence, the notation used) is due to fact that one
end of the single strand has a free (i.e., unattached to another nucleotide) 5′ phos-
phate group, and the other has a free 3′ deoxyribose hydroxyl group. The classical
double helix of DNA is formed when two separate strands bond. Bonding occurs by
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Fig. 1 DNA denaturing and
annealing

the pairwise attraction of bases; A bonds with T and G bonds with C. The pairs (A, T)
and (G, C) are therefore known as complementary base pairs. Double-stranded DNA
may be dissolved into single strands (or denatured) by heating the solution to a tem-
perature determined by the composition of the strand [6, 21, 22]. Heating breaks the
hydrogen bonds between complementary strands (Fig. 1) from [6, 23]. Since a G–C
pair is joined by three hydrogen bonds, the temperature required to break it is slightly
higher than that for an A–T pair, joined by only two hydrogen bonds. This factor
must be taken into account when designing sequences to represent computational el-
ements. Annealing is the reverse of melting, whereby a solution of single strands is
cooled, and allowing complementary strands to bind together (Fig. 1) from [6, 23]. In
double-stranded DNA, if one of the single strands contains a discontinuity (i.e., one
nucleotide is not bonded to its neighbor) then this may be repaired by DNA ligase
from [6]. This allows us to create a unified strand from several bound together by
their respective complements.

2.2 Adleman’s experiment for solution of a satisfiability problem

Adleman and his coauthors [24, 25] performed experiments that were applied to,
respectively, solve a 6-variable 11-clause formula and a 20-variable 24-clause 3-
conjunctive normal form (3-CNF) formula. A Lipton encoding [4] was used to rep-
resent all possible variable assignments for the chosen 6-variable or 20-variable SAT
problem. For each of the 6 variables x1, . . . , x6, two distinct 15 base value sequences
were designed. One represents true (T), xkT, and another represents false (F), xkF for
1 ≤ k ≤ 6. Each of the 26 truth assignments was represented by a library sequence
of 90 bases consisting of the concatenation of one value sequence for each variable.
DNA molecules with library sequences are termed library strands and a combinatorial
pool containing library strands is termed a library. The 6-variable library strands were
synthesized by employing a mix-and-split combinatorial synthesis technique [24].
The library strands were assigned library sequences with x1 at the 5′-end and x6 at
the 3′-end (5′ − x1 − x2 − x3 − x4 − x5 − x6 − 3′). Thus, synthesis began by assem-
bling the two 15 base oligonucleotides with sequences x6T and x6F. This process was
repeated until all 6 variables had been treated. The similar method also is applied to
solve a 20-variable of 3-SAT [25].
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2.3 DNA manipulations

A (test) tube is a set of molecules of DNA (a multiset of finite strings over the alphabet
{A, C, G, T}). Given a tube, one can perform the following operations:

1. Separate(T , s, T1, T2). Given a tube T and a short strand of DNA, s, the operation
produces two new tubes T1 and T2. Tube T1 contains all of the molecules of DNA
in the tube T which includes s as a sub-strand and tube T2 consists of all of the
molecules of DNA in the tube T which does not contain s as a substrand.

2. Merge({Ti}). Given any n tubes T1, . . . , Tn, the operation yields Merge(T1, . . . , Tn)

= ⋃n
i=1 Ti = T1 ∪ T2 · · · ∪ Tn. This implies that it is to pour any n tubes into one,

without any change in the individual strands.
3. Discard(T ). The operation sets T to be an empty set (T ← ∅).
4. Amplify(T , {Ti}). Given a tube T , the operation produces a number of identical

copies, Ti , of tube T , and then discard(T ).
5. Concatenate(s1, s2). Given two strands of DNA, s1 and s2, the operation returns

a new strand of DNA, comprised of the concatenation of s1 and s2. If s1 is a null
strand of DNA, return s2, and if s2 is a null strand of DNA, return s1.

6. Appendhead(T , s). Given a nonempty tube T and a short strand of DNA, s, the
operation first creates a null tube, U , and then, in parallel, for each string ti ∈ T

finishes the following: U ← Merge(U,Concatenate(s, ti )) and return U . If T is
initially empty, then U contains only s.

7. Detect(T ). The operation returns true if T includes at least one DNA molecule
(T �= ∅), otherwise returns false.

8. Read. Given a tube T , the operation is used to describe a single molecule, which is
contained in tube T . Even if T contains many different molecules each encoding
a different set of bases, the operation can give an explicit description of exactly
one of them.

3 Our DNA-based algorithm for the encryption function in the RSA public-key
cryptosystem

In the RSA cryptosystem [1], the transformation of a plain-text M , whose value is less
than the value of n, associated with a public key P = (e, n) is P(M) = Me (modn).
The transformation of a cipher-text C associated with a secret key S = (d,n) is
S(C) = Cd (modn). The encryption function and the decryption function, P(M) =
Me (modn) and S(C) = Cd (modn), are used to finish encryption and decryption
for a message, M . From [1], the following procedure is applied to compute encryp-
tion, Me (mod n). Decryption, Cd (modn), can be performed similarly using d and
C instead of e and M .

Procedure Encryption(M,e,n)

(1) Let ek−1 . . . e0 be the binary representation of e

(2) C = 1.
(3) For i = k down to 1

(3a) Set C to the remainder of C2 when divided by n.
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(3b) If ei−1 == 1 then
(3c) Set C to the remainder of C ∗ M when divided by n.
EndIf

EndFor
(4) Halt and now C is the encrypted form of M .
EndProcedure

Assume that the length of the public-key, e, in the RSA public-key cryptosystem is k

bits, and it can be represented as a k-bit binary number, ek−1 . . . e0, where the value
of each bit ei is either 1 or 0 for 0 ≤ i ≤ k − 1. For every bit ei , two distinct 15 base
value sequences are designed to respectively represent the value “0” for ei and the
value “1” for ei . For the sake of convenience in our presentation, assume that ei 1
denotes the value of ei to be 1 and ei 0 defines the value of ei to be 0. The following
DNA algorithm is applied to first construct the solution space of every plaintext, then
to implement the encryption function Encryption(M,e,n), and finally to construct
the correspondence of between plain-text and cipher-text.

Algorithm 1 Implementing the procedure, Encryption(M,e,n).
(1) MakeValue(Tn).
(2) Init(T0, Tn).
(3) MakeInitialValue(Te).
(4) InitialEncryptedForm(T0).
(5) For i = k down to 1

(5a) InitialSum(T0, ((2 ∗ (k − i + 1) − 1) − 1) ∗ (k + 1) + 1).
(5b) BinaryParallelMultiplier(T0,2∗ (k− i +1)−1,2∗ (k− i +1)−1,C,C).
(5c) AssignmentOperator(T0,2 ∗ (k − i + 1) − 1).
(5d) BinaryParallelDivider(T0,2 ∗ (k − i + 1) − 1).
(5e) TruncatedAssignmentOperator(T0,2 ∗ (k − i + 1) − 1,2 ∗ (k − i + 1)).
(5f) Separate(Te, e

1
i−1, T

ON
e , T OFF

e ).
(5g) If (Detect(T ON

e ) == true) then
(5h) InitialSum(T0, (2 ∗ (k − i + 1) − 1) ∗ (k + 1) + 1).
(5i) BinaryParallelMultiplier(T0,2 ∗ (k − i + 1),2 ∗ (k − i + 1),C,M).
(5j) AssignmentOperator(T0,2 ∗ (k − i + 1)).
(5k) BinaryParallelDivider(T0,2 ∗ (k − i + 1)).
(5l) TruncatedAssignmentOperator(T0,2∗ (k− i +1), 2∗ (k− i +1)+1).

Else
(5m) TruncatedAssignmentOperator(T0,2 ∗ (k − i + 1) − 1,

2 ∗ (k − i + 1) + 1).
EndIf

(5n) Te = Merge(T ON
e , T OFF

e ).
EndFor

EndAlgorithm

Theorem 1 From those steps in Algorithm 1, the correspondence of between plain-
text and cipher-text in the RSA public-key cryptosystem can be constructed.
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Proof On the execution of Step (1), it calls MakeValue(Tn) to yield tube Tn that con-
tains a DNA strand encoding the production of two large odd prime numbers, n. Then,
on the execution of Step (2), it calls Init(T0, Tn) to generate tube T0 that includes DNA
strands encoding 2k plain-texts. The execution of Step (3) calls MakeInitialValue(Te)
to produce tube Te that contains a DNA strand encoding the public key, e. Next, the
execution of Step (4) calls InitialEncryptedForm(T0) to perform the execution of Step
(2) in the procedure, Encryption(M,e,n) and to generate the initial encrypted form
of the corresponding cipher-text for every plain-text in tube T0.

