
IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 23, NO. 3, JULY 2024 499

Bioinspired Quantum Oracle Circuits for
Biomolecular Solutions of the

Maximum Cut Problem
Weng-Long Chang , Renata Wong , Yu-Hao Chen, Wen-Yu Chung , Ju-Chin Chen,

and Athanasios V. Vasilakos

Abstract— Given an undirected, unweighted graph with
n vertices and m edges, the maximum cut problem is
to find a partition of the n vertices into disjoint subsets
V1 and V2 such that the number of edges between them
is as large as possible. Classically, it is an NP-complete
problem, which has potential applications ranging from
circuit layout design, statistical physics, computer vision,
machine learning and network science to clustering. In this
paper, we propose a biomolecular and a quantum algorithm
to solve the maximum cut problem for any graph G.
The quantum algorithm is inspired by the biomolecular
algorithm and has a quadratic speedup over its classical
counterparts, where the temporal and spatial complex-
ities are reduced to, respectively, O(

√
2n/r) and O(m2).

With respect to oracle-related quantum algorithms for
NP-complete problems, we identify our algorithm as opti-
mal. Furthermore, to justify the feasibility of the proposed
algorithm, we successfully solve a typical maximum cut
problem for a graph with three vertices and two edges by
carrying out experiments on IBM’s quantum simulator.

Index Terms— Data structures and algorithms, the max-
imum cut problem, quantum algorithms, quantum comput-
ing, quantum speedup.

I. INTRODUCTION

LET G = (V, E) be an undirected, unweighted graph with
a set of vertices V is a set of edges E . Further, let |V | = n

Manuscript received 2 November 2023; revised 30 December
2023 and 7 March 2024; accepted 23 April 2024. Date of publication
30 April 2024; date of current version 2 July 2024. This work was
supported by the National Science Foundation of the Republic of China
under Grant MOST 105-2221-E-151-040. The work of Renata Wong
was supported in part by the National Science and Technology Council,
in part by the Ministry of Education (Higher Education Sprout Project)
under Grant NTU-111L104022, and in part by the National Center for
Theoretical Sciences of Taiwan. An earlier version of this paper was
presented at the 28th Workshop on Compiler Techniques and System
Software for High-Performance and Embedded Computing (CTHPC
2023), 2023 [DOI: 10.48550/arXiv.2305.16644]. (Corresponding author:
Renata Wong.)

Weng-Long Chang, Wen-Yu Chung, and Ju-Chin Chen are with
the Department of Computer Science and Information Engineering,
National Kaohsiung University of Science and Technology, Kaohsiung
City, Taiwan.

Renata Wong was with the Physics Division, National Center for
Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan.
She is now with the Department of Artificial Intelligence, Chang Gung
University, Taoyuan 33302, Taiwan (e-mail: renata.wong@cgu.edu.tw).

Yu-Hao Chen is with the Department of Physics, National Taiwan
University, Taipei 10617, Taiwan.

Athanasios V. Vasilakos is with the Center for AI Research (CAIR),
University of Agder, 4630 Grimstad, Norway.

Digital Object Identifier 10.1109/TNB.2024.3395420

Fig. 1. Example graph.

and let |E | = m. A cut {V1, V2} of G is defined as a partition
of vertices into two disjoint subsets V1 and V2. The size of
the cut is the number of the edges between V1 and V2.

Example: Consider an undirected unweighted graph G
that contains three vertices {v1, v2, v3} and two edges
{(v1, v2), (v2, v3)} as shown in Fig. 1. If the cut is V1 = {v1}

and V2 = {v2, v3}, or V1 = {v1, v2} and V2 = {v3}, the size of
the cut is 1. If it is V1 = {v1, v3} and V2 = {v2}, then it is 2,
which is also the maximum cut size for this graph.

In what follows, we assume that X = {xn · · · x1|xd ∈

{0, 1}, 1 ≤ d ≤ n} is a set of 2n possible cuts. We further
assume that x0

d indicates that xd = 0, while x1
d indicates that

xd = 1. With this, each element in X is n bits long and
represents one of the 2n possible partitions of n vertices into
two disjoint subsets V1 and V2. Furthermore, if an xd = 1 in
xn · · · x1 ∈ X then this indicates that the d-th vertex in graph
G is in V1. For the same partition, if xd = 0, then this indicates
that the d-th vertex is in V2.

The fact that an edge (xk, x p) ∈ V1 × V2 can be verified
by formula (1). Similarly, the fact that an edge is not shared
between V1 and V2 can also be verified by formula (1).

f (xk, x p) = (xk ∧ x p) ∨ (xk ∧ x p) (1)

where ∧ stands for the logic AND, and ∨ stands for the logic
OR operation. Formula (1) essentially outputs a 1 if xk and
x p belong to different sets of vertices, i.e. either (xk, x p) ∈

V1×V2 or (xk, x p) ∈ V2×V1. Formula (1) outputs a 0 if both
xk and x p belong to the same set of vertices (either both to
V1 or both to V2).