Step (5) is a loop and is mainly used to perform the function of the only loop (Step
(3)) in the procedure, Encryption(M,e,n). Next, on the first execution of Step (5a),
since the value of the loop index, i, is k, the value of the second argument is one.
Therefore, it calls InitialSum(T0, 1) and perform to set the initial value of the sum
(product) of the first multiplication. On the first execution of Step (5b), because the
value of the loop index, i, is k, the second and the third arguments are one and the
fourth argument and the fifth argument are used to represent the multiplicand and the
multiplier of the first multiplication. Hence, it calls BinaryParallelMultiplier(T0, 1, 1,
C, C) to perform computation of C2 in Step (3a) in Encryption(M,e,n). Next, on
the first execution of Step (5c), since the value of the loop index, i, is k, the value of
the second argument is one. Thus, it calls AssignmentOperator(T0, 1) to perform to
set the initial value of the dividend in the first division. On the first execution of Step
(5d), because the value of the loop index, i, is k, the value of the second argument
is one. Therefore, it calls BinaryParallelDivider(T0, 1) to finish the division (modular
operation) of Step (3a) in Encryption(M,e,n). Next, on the first execution of Step
(5e), since the value of the loop index, i, is k, the second argument and the third
argument are one and two. Hence, it calls TruncatedAssignmentOperator(T0, 1, 2) to
update the encrypted form of a cipher-text. This implies that the execution of Step
(3a) in Encryption(M,e,n) can be finished by means of Step (5a) through (5e).

On the first execution of Step (5f), it generates tube T ON
e that includes all of the

strands having ek−11 because the value of the loop index, i, is k and tube T OFF
e that

consists of all of the strands having ek−10. Next, the first execution of Step (5g),
it uses the detect operations to check whether there is any DNA sequence in T ON

e .
This means that the execution of Step (3b) in Encryption(M,e,n) can be finished by
means of Step (5f) through (5g). If Step (5g) returns a true, this implies that the execu-
tion of Step (3c) in Encryption(M,e,n) will be executed. So, Step (5h) through Step
(5l) are used to finish the execution of Step (3c) in Encryption(M,e,n). If Step (5g)
returns a false, then Step (5m) is applied to set the next encrypted form of a cipher-
text to the current encrypted form. Next, the first execution of Step (5n) applies the
merge operation to pour tubes T ON

e and T OFF
e into Te. This is to say that tube Te

reserves the strand encoding the public-key, e. Repeat execution of Step (5a) through
Step (5n) until the last time of the loop is processed. Finally, tube T0 contains the
strands encoding the final encrypted form of every cipher-text. Therefore, the corre-
spondence of between plain-text and cipher-text in the RSA public-key cryptosystem
can be constructed from those steps in Algorithm 1. �
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4 Algorithm modules

We now introduce, in detail, the various modules which are combined to form the
overall algorithm for the encryption function in the RSA public-key cryptosystem.

4.1 A DNA strand for representing n in the RSA public-key cryptosystem

Assume that the length of n is k bits and n is represented as a k-bit binary number,
nk . . . n1, where the value of each bit nj is either 1 or 0 for 1 ≤ j ≤ k. The bits nk and
n1 represent the most significant bit and the least significant bit for n, respectively.
For every bit nj , two distinct 15 base value sequences are designed to respectively
represent the value “0” for nj and the value “1” for nj . For the sake of convenience
in our presentation, assume that n1

j denotes the value of nj to be 1 and n0
j defines

the value of nj to be 0. The following algorithm, MakeValue(Tn), is proposed to
construct a DNA strand for encoding n.

Procedure MakeValue(Tn)

(1) For j = 1 to k

(1a) Appendhead(Tn,nj ).
EndFor

EndProcedure

Lemma 1 A DNA strand for representing n in the RSA public-key cryptosystem can
be constructed from the algorithm, MakeValue(Tn).

Proof Each time Step (1a) is used to append distinct 15 base value sequences, rep-
resenting the value “1” or “0” for nj , onto the head of every strand in tube Tn. After
repeating execution of Step (1a), it produces tube Tn that consists of a DNA strand
representing n. �

4.2 Solution space of DNA sequences for any plain-text in the RSA public-key
cryptosystem

Suppose that the length of a plain-text M is k bits and is represented as a k-bit binary
number, mk . . .m1, where the value of each bit mj is either 1 or 0 for 1 ≤ j ≤ k. The
bits mk and m1 represent the most significant bit and the least significant bit for M ,
respectively. For every bit mj , from [24, 25] two distinct 15 base value sequences
are designed to respectively represent the value “0” for mj and the value “1” for mj .
Also, assume that m1

j denotes the value of mj to be 1 and m0
j defines the value of

mj to be 0. The following algorithm is used to construct solution space of DNA
sequences for any plain-text of k bits in the RSA public-key cryptosystem.

Procedure Init(T0, Tn)

(1) For j = 1 to k

(1a) Amplify(T0, T1, T2).
(1b) Appendhead(T1,m

1
j ).
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(1c) Appendhead(T2,m
0
j ).

(1d) T0 = Merge(T1, T2).
EndFor

(2) For j = k down to 1
(2a) Separate(Tn,n

1
j , T

ON
n , T OFF

n ).

(2b) Separate(T0,m
1
j , T

ON
0 , T OFF

0 ).

(2c) If (Detect(T ON
n ) == true) then

(2d) T =
0 = Merge(T =

0 , T ON
0 ) and T <

0 = Merge(T <
0 , T OFF

0 ).
Else
(2e) T >

0 = Merge(T >
0 , T ON

0 ) and T =
0 = Merge(T =

0 , T OFF
0 ).

EndIf
(2f) T0 = Merge(T0, T

=
0 ) and Tn = Merge(T ON

n , T OFF
n ).

(2g) Discard(T >
0 ).

EndFor
(3) T0 = Merge(T0, T

<
0 ).

EndProcedure

Lemma 2 Solution space of DNA sequences for any plain-text of k bits in the RSA
public-key cryptosystem can be constructed from the algorithm, Init(T0, Tn).

Proof Similar to Algorithm 1 and Lemma 1. �

4.3 Solution space of DNA sequences for public-key in the RSA public-key
cryptosystem

Algorithm 1 uses MakeInitialValue(Te), as a sub-module, to construct a DNA strand
for encoding e, the public-key denoted in Sect. 3 in the RSA public-key cryptosys-
tem. The following algorithm, MakeInitialValue(Te), is proposed to construct a DNA
strand for encoding e.

Procedure MakeInitialValue(Te)

(1) For i = 0 to k − 1
(1a) Appendhead(Te, ei).

EndFor
EndProcedure

Lemma 3 Solution space of DNA sequences for the public-key, e, in the RSA public-
key cryptosystem can be constructed from the algorithm, MakeInitialValue(Te).

Proof Similar to Algorithm 1 and Lemma 1. �

4.4 Solution space of DNA sequences for any cipher-text in the RSA public-key
cryptosystem

Assume that the length of a cipher-text C in the RSA public-key cryptosystem is k

bits. From the procedure Encryption(M,e,n), the encrypted form of a cipher-text
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C is finally obtained after at most updating (2 ∗ k + 1) times of the value for the
cipher-text C. Therefore, suppose that a cipher-text C is represented as a k-bit bi-
nary number, ca,k . . . ca,1, where the value of each bit ca,j is either 1 or 0 for 1
≤ a ≤ (2 ∗ k + 1) and 1 ≤ j ≤ k. The bits, ca,k and ca,1, represent the most sig-
nificant bit and the least significant bit for C, respectively. The first k-bit binary num-
ber, c1,k . . . c1,1, is used to represent the initial encrypted form of C. The last k-bit
binary number, c(2∗k+1),k . . . c(2∗k+1),1, is used to represent the final encrypted form
of C. For other k-bit binary numbers, they are applied to represent the intermediate
encrypted form of C. For every bit ca,j , two distinct 15 base value sequences were
designed to respectively represent the value “0” for ca,j and the value “1” for ca,j .
For convenience, we assume that c1

a,j denotes the value of ca,j to be 1 and c0
a,j de-

fines the value of ca,j to be 0. The following algorithm is used to construct solution
space of DNA sequences for the initial encrypted forms to any cipher-text in the RSA
public-key cryptosystem.

Procedure InitialEncryptedForm(T0)

(1) Appendhead(T0, c
1
1,1).

(2) For j = 2 to k

(2a) Appendhead(T0, c
0
1,j ).

EndFor
EndProcedure

Lemma 4 Solution space of DNA sequences for the initial encrypted forms to any
cipher-text in the RSA public-key cryptosystem can be constructed from the algorithm,
InitialEncryptedForm(T0).

Proof Similar to Algorithm 1 and Lemma 1. �

4.5 Solution space of DNA sequences for the initial value of the sum in a multiplier

A k-bit multiplier is used to finish multiplication of two binary numbers of k bits. It
is done by successive additions and shifting of k times. The product obtained from
the k-bit multiplier can be up to (2 ∗ k) bits long. A k-bit multiplier is done by suc-
cessive additions and shifting of k times. Hence, suppose that the length of an integer
Y is (2 ∗ k) bits. The integer Y is used to represent the augend and the sum of suc-
cessive additions in a k-bit multiplier. From the procedure Encryption(M,e,n), the
encrypted form of a cipher-text C is finally obtained after at most finishing (2 ∗ k)

multiplication instructions. That is to say, at most (2 ∗ k2) successive additions and
shifting are completed. Therefore, suppose that Y is represented as a (2 ∗ k)-bit bi-
nary number, yf,(2∗k) . . . yf,1, where the value of each bit yf,g is either 1 or 0 for 1
≤ f ≤ (2 ∗ k2 + 2 ∗ k) and 1 ≤ g ≤ (2 ∗ k). The bits, yf,(2∗k) and yf,1, represent the
most significant bit and the least significant bit for Y , respectively. Two binary num-
bers yf,(2∗k) . . . yf,1 and yf +1,(2∗k) . . . yf +1,1 represent the augend and the sum of the
successive f th addition and shift, respectively. This implies that the binary number
yf +1,(2∗k) . . . yf +1,1 is the augend of the successive (f + 1)th addition and shift. For
every bit yf,g , two distinct 15 base value sequences were designed to respectively
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represent the value “0” for yf,g and the value “1” for yf,g . For convenience, we as-
sume that y1

f,g denotes the value of yf,g to be 1 and y0
f,g defines the value of yf,g to

be 0. The following algorithm is used to construct solution space of DNA sequences
for the initial value of the sum in a k-bit multiplier.

Procedure InitialSum(T0, f )

(1) For g = 1 to 2 ∗ k

(1a) Appendhead(T0, y
0
f,g).

EndFor
EndProcedure

Lemma 5 Solution space of DNA sequences for the initial value of the sum in a k-bit
multiplier can be constructed from the algorithm, InitialSum(T0, f ).

Proof Similar to Algorithm 1 and Lemma 1. �

4.6 The construction of a binary parallel multiplier

A binary parallel multiplier is a function that finishes the arithmetic multiplication
for two binary numbers of k bits. The product obtained from the multiplication of
two k-bit binary numbers can be up to (2 ∗ k) bits long. The following algorithm is
proposed to finish the function of a binary parallel multiplier. The two parameters α

and β in the algorithm are used to represent the multiplicand and the multiplier of a
binary parallel multiplier. Assume that β1

f is applied to represent the value of “1” for
the f th bit of the multiplier (β) to the f th addition and shift.

Procedure BinaryParallelMultiplier(T0, a,u,α,β)

(1) For f = 1 to k

(1a0) Appendhead(T0, z
0
(u−1)∗(k+1)+f,0).

(1a) Separate(T0, β
1
f , T3, T4).

(1a1) If (Detect(T3) == true) then
(1b) For g = 1 to f − 1

(1b1) Separate(T3, y
1
f +(u−1)∗(k+1),g, T1, T2).

(1b10) If (Detect(T1) == true) then
(1b2) Appendhead(T1, y

1
f +(u−1)∗(k+1)+1,g

) and

Appendhead(T1, z
0
f +(u−1)∗(k+1),g).

EndIf
(1b20) If (Detect(T2) == true) then
(1b3) Appendhead(T2, y

0
f +(u−1)∗(k+1)+1,g

) and

Appendhead(T2, z
0
f +(u−1)∗(k+1),g).

EndIf
(1b4) T3 = merge(T1, T2).

EndFor
(1c) BinaryParallelAdder(T3, f + (u − 1) ∗ (k + 1) + 1, g, a).
(1c1) For g = (k + f ) to (k + f )

(1c11) Separate(T3, z
1
f +(u−1)∗(k+1),g−1, T1, T2).
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(1c12) If (Detect(T1) == true) then
(1c13) Appendhead(T1, y

1
f +(u−1)∗(k+1)+1,g) and

Appendhead(T1, z
0
f +(u−1)∗(k+1),g).

EndIf
(1c14) If (Detect(T2) == true) then
(1c15) Appendhead(T2, y

0
f +(u−1)∗(k+1)+1,g) and

Appendhead(T2, z
0
f +(u−1)∗(k+1),g).

EndIf
(1c16) T3 = Merge(T1, T2).
EndFor

(1d) For g = (k + f + 1) to 2 * k

(1d1) Appendhead(T3, y
0
f +(u−1)∗(k+1)+1,g) and

Appendhead(T3, z
0
f +(u−1)∗(k+1),g).

EndFor
EndIf
(1d2) If (Detect(T4) == true) then
(1e) For g = 1 to 2 ∗ k

(1e1) T1 = Separate(T4, y
1
f +(u−1)∗(k+1),g

, T1, T2).
(1e10) If (Detect(T1) == true) then
(1e2) Appendhead(T1, y

1
f +(u−1)∗(k+1)+1,g) and

Appendhead(T1, z
0
f +(u−1)∗(k+1),g).

EndIf
(1e20) If (Detect(T2) == true) then
(1e3) Appendhead(T2, y

0
f +(u−1)∗(k+1)+1,g) and

Appendhead(T2, z
0
f +(u−1)∗(k+1),g).

EndIf
(1e4) T4 = Merge(T1, T2).

EndFor
EndIf
(1f) T0 = Merge(T3, T4).

EndFor
EndProcedure

Lemma 6 The algorithm, BinaryParallelMultiplier(T0, a,u,α,β), can be applied to
finish the function of a binary parallel multiplier.

Proof The multiplication of the multiplicand and the multiplier of k bits is finished
through k times of successive additions and left shift. Step (1) is the main loop and
is applied to finish the function of a binary parallel multiplier. This means that the
main loop is used to finish successive additions and left shift of k times for the k-bit
multiplicand and the k-bit multiplier. With each addition and each left shift, the least
significant position of the multiplicand and the multiplier of k bits is added; the input
carry must be 0. So, each execution for Step (1a0) uses the appendhead operation
to append 15-based DNA sequences for representing z0

(u−1)∗(k+1)+f,0 onto the head
of every strand in T0. Next, on each execution of Step (1a), it employs the extract
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operation to form tube T3 including the strands having β1
f , and tube T4 consisting of

the strands having β0
f . Each execution of Step (1a1) is used to check whether contains

any DNA strand for tube T3 or not. If a true is returned, then the enclosed steps will
be run.

Next, for tube T3, Step (1b) is a loop and it is applied to finish additions and left
shift of the front (f −1) bits for the f th addition and left shift. The number of shifted
bit to the f th shift is (f −1) bits. This implies that the front (f −1) bits of the addend
(multiplicand) for the f th addition are all zero. Therefore, it is inferred that the front
(f − 1) bits of the sum to the f th addition are equal to the front (f − 1) bits of the
augend to the f th addition. Hence, on each execution of Step (1b1), it employs the ex-
tract operation to form tube T1 including the strands having yf +(u−1)∗(k+1),g = 1, and
tube T2 consisting of the strands having yf +(u−1)∗(k+1),g = 0. Each execution of Step
(1b10) is applied to examine whether contains any DNA strand for tube T1 or not. If a
true is returned, then Step (1b2) will be run. Next, each execution of Step (1b2) uses
the appendhead operations to append y1

f +(u−1)∗(k+1)+1,g and z0
f +(u−1)∗(k+1),g onto

the head of every strand in T1. Each execution of Step (1b20) is used to test whether
contains any DNA strand for tube T2 or not. If a true is returned, then Step (1b3) will
be run. Each execution of Step (1b3) applies the appendhead operations to append
y0
f +(u−1)∗(k+1)+1,g and z0

f +(u−1)∗(k+1),g onto the head of every strand in T2. Then
each execution of Step (1b4) applies the merge operation to pour tubes T1 and T2
into T3. Tube T3 contains the strands finishing addition and left shift of a bit. Repeat
execution of Steps (1b1) through (1b4) until the front (f − 1) bits are processed.
Tube T3 contains the strands finishing addition of the front (f − 1) bits for the f th
addition and left shift.

Next, each execution of Step (1c) calls the algorithm, BinaryParallelAdder(T3, f +
(u − 1) ∗ (k + 1) + 1, g, a), to finish addition and left shift of k bits for the f th bit
through the (k + f − 1)th bit. Because after BinaryParallelAdder(T3, f + (u − 1) ∗
(k+1)+1, g, a) is performed, it perhaps generates the carry “1” for the (k+f −1)th
bit. Therefore, on each execution of Step (1c11), it employs the extract operation to
form tube T1 including the strands having zf +(u−1)∗(k+1),g−1 = 1, and tube T2 con-
sisting of the strands having zf +(u−1)∗(k+1),g−1 = 0. Each execution of Step (1c12)
is applied to test whether contains any DNA strand for tube T1 or not. If a true is
returned, then Step (1c13) will be run. Next, each execution of Step (1c13) uses the
appendhead operations to append y1

f +(u−1)∗(k+1)+1,g and z0
f +(u−1)∗(k+1),g onto the

head of every strand in T1. Each execution of Step (1c14) is used to examine whether
contains any DNA strand for tube T2 or not. If a true is returned, then Step (1c15) will
be run. Each execution of Step (1c15) applies the appendhead operations to append
y0
f +(u−1)∗(k+1)+1,g and z0

f +(u−1)∗(k+1),g onto the head of every strand in T2. Then
each execution of Step (1c16) applies the merge operation to pour tubes T1 and T2
into T3. Tube T3 includes the strands performing addition of a bit.