A. Related Works and Motivation

Quantum computing promises to solve certain hard prob-
lems more efficiently than classical algorithms. This holds
especially for the case when the input size is too large for
classical algorithms to process. Improvements over classical
algorithms can be achieved via quantum interference, super-
position and entanglement (e.g. [20], [21]). Some of the best
known quantum algorithms that offer such a speedup are

1558-2639 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5018-7836
https://orcid.org/0000-0001-5468-0716
https://orcid.org/0000-0003-3746-7301
https://orcid.org/0000-0003-1902-9877

500 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 23, NO. 3, JULY 2024

quantum integer factorization [4] which runs exponentially
faster than any known classical algorithm, and quantum search
algorithm [5] that offers a generic square-root speedup over
classical algorithms. It has been shown in [3] that classi-
cal algorithms would require �(2n) queries where Grover’s
algorithm only requires O(2n/2). Shor’s algorithm is problem-
specific. On the other hand, Grover’s algorithm finds a wide
range of applications as a subroutine in quantum algorithms,
such as in [7], [8], [10], [12], and [15]. And it also constitutes
the general framework of the present algorithm.

While the opposite problem of finding a minimum cut
in a graph is efficiently solvable by the Ford-Fulkerson
algorithm [11], the maximum cut problem is known to be
NP-hard. This means that there are no known polynomial-time
classical algorithms for the problem for general graphs. The
max-cut problem in planar graphs can be however solved on
classical computers in polynomial time [13]. As planar graphs
constitute only a small subset of the graph family, it is vital to
research on finding ways to solve the maximum cut problem
efficiently for the general case. The present algorithm is such
an approach as it works for graphs of arbitrary structure.

There exist classical approximation algorithms, the best of
which runs in polynomial time and has an approximation ratio
of ≈ 0.878 [9]. In contrast to that, the algorithm presented
in the present work is exact and deterministic, that is, its
approximation ratio is 1.

Besides the results described in the present work, related
research on the maximum cut problem has been reported.
Moll et al. report using the variational quantum eigensolver
(VQE) [22], which is a hybrid quantum-classical approach,
to find an approximation to the maximum cut in a 5-qubit
system. The authors use a perfect classical simulator to per-
form a test in which the reported probability that the solution is
found is given as 95%. The maxcut problem was also used as
the illustrative example in the seminal paper introducing the
quantum approximate optimization algorithm (QAOA) [23].
Like VQE, QAOA is a hybrid quantum-classical optimization
algorithm, and, as its name suggests, it provides an approxi-
mation to the problem. The authors reported numerical results
for the special cases of 2-regular and 3-regular graphs. For the
2-regular graphs, the algorithm can achieve an arbitrary level
of precision by making a parameter p large enough. As dis-
cussed in [25], QAOA consists of p steps, where in each step
a classical Hamiltonian, derived from the cost function, and a
mixing Hamiltonian are applied. As pointed out in [25], with
p increasing, parameter optimization becomes inefficient due
to the curse of dimensionality. Hence, the success of QAOA
depends on the ability to find optimal parameter settings.
Meli at al. [24] propose a hybrid quantum-classical algorithms
for the weighted maxcut problem, where the edges in the
graph carry different weights. Experimentally, their algorithm
outperforms the state-of-the-art QAOA algorithm on random
fully-connected graphs. Hybrid methods are approximative
and therefore they are benchmarked based on how good
approximation ratio they provide. Our algorithm, on the other
hand, is by design deterministic and provides the exact, correct
result.

Essentially the difference between the above quantum
approaches and ours is that the approaches are tailored using
approximate quantum-classical computing which is suitable
for the NISQ era of quantum computation [6], while our
algorithm belongs to the class of fault-tolerant quantum meth-
ods, which are purely quantum methods that don’t make use
of classical optimization techniques. Fault-tolerant methods
require much more resources than approximative hybrid NISQ
methods. This is also a reason why we are unable to provide
statistical results for a multitude of different graphs. The
present algorithm gives a 100% probability of finding the
solution and uses a perfect classical simulator of quantum
systems on 15 qubits to obtain a solution for a 3-qubit problem.
Due to state-of-the-art quantum hardware limitations, this is
the largest example we could simulate. The algorithm is in
principle extendable to the weighted maxcut problem, which
we expect to tackle in further research.

B. Main Contributions and Novelty
In this work, we have devised a biomolecular and a quantum

algorithm for the maximum cut problem for arbitrary undi-
rected