Step (1d) is a loop and is used to finish addition and left shift of (k − f + 1) bits,
because the last (k − f + 1) bits of the addend (multiplicand) for the f th addition
and left shift are all zero. Therefore, it is inferred that the last (k − f + 1) bits of
the sum to the f th addition and left shift are equal to the last (k − f + 1) bits of
the augend to the f th addition and left shift. Execution of Step (1d1) applies the
appendhead operations to append y0

f +(u−1)∗(k+1)+1,g and z0
f +(u−1)∗(k+1),g onto the
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head of every strand in T3. Repeat execution of Step (1d1) until the last (k − f + 1)

bits are processed. Tube T3 contains the strands finishing the f th addition and left
shift.

Since T4 consists of all of the strands that have βf = 0, the (2 ∗ k) bits of the
addend (multiplicand) for the f th addition and left shift are all zero. This implies
that the (2 ∗ k) bits of the sum to the f th addition and left shift are equal to the
(2 ∗ k) bits of the augend to the f th addition and left shift. Each execution of Step
(1d2) is used to check whether contains any DNA strand for tube T4 or not. If a true
is returned, then the enclosed steps will be run. Step (1e) is a loop and is employed
to finish the f th addition and left shift for tube T4. Each execution of Step (1e1)
employs the extract operation to form two test tubes: T1 and T2. The first tube T1
includes all of the strands that have yf +(u−1)∗(k+1),g = 1, and the second tube T2
consists of all of the strands that have yf +(u−1)∗(k+1),g = 0. Each execution of Step
(1e10) is applied to examine whether contains any DNA strand for tube T1 or not. If a
true is returned, then Step (1e2) will be run. Next, each execution of Step (1e2) uses
the appendhead operations to append y1

f +(u−1)∗(k+1)+1,g and z0
f +(u−1)∗(k+1),g onto

the head of every strand in T1. Each execution of Step (1e20) is used to test whether
contains any DNA strand for tube T2 or not. If a true is returned, then Step (1e3)
will be run. On each execution of Step (1e3), it applies the appendhead operations to
append y0

f +(u−1)∗(k+1)+1,g and z0
f +(u−1)∗(k+1),g onto the head of every strand in T2.

Then, each execution of Step (1e4) applies the merge operation to pour tubes T1
and T2 into T4. Tube T4 contains the strands finishing addition and left shift of a bit.
Repeat execution of Steps (1e1) through (1e4) until the (2 ∗ k) bits are processed.
Tube T4 contains the strands finishing addition and left shift of the (2 ∗ k) bits for the
f th addition and left shift.

Each execution of Step (1f) applies the merge operation to pour tubes T3 and T4
into T0. Tube T0 contains the strands finishing the f th addition and left shift of (2∗k)

bits. Repeat execution of Steps (1a) through (1f) until successive additions and left
shift of k times are processed. Tube T0 contains the strands finishing multiplication
of k bits. �

4.7 The construction of a binary parallel adder

The BinaryParallelMultiplier(T0, a,u,α,β) module uses, as a submodule, a paral-
lel adder. We first describe the construction of a parallel adder for a single bit, and
next demonstrate how this perhaps is applied as a building block for a parallel adder
by means of using bit-strings of arbitrary length. A one-bit adder is a function that
performs the arithmetic sum of three input bits. It consists of three inputs and two out-
puts. Two of the input bits represent augend and addend bits to be added, respectively.
The third input represents the carry from the previous lower significant position. The
first output gives the value of the sum for augend and addend bits to be added. The
second output gives the value of the carry to augend and addend bits to be added. The
truth table of the one-bit adder is shown in Table 1.

Suppose that two one-bit binary numbers denoted in Sect. 4.5, yf,g and yf +1,g ,
represent the first input of a one-bit adder for 1 ≤ f ≤ (2 ∗ k2 + 2 ∗ k) and 1 ≤ g ≤
2 ∗ k, and the first output of a one-bit adder, respectively, a one-bit binary number
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Table 1 The truth table of a
one-bit adder Augend bit Addend bit Previous carry bit Sum bit Carry bit

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

denoted in Sect. 4.4, ca,j , represents the second input of a one-bit adder for 1 ≤
a ≤ (2 ∗ k + 1) and 1 ≤ j ≤ k, and two one-bit binary numbers, zf,g and zf,g−1,
represent the second output and the third input of a one-bit adder, respectively. Two
distinct DNA sequences are also designed to represent the value “0” or “1” of every
corresponding bit. For the sake of convenience in our presentation, assume that z1

f,g

contains the value of zf,g to be 1 and z0
f,g contains the value of zf,g to be 0. Also,

suppose that y1
f +1,g denotes the value of yf +1,g to be 1 and y0

f +1,g defines the value

of yf +1,g to be 0. Similarly, assume that z1
f,g−1 contains the value of zf,g−1 to be 1

and z0
f,g−1 contains the value of zf,g−1 to be 0. The following algorithm is proposed

to finish the function of a parallel one-bit adder.

Procedure ParallelOneBitAdder(T3, f, g, a, j)

(1) Separate(T3, y
1
f,g, T

ON
1 , T OFF

2 ).

(2) Separate(T ON
1 , c1

a,j , T
ON

3 , T OFF
4 ).

(3) Separate(T OFF
2 , c1

a,j , T5, T6).

(4) Separate(T ON
3 , z1

f,g−1, T7, T8).

(5) Separate(T OFF
4 , z1

f,g−1, T9, T10).

(6) Separate(T5, z
1
f,g−1, T11, T12).

(7) Separate(T6, z
1
f,g−1, T13, T14).

(8a) If (Detect(T7) = true) then
(8) Appendhead(T7, y

1
f +1,g) and Appendhead(T7, z

1
f,g).

EndIf
(9a) If (Detect(T8) = true) then

(9) Appendhead(T8, y
0
f +1,g) and Appendhead(T8, z

1
f,g).

EndIf
(10a) If (Detect(T9) = true) then

(10) Appendhead(T9, y
0
f +1,g) and Appendhead(T9, z

1
f,g).

EndIf
(11a) If (Detect(T10) = true) then

(11) Appendhead(T10, y
1
f +1,g) and Appendhead(T10, z

0
f,g).

EndIf
(12a) If (Detect(T11) = true) then

(12) Appendhead(T11, y
0
f +1,g) and Appendhead(T11, z

1
f,g).
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EndIf
(13a) If (Detect(T12) = true) then

(13) Appendhead(T12, y
1
f +1,g) and Appendhead(T12, z

0
f,g).

EndIf
(14a) If (Detect(T13) = true) then

(14) Appendhead(T13, y
1
f +1,g) and Appendhead(T13, z

0
f,g).

EndIf
(15a) If (Detect(T14) = true) then

(15) Appendhead(T14, y
0
f +1,g) and Appendhead(T14, z

0
f,g).

EndIf
(16) T3 = Merge(T7, T8, T9, T10, T11, T12, T13, T14).

EndProcedure

Lemma 7 The algorithm, ParallelOneBitAdder(T3, f, g, a, j), can be applied to fin-
ish the function of a parallel one-bit adder.

Proof Steps (1) through (7) employ the extract operations to form some different
test tubes including different strands (T ON

1 to T14). That is, T ON
1 includes all of the

strands that have yf,g = 1, T OFF
2 includes all of the strands that have yf,g = 0, T ON

3
includes those that have yf,g = 1 and ca,j = 1, T OFF

4 includes those that have yf,g = 1
and ca,j = 0, T5 includes those that have yf,g = 0 and ca,j = 1, T6 includes those
that have yf,g = 0 and ca,j = 0, T7 includes those that have yf,g = 1, ca,j = 1 and
zf,g−1 = 1, T8 includes those that have yf,g = 1, ca,j = 1 and zf,g−1 = 0, T9 includes
those that have yf,g = 1, ca,j = 0 and zf,g−1 = 1, T10 consists of those that have
yf,g = 1, ca,j = 0 and zf,g−1 = 0, T11 includes those that have yf,g = 0, ca,j = 1
and zf,g−1 = 1, T12 includes those that have yf,g = 0, ca,j = 1 and zf,g−1 = 0, T13
includes those that have yf,g = 0, ca,j = 0 and zf,g−1 = 1, and finally, T14 consists of
those that have yf,g = 0, ca,j = 0 and zf,g−1 = 0. Having finished Steps (1) through
(7), this implies that eight different inputs of a one-bit adder as shown in Table 1 were
poured into tubes T7 through T14, respectively.

Steps (8a), (9a), (10a), (11a), (12a), (13a), (14a), and (15a) are, respectively, used
to check whether contains any DNA strand for tubes T7, T8, T9, T10, T11, T12, T13,

and T14 or not. If any a true is returned for those steps, then the corresponding ap-
pendhead operations will be run. Next, Steps (8) through (15) use the appendhead
operations to append y1

f +1,g or y0
f +1,g , and z1

f,g or z0
f,g onto the head of every strand

in the corresponding test tubes. After finishing Steps (8) through (15), we can say
that eight different outputs of a one-bit adder in Table 1 are appended into tubes T7
through T14. Finally, the execution of Step (16) applies the merge operation to pour
tubes T7 through T14 into tube T3. Tube T3 contains the strands finishing the addition
of a bit. �

The one-bit adder just introduced figures out the sum and the carry of two input
bits and a previous carry. Two k-bit binary numbers each can be added by means
of this one-bit adder. A binary parallel adder is to finish the arithmetic sum for two
k-bit binary numbers. The following algorithm is proposed to finish the function of a
binary parallel adder.
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Procedure BinaryParallelAdder(T3, f, g, a)

(1) For j = 1 to k

(1a) ParallelOneBitAdder(T3, f − 1, g + j − 1, a, j).
EndFor

EndProcedure

Lemma 8 The algorithm, BinaryParallelAdder(T3, f, g, a), can be applied to finish
the function of a binary parallel adder.

Proof Similar to Algorithm 1 and Lemma 1. �

4.8 The construction of an assignment operator

An assignment operator is an instruction of two operands of (2 ∗ k) bits that the value
of the first operand is set to the value of the second operand. Assume that the second
operand is the product obtained from a k-bit multiplier; also assume that the length
of an integer P , the first operand of an assignment operator, is (2 ∗ k) bits. Addi-
tionally, P is also applied to represent the minuend (dividend) and the difference of
successive compare, shift and subtract operations in a divider. From the procedure,
Encryption(M,e,n), the encrypted form of a cipher-text C is finally obtained after
at most finishing (2 ∗ k) division instructions. This is to say that ((2 ∗ k) ∗ (k + 1))

successive compare, shift, and subtract operations are at most finished. Therefore,
suppose that P is represented as a (2 ∗ k)-bit binary number, po,(2∗k) . . . po,1, where
the value of each bit po,q is either 1 or 0 for 1 ≤ o ≤ (2 ∗ k2 + 4 ∗ k) and
1 ≤ q ≤ (2 ∗ k). The bits, po,(2∗k) and po,1, represent the most significant bit and
the least significant bit for P , respectively. Two binary numbers po,(2∗k) . . . po,1 and
po+1,(2∗k) . . . po+1,1 are applied to represent the minuend and the difference of the
successive oth successive compare, shift, and subtract operations. That is, the binary
number po+1,(2∗k) . . . po+1,1 is the minuend of the successive (o + 1)th successive
compare, shift, and subtract operations.

For every bit po,q , two distinct 15 base value sequences are designed to respec-
tively represent the value “0” for po,q and the value “1” for po,q . For the sake of
convenience in our presentation, assume that p1

o,q denotes the value of po,q to be 1

and p0
o,q defines the value of po,q to be 0. The following algorithm is used to con-

struct an assignment operator. This implies that the assignment operator can be used
to set the initial value of the dividend in a divider. The second parameter, u, in the
algorithm is applied to represent the uth arithmetic multiplication.

Procedure AssignmentOperator(T0, u)

(1) For q = 1 to 2 * k

(1a) Separate(T0, y
1
u∗(k+1),q , T1, T2).

(1b) Appendhead(T1,p
1
(u−1)∗(k+2)+1,q

).

(1c) Appendhead(T2,p
0
(u−1)∗(k+2)+1,q ).

(1d) T0 = Merge(T1, T2).
EndFor

EndProcedure
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Lemma 9 The algorithm, AssignmentOperator(T0, u), can be applied to finish the
function of an assignment operator.

Proof Similar to Algorithm 1 and Lemma 1. �

4.9 The construction of a binary parallel divider

A binary parallel divider is a function that finishes the arithmetic division for a div-
idend of (2 ∗ k) bits and a divisor of k bits. The quotient obtained from the division
to a dividend of (2 ∗ k) bits and a divisor of k bits can be up to (k + 1) bits long.
The remainder obtained from the division to a dividend of (2 ∗ k) bits and a divisor
of k bits can be at most up to k bits long. Because the encryption function denoted
in Sect. 3 needs to finish modular operations, the quotient can be neglected. The fol-
lowing algorithm is proposed to finish the function of a binary parallel divider.

Procedure BinaryParallelDivider(T0, u)

(1) For o = 1 to k + 1
(1a0) Appendhead(T0, b

0
(u−1)∗(k+2)+o,0).

(1a) ParallelComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o).

(1b) T >=
0 = Merge(T >

0 , T =
0 ).

(1b0) If (Detect(T >=
0 ) == true) then

(2) For q = 1 to (2 ∗ k) − (o − 1) − (k − 1) − 1
(2a) Separate(T >=

0 ,p1
o+(u−1)∗(k+2),q , T1, T2).

(2a0) If (Detect(T1) == true) then
(2b) Appendhead(T1,p

1
o+(u−1)∗(k+2)+1,q ) and

Appendhead(T1, b
0
o+(u−1)∗(k+2),q ).

EndIf
(2b0) If (Detect(T2) == true) then

(2c) Appendhead(T2,p
0
o+(u−1)∗(k+2)+1,q ) and

Appendhead(T2, b
0
o+(u−1)∗(k+2),q ).

EndIf
(2d) T >=

0 = Merge(T1, T2).
EndFor
(3) BinaryParallelSubtractor(T >=

0 , o, q,u).
EndIf
(4) If (Detect(T <

0 ) == true) then
(5) For q = 1 to 2 * k

(5a) Separate(T <
0 ,p1

o+(u−1)∗(k+2),q , T1, T2).
(5a0) If (Detect(T1) == true) then

(5b) Appendhead(T1,p
1
o+(u−1)∗(k+2)+1,q ) and

Appendhead(T1, b
0
o+(u−1)∗(k+2),q

).
EndIf
(5b0) If (Detect(T2) == true) then

(5c) Appendhead(T2,p
0
o+(u−1)∗(k+2)+1,q ) and

Appendhead(T2, b
0
o+(u−1)∗(k+2),q ).
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EndIf
(5d) T <

0 = Merge(T1, T2).
EndFor
EndIf
(6) T0 = Merge(T >=

0 , T <
0 ).

EndFor
EndProcedure

Lemma 10 The algorithm, BinaryParallelDivider(T0, u), can be applied to finish the
function of a binary parallel divider.

Proof The division to a dividend of (2 ∗ k) bits and a divisor of k bits is finished
through successive compare, shift and subtract operations of (k + 1) times. Step (1)
is the main loop and is applied to finish the function of a binary parallel divider.
When each successive compare, shift and subtract operations occur, the least signif-
icant position for a dividend of (2 ∗ k) bits and a divisor of k bits is subtracted, the
input borrow bit must be 0. So, on each execution for Step (1a0) uses the append-
head operation to append 15-based DNA sequences for representing b0

(u−1)∗(k+2)+1,0
onto the head of every strand in T0. Next, on each execution of Step (1a), it calls
ParallelComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , u, o) to compare the divisor with the cor-

responding k bits in the dividend. After it is finished, tube T >
0 includes the strands

with the comparative result of greater than (“>”), tube T =
0 includes the strands with

the comparative result of equal (“=”), and tube T <
0 consists of the strands with the

comparative result of less than (“<”). Next, each execution of Step (1b) employs the
merge operation to pour tubes T >

0 and T =
0 into T >=

0 . From each execution of Step
(1b0), if a true is returned, then Step (2) through Step (3) will be executed.

Step 2 is a loop and is used mainly to reserve the least significant ((2 ∗ k) −
(o − 1) − (k − 1) − 1) bits of a dividend. This implies that the least significant
((2 ∗ k) − (o − 1) − (k − 1) − 1) bits of the minuend (dividend) for the oth com-
pare, shift and subtract operations are reserved and they are equal to the least sig-
nificant ((2 ∗ k) − (o − 1) − (k − 1) − 1) bits of the difference for the same opera-
tions. Therefore, on each execution of Step (2a), it uses the extract operation to form
tube T1 including the strands that have po+(u−1)∗(k+2),q = 1, and tube T2 consist-
ing of the strands that have po+(u−1)∗(k+2),q = 0. Next, Steps (2a0) and (2b0) are,
respectively, used to check whether contains any DNA strand for tubes T1 and T2
or not. If any a true is returned for those steps, then the corresponding appendhead
operations will be run. Each execution for Step (2b) and Step (2c) uses the append-
head operations to append p1

o+(u−1)∗(k+2)+1,q , b0
o+(u−1)∗(k+2),q ,p0

o+(u−1)∗(k+2)+1,q

and b0
o+(u−1)∗(k+2),q onto the head of every strand in T1 and the head of every

strand in T2. Then each execution to Step (2d) employs the merge operation to pour
tubes T1 and T2 into T >=

0 . Tube T >=
0 contains the strands finishing compare, shift

and subtract operations of a bit. Repeat execution of Steps (2a) through (2d) until
the least significant ((2 ∗ k) − (o − 1) − (k − 1) − 1) bits of a minuend (dividend)
are processed. Tube T >=

0 contains the strands finishing successive compare, shift
and subtract operations of the least significant ((2 ∗ k) − (o − 1) − (k − 1) − 1)

bits of a minuend (dividend). Next each execution of Step (3) calls the algorithm,
BinaryParallelSubtractor(T >=

0 , o, q,u), to accomplish subtraction of k bits.
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Since T <
0 consists of all of the strands with the comparative result of less than

(“<”). This implies that the (2∗k) bits of the difference to the oth compare, shift, and
subtract operations are equal to the (2∗k) bits of the minuend to the same operations.
If a true is returned from each execution of Step (4), then Step (5) through Step (5d)
will be executed. Step (5) is a loop and is employed to finish the oth compare, shift
and subtract operations for tube T <

0 . On each execution of Step (5a), it employs the
extract operation to form tube T1 including the strands that have po+(u−1)∗(k+2),q =
1, and tube T2 consisting of the strands that have po+(u−1)∗(k+2),q = 0.

Next, Steps (5a0) and (5b0) are, respectively, used to check whether con-
tains any DNA strand for tubes T1 and T2 or not. If any a true is returned for
those steps, then the corresponding appendhead operations will be run. Each ex-
ecution for Step (5b) and Step (5c) uses the appendhead operations to append
p1

o+(u−1)∗(k+2)+1,q
, b0

o+(u−1)∗(k+2),q
,p0

o+(u−1)∗(k+2)+1,q
and b0

o+(u−1)∗(k+2),q
onto

the head of every strand in T1 and the head of every strand in T2. Then, each ex-
ecution of Step (5d) applies the merge operation to pour tubes T1 and T2 into T <

0 .
Tube T <

0 contains the strands finishing compare, shift and subtract operations of a
bit. Repeat execution of Steps (5a) through (5d) until the (2 ∗ k) bits are processed.
Tube T <

0 contains the strands finishing the oth compare, shift and subtract operations
of the (2 ∗ k) bits to the comparative result of less than (“<”).

Next, each execution of Step (6) applies the merge operation to pour tubes T >=
0

and T <
0 into T0. Tube T0 contains the strands finishing the oth compare, shift, and

subtract operations of the (2 ∗ k) bits. Repeat execution of the above steps until suc-
cessive compare, shift, and subtract operations of (k+1) times are processed. Tube T0
contains the strands finishing a division for a dividend of (2 ∗ k) bits and a divisor of
k bits. �

4.10 The construction of a parallel comparator

The BinaryParallelDivider(T0, u) module uses, as a submodule, a parallel compara-
tor. We now describe its construction in detail. A one-bit parallel comparator is a
Boolean function that performs compared operation of the two input bits. From com-
pared results in a one-bit parallel comparator, DNA strands encoding those pairs
(po,q, n) with compared results “>”, DNA strands encoding those pairs (po,q, n)

with compared results “=” and DNA strands encoding those pairs (po,q, n) with
compared results “<” are, respectively, put into three different tubes.

Therefore, the submodule, OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o, j) is

presented to compute the function of a one-bit parallel comparator. The first parame-
ter and the second parameter, T0 and Tn, respectively, contain those DNA strands that
respectively encode po,q and n. The third parameter, T >

0 , includes those DNA strands
with the comparative result of greater than (“>”) between po,q and n. The fourth pa-
rameter, T =

0 , contains those DNA strands with the comparative result of equal (“=”)
between po,q and n. The fifth parameter, T <

0 , consists of those DNA strands with the
comparative result of less than (“<”) between po,q and n. The sixth parameter, u, is
applied to represent the uth division operation. The seventh parameter, o, is used to
represent the oth compared operation in parallel comparator of a k-bits. The eighth
parameter, j , is employed to represent the j th bit of n to be compared.
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Procedure OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o, j)

(1) Separate(T0,p
1
o+(u−1)∗(k+2),(2∗k)−(o−1)−(j−1), T

ON
0 , T OFF

0 ).

(2) Separate(Tn,n
1
k−(j−1), T

ON
n , T OFF

n ).

(3) If (Detect(T ON
n ) == true) then

(3a) T =
0 = Merge(T =

0 , T ON
0 ) and T <

0 = Merge(T <
0 , T OFF

0 ).
Else

(3b) T >
0 = Merge(T >

0 , T ON
0 ) and T =

0 = Merge(T =
0 , T OFF

0 ).
EndIf

(4) Tn = Merge(T ON
n , T OFF

n ).
EndProcedure

Lemma 11 The algorithm, OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o, j), can be

applied to finish the function of a one-bit parallel comparator.

Proof Similar to Algorithm 1 and Lemma 1. �

The one-bit comparator just introduced compares the size of two input bits. Two
k-bit binary numbers can be compared by means of this one-bit comparator. A binary
parallel comparator is to perform the comparison for two k-bit binary numbers. The
module, ParallelComparator(T0, Tn, T

>
0 , T =

0 , T <
0 , u, o) also is proposed to perform

the function of a k-bit parallel comparator.

Procedure ParallelComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o)

(1) For j = 1 to o − 1
(1a) Separate(T0,p

1
o+(u−1)∗(k+2),(2∗k)−(j−1), T

>
0 , T0).

(1b) If (Detect(T0) == false) then
(1c) Terminate the execution of the loop.
EndIf

EndFor
(2) If (Detect(T0) == true) then

(3) For j = 1 to k

(3a) OneBitComparator(T0, Tn, T
>
0 , T =

0 , T <
0 , u, o, j).

(3b) If (Detect(T =
0 ) == f alse) then

(3c) Terminate the execution of the loop.
EndIf

EndFor
EndIf

EndProcedure

Proof Similar to Algorithm 1 and Lemma 1. �

4.11 The construction of a parallel subtractor

The BinaryParallelDivider(T0, d) module uses, as a submodule, a parallel subtractor.
We first describe the construction of a parallel subtractor for a single bit, and then
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Table 2 The truth table of a one-bit subtractor

Minuend bit Subtrahend bit Previous borrow bit Difference bit Borrow bit

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

show how this may be used as a building block for a subtractor using bit-strings of
arbitrary length.

A one-bit subtractor is a function that forms the arithmetic subtraction of three
input bits. It consists of three inputs and two outputs. Two of the input bits represent
minuend and subtrahend bits to be subtracted. The third input represents the borrow
bit from the previous higher significant position. The first output gives the value of
the difference for minuend and subtrahend bits to be subtracted. The second output
gives the value of the borrow bit to minuend and subtrahend bits to be subtracted.
The truth table of the one-bit subtractor is described in Table 2.

Suppose that the two one-bit binary numbers po,q and po+1,q denoted in Sect. 4.8,
represent the first input and the first output of a one-bit subtractor for 1 ≤ o ≤ (2 ∗
k2 + 4 ∗ k) and 1 ≤ q ≤ (2 ∗ k). Also suppose a one-bit binary number nj denoted
in Sect. 4.1, represents the second input of a one-bit subtractor for 1 ≤ j ≤ k, and
two one-bit binary numbers bo,q and bo,q−1 represent the second output and the third
input of a one-bit subtractor. Two distinct DNA sequences are designed to encode
every bit bo,q−1 and bo,q . For the sake of convenience in our presentation, assume
that b1

o,q contains the value of bo,q to be 1 and b0
o,q contains the value of bo,q to be

0. Similarly, also suppose that b1
o,q−1 contains the value of bo,q−1 to be 1 and b0

o,q−1
contains the value of bo,q−1 to be 0. The following algorithm is proposed to finish the
function of a parallel one-bit subtractor.

Procedure ParallelOneBitSubtractor(T >=
0 , o, q, j)

(1) Separate(T >=
0 ,p1

o,q , T ON
1 , T OFF

2 ).

(2) Separate(T ON
1 , n1

j , T
ON
3 , T OFF

4 ).

(3) Separate(T OFF
2 , n1

j , T5, T6).

(4) Separate(T ON
3 , b1

o,q−1, T7, T8).

(5) Separate(T OFF
4 , b1

o,q−1, T9, T10).

(6) Separate(T5, b
1
o,q−1, T11, T12).

(7) Separate(T6, b
1
o,q−1, T13, T14).

(8a) If (Detect(T7) == true) then
(8) Appendhead(T7,p

1
o+1,q ) and Appendhead(T7, b

1
o,q).

EndIf
(9a) If (Detect(T8) == true) then

(9) Appendhead(T8,p
0
o+1,q ) and Appendhead(T8, b

0
o,q).
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EndIf
(10a) If (Detect(T9) == true) then

(10) Appendhead(T9,p
0
o+1,q ) and Appendhead(T9, b

0
o,q).

EndIf
(11a) If (Detect(T10) == true) then

(11) Appendhead(T10,p
1
o+1,q ) and Appendhead(T10, b

0
o,q).

EndIf
(12a) If (Detect(T11) == true) then

(12) Appendhead(T11,p
0
o+1,q ) and Appendhead(T11, b

1
o,q).

EndIf
(13a) If (Detect(T12) == true) then

(13) Appendhead(T12,p
1
o+1,q ) and Appendhead(T12, b

1
o,q).

EndIf
(14a) If (Detect(T13) == true) then

(14) Appendhead(T13,p
1
o+1,q ) and Appendhead(T13, b

1
o,q).

EndIf
(15a) If (Detect(T14) == true) then

(15) Appendhead(T14,p
0
o+1,q ) and Appendhead(T14, b

0
o,q).

EndIf
(16) T >=

0 = Merge(T7, T8, T9, T10, T11, T12, T13, T14).
EndProcedure

Lemma 12 The algorithm, ParallelOneBitSubtractor(T >=
0 , o, q, j), can be applied

to finish the function of a parallel one-bit subtractor.

Proof Similar to Algorithm 1 and Lemma 1. �

The one-bit subtractor just introduced figures out the difference bit and the borrow
bit for two input bits and a previous borrow. Two k-bit binary numbers of can finish
subtractions of k times by means of this one-bit subtractor. A binary parallel subtrac-
tor is a function that finishes the arithmetic subtraction for two k-bit binary numbers.
The following algorithm is proposed to finish the function of a binary parallel sub-
tractor.

Procedure BinaryParallelSubtractor(T >=
0 , o, q,u)

(1) For j = 1 to k

(1a) ParallelOneBitSubtractor(T >=
0 , o + (u − 1) ∗ (k + 2),

2 ∗ k − (o − 1) − (k − j), j).
EndFor

(2) For j = (2 ∗ k) − (o − 1) + 1 to 2 * k

(2a) Separate(T >=
0 ,p1

o+(u−1)∗(k+2),j , T1, T2).

(2b) Separate(T1, b
1
o+(u−1)∗(k+2),j−1, T3, T4).

(2c) Separate(T2, b
1
o+(u−1)∗(k+2),j−1, T5, T6).

(2d) If (Detect(T3) == true) then
(2d0) Appendhead(T3,p

0
o+(u−1)∗(k+2)+1,j ) and

Appendhead(T3, b
0
o+(u−1)∗(k+2),j ).
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EndIf
(2e) If (Detect(T4) == true) then

(2e0) Appendhead(T4,p
1
o+(u−1)∗(k+2)+1,j ) and

Appendhead(T4, b
0
o+(u−1)∗(k+2),j ).

EndIf
(2f) If (Detect(T5) == true) then

(2f0) Appendhead(T5,p
1
o+(u−1)∗(k+2)+1,j ) and

Appendhead(T5, b
1
o+(u−1)∗(k+2),j ).

EndIf
(2g) If (Detect(T6) == true) then

(2g0) Appendhead(T6,p
0
o+(u−1)∗(k+2)+1,j ) and

Appendhead(T6, b
0
o+(u−1)∗(k+2),j ).

EndIf
(2h) T >=

0 = Merge(T1, T2, T3, T4, T5, T6).
EndFor

EndProcedure

Lemma 13 The algorithm, BinaryParallelSubtractor(T >=
0 , o, q,u), can be applied

to finish the function of a binary parallel subtractor.

Proof Similar to Algorithm 1 and Lemma 1. �

4.12 The construction of a truncated assignment operator

A truncated assignment operator is an instruction of the first operand of k bits and
the second operand of (2 ∗ k) bits that the value of the first operand is set to the value
of the least significant k bits to the second operand. Assume that the second operand
is the remainder obtained from a dividend of (2 ∗ k) bits and a divisor of k bits in a
divider. Also, suppose that the first operand is a cipher-text C denoted in Sect. 4.4.
The following algorithm is applied to construct a truncated assignment operator. This
implies that the truncated assignment operator can be used to update a cipher-text C.
The second parameter, u, in the algorithm is employed to represent the uth arithmetic
division. The third parameter, a, in the algorithm is used to represent the ath updating
for a cipher-text C.

Procedure TruncatedAssignmentOperator(T0, u, a)

(1) For q = 1 to k

(1a) Separate(T0,p
1
u∗(k+2),q , T1, T2).

(1b) Appendhead(T1, c
1
a,q).

(1c) Appendhead(T2, c
0
a,q).

(1d) T0 = Merge(T1, T2).
EndFor

EndProcedure

Lemma 14 The algorithm, TruncatedAssignmentOperator(T0, u, a), can be applied
to finish the function of a truncated assignment operator.
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Proof Similar to Algorithm 1 and Lemma 1. �

5 Finding the correspondence between a plain-text and a cipher-text

The RSA public-key cryptosystem can be used to encrypt messages sent between
two communicating parties. Assume that the encrypted message received by one
of two communicating parties and also overheard by an eavesdropper can be rep-
resented as a k-bit binary number, c(2∗k+1),k . . . c(2∗k+1),1, denoted in Sect. 4.4. An
eavesdropper only needs to use the following procedure to find the correspondence
of between a plain-text and a cipher-text. The first parameter, T0, in the procedure,
CorrespondtoPlaintextCiphertext(T0), is generated from Algorithm 1.

Procedure CorrespondtoPlaintextCiphertext(T0)

(1) For j = 1 to k

(1a) Separate(T0, c(2∗k+1),j , T1, T2).
(1b) T0 = Merge(T0, T1).

EndFor
(2) If (Detect(T0) == true) then

(2a) Read(T0).
EndIf

EndAlgorithm

Theorem 2 From those steps in the procedure, CorrespondtoPlaintextCiphertext(T0),
an eavesdropper can find the correspondence of between a plain-text and a cipher-
text.

Proof Refer to Algorithm 1. �

5.1 The power of the proposed algorithm for solving an instance of the RSA
public-key cryptosystem

It is supposed that the encrypted message c0
9,4c

0
9,3c

0
9,2c

1
9,1 is overheard by an eaves-

dropper. It is assumed that the value of k is equal to four. The eavesdropper makes
use of CorrespondtoPlaintextCiphertext(T0) to find the corresponding plaintext. The
first parameter, T0, in CorrespondtoPlaintextCiphertext(T0) is produced from Algo-
rithm 1. Therefore, when Algorithm 1 in Sect. 3 is executed, on the execution of
Step (1), MakeValue(Tn) is called. It is supposed that the value of n is equal to 15
(3 × 5), and its length is four bits. After each operation in MakeValue(Tn) is com-
pleted, tube Tn = {n1

4n
1
3n

1
2n

1
1}. Next, on the execution of Step (2) in Algorithm 1,

Init(T0, Tn) is invoked. The first parameter, T0, is an empty tube and the second pa-
rameter, Tn, is {n1

4n
1
3n

1
2n

1
1}. It is assumed that the length of a plaintext M is four bits.

After each operation in Init(T0, Tn) is completed, the result for tubes T0 and Tn is
shown in Table 3.

Next, on the execution of Step (3) in Algorithm 1, MakeInitialValue(Te) is called.
The first parameter, Te, is an empty tube. It is assumed that the length of a public
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Table 3 The result for tubes T0
and Tn is yielded by Init(T0, Tn) Tube The result is yielded by Init(T0, Tn)

T0 {m0
4m0

3m0
2m0

1,m0
4m0

3m0
2m1

1, . . . ,m1
4m1

3m1
2m1

1}
Tn {n1

4n1
3n1

2n1
1}

Table 4 The result for tubes Te

is generated by
MakeInitialValue(Te)

Tube The result is produced by MakeInitialValue(Te)

Te {e0
3e1

2e1
1e1

0}

Table 5 The result for tube T0 is produced by InitialEncryptedForm(T0)

Tube The result is yielded by InitialEncryptedForm(T0)

T0 {c0
1,4c0

1,3c0
1,2c1

1,1m0
4m0

3m0
2m0

1, c0
1,4c0

1,3c0
1,2c1

1,1m0
4m0

3m0
2m1

1, . . . , c0
1,4c0

1,3c0
1,2c1

1,1m1
4m1

3m1
2m1

1}

Table 6 The results for
tubes T0 and Te are produced by
Step (5a) through Step (5n) in
Algorithm 1

Tube The result is generated by Step (5a) through Step (5n)

T0 {c0
9,4c0

9,3c0
9,2c0

9,1 . . . c0
1,4c0

1,3c0
1,2c1

1,1m0
4m0

3m0
2m0

1,

c0
9,4c0

9,3c0
9,2c1

9,1 . . . c0
1,4c0

1,3c0
1,2c1

1,1m0
4m0

3m0
2m1

1, . . .}
Te {e0

3e1
2e1

1e1
0}

Table 7 The result for tube T0
is yielded by Steps (1a) and (1b)
in CorrespondtoPlaintext-
Ciphertext(T0)

Tube The result is produced by Steps (1a) and (1b)

T0 {c0
9,4c0

9,3c0
9,2c1

9,1 . . . c0
1,4c0

1,3c0
1,2c1

1,1m0
4m0

3m0
2m1

1}

key e is four bits and its value is 7. After each operation in MakeInitialValue(Te) is
performed, the result for tube Te is shown in Table 4.

Next, on the execution of Step (4) in Algorithm 1, after each operation in
InitialEncryptedForm(T0) is completed, the result for tube T0 is shown in Table 5.

Next, each operation from Step (5a) through Step (5n) in the only loop in Al-
gorithm 1 is used to complete the encryption of each plaintext. This implies that
those operations are applied to complete all of the computations for 07 (mod 15), 17

(mod 15), 27 (mod 15), and so on with 157 (mod 15). After those operations are all
completed, the results for tubes T0 and Te are shown in Table 6.

Next, since each operation in Algorithm 1 is completed, an eavesdropper
can continue to execute each operation from Step (1a) through Step (1b) in
CorrespondtoPlaintextCiphertext(T0). The value of k is equal to four, so Steps (1a)
and (1b) will be executed four times. The eavesdropper overhears the encrypted mes-
sage c0

9,4c
0
9,3c

0
9,2c

1
9,1, and the encrypted message c0

9,4c
0
9,3c

0
9,2c

1
9,1 is applied to find

the corresponding plaintext. Hence, after each operation of Steps (1a) and (1b) is
completed, the result for tube T0 is shown in Table 7.
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Next, a true is returned from the execution of Step (2) in CorrespondtoPlaintext-
Ciphertext(T0), so the execution of Step (2a) is used to obtain the answer (the cor-
responding plaintext), m0

4m
0
3m

0
2m

1
1. This indicates that for the encrypted message

c0
9,4c

0
9,3c

0
9,2c

1
9,1 the corresponding plaintext is m0

4m
0
3m

0
2m

1
1.

6 Complexity assessment

Theorem 3 Suppose that the length of a plain-text in the RSA public-key cryptosys-
tem is k bits. The corresponding table for between each plain-text and each cipher-
text in the RSA public-key cryptosystem can be constructed with O(k3) biological
operations from solution space of DNA strands.

Proof Refer to Algorithm 1. �

Theorem 4 Suppose that the length of a plain-text in the RSA public-key cryptosys-
tem is k bits The corresponding table for between each plain-text and each cipher-text
in the RSA public-key cryptosystem can be constructed with O(2k) library strands
from solution space of DNA strands.

Proof Refer to Algorithm 1. �

Theorem 5 Suppose that the length of a plain-text in the RSA public-key cryptosys-
tem is k bits. The corresponding table for between each plain-text and each cipher-
text in the RSA public-key cryptosystem can be constructed with O(c) tubes from
solution space of DNA strands, where c is a constant value.

Proof Refer to Algorithm 1. �

Theorem 6 Suppose that the length of a plain-text in the RSA public-key cryptosys-
tem is k bits. The corresponding table for between each plain-text and each cipher-
text in the RSA public-key cryptosystem can be constructed with the longest library
strand, O(k3), from solution space of DNA strands.

Proof Refer to Algorithm 1. �

7 Biological implementation

Experimental implementation of biological operations is very important for deciding
whether any DNA-based algorithm to dealing with any problem can obtain the re-
quired answer(s) or not. The content of the following subsections cited from [23] is
used to describe how biological operations used in the proposed algorithm are imple-
mented.

7.1 Separate(T , s, T1, T2)

Affinity purification is used to extract any strands from T containing s. The imple-
mentation of the biological operation uses a probe sequence that is complementary to
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Fig. 2 Concatenation process:
(a) Linker strand affixed to
surface. (b) S anneals to linker
strand. (c) T anneals to linker
strand, adjacent to S. (d)
S and T ligated to form a single
strand, which is then freed by
heating the solution

the target sequence being found for. Probes are fixed to a surface, and capture through
annealing any strands consisting of the target sequence. Then captured strands per-
haps are separated from the rest of the population by placing them in a separate solu-
tion, which is heated to break the bonds between the probes and the target sequence.
Hence, the probe applied is the complementary sequence of s. Retained strands are
placed in one new tube T1 and the remainder are placed in another new tube T2.

7.2 Merge({Ti})
The contents of tubes {Ti} are simply merged by means of pouring. The number of
tubes will generally be low, so this is considered to be a constant-time operation.

7.3 Discard(T )

The contents of T are discarded, and T is replaced by a new, empty tube.

7.4 Amplify(T , {Ti})
The polymerase chain reaction (PCR) is employed, with its initial input that is tube T .
This reaction is applied to massively amplify (possibly small) amounts of DNA
strands that begin and end with specific primer sequences. Since every strand in
tube T is delimited by these sequences, they are all copied by the reaction. Then
the result of the PCR is divided equally between the specified numbers of tubes (the
number of PCR cycles may therefore be adjusted to ensure a constant DNA volume
per tube, regardless of the number of tubes).

7.5 Concatenate(s1, s2)

Two strands (labeled S and T in Fig. 2) may be concatenated by the following pro-
cess: create a linker strand, which has a sequence that is the complement of S fol-
lowed by the complement of T . The linker strand is affixed to a surface with a mag-
netic bead (Fig. 2(a)). Then strand S is added to the solution, and anneals with the



670 W.-L. Chang et al.

linker strand at the appropriate position (Fig. 2(b)). Then, strand T is added to the
solution, and this also anneals with the linker strand, at a position immediately adja-
cent to strand S (Fig. 2(c)). Next, the ligase enzyme is added to the solution to seal
the “nick” between S and T , forming a single strand which may be freed by heating
the solution to break its bonds with the linker strand (Fig. 2(d)).

7.6 Append-head(U, s)

The implementation of the concatenate( ) operation denoted above may easily be
applied to append a specific sequence, s, to the head of each strand in a tube U . The
sequence s corresponds, in this case, to the strand S defined in Fig. 2, and strand T in
Fig. 2 corresponds to the beginning sequence of every strand in the tube. In this case,
only the beginning sequence of every strand anneals to the linker strand. Clearly,
then after a series of append-head( ) operations has been completed on a strand, its
sequence will be made up of a number of sequences representing bit-strings.

7.7 Detect(T )

The tube T is run through a gel electrophoresis process, which is generally used to
sort DNA strands on length. Any DNA present in T shows up as a visible band in the
gel; if DNA strands of the appropriate length are present, the operation returns true.
If there are no visible bands corresponding to DNA of the correct length, then the
operation returns false. The length criterion is applied to ensure that DNA fragments
present do not cause a false positive result. If the DNA in the band corresponding
to the contents of T is required in a subsequent processing step, the band may be
excised from the gel by cutting and then soaked to remove the strands for further use.

8 Conclusions

The number of steps any classical computer requires in order to find discrete loga-
rithm of a k-bit [26] and to factor integers of a k-bit natural number [1] increases
exponentially with k, at least by means of using algorithms known at present. Shor’s
quantum factoring and discrete logarithm algorithm [27] includes that the two main
components, modular exponentiation (computation of ax mod n), and the inverse
quantum Fourier transform (QFT) take only O(k3) operations. From [28], factoring
integers of a k-bit natural number was solved by the proposed DNA-based algorithm
with polynomial-time biological operations. From [29], for solving elliptic curve dis-
crete logarithm it takes a series of steps that is polynomial in the input size. From [30],
The security of the Diffie–Hellman public-key cryptosystem is broken by the pro-
posed DNA-based algorithm in which it takes a series of steps that is polynomial in
the input size.

The proposed algorithm (Algorithm 1) for constructing the corresponding table
between each plain-text and each cipher-text in the RSA public-key cryptosystem is
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based on biological operations in Adleman’s experiments. This algorithm has sev-
eral advantages. First, the Adleman program [22] is used to generate good DNA se-
quences to construct the corresponding table between any plain-text and any cipher-
text in the RSA public-key cryptosystem. Good DNA sequences are applied to de-
crease a rate of errors for hybridization. This indicates that the proposed algorithm
actually has a lower rate of errors for hybridization. Secondly, the basic biological
operations in Adleman’s experiments are employed to finish the function of a k-bit
parallel adder, the function of a k-bit parallel subtractor, the function of a k-bit par-
allel multiplier, the function of a (2 ∗ k)-bit parallel divider, the function of a k-bit
parallel comparator, the function of a (2 ∗ k)-bit parallel assignment operator, and the
function of a k-bit parallel truncated assignment operator. This means that the pro-
posed algorithm has the computational capability of mathematics to finish addition
(“+”), subtraction (“−”), multiplication (“∗”), division (“÷”), and assignment (“=”)
operations. Thirdly, after the tube containing the strands encoding every (plain-text,
cipher-text) pair is produced from Algorithm 1, the number of steps for decoding an
encrypted message overheard by an eavesdropper is linear in the size of the encrypted
message overheard.

Currently, the future of molecular computers is unclear. It is possible that in the
future molecular computers will be the clear choice for performing massively parallel
computations. However, there are still many technical difficulties to overcome before
this becomes a reality. We hope that this paper helps to demonstrate that molecular
computing is a technology worth pursuing.
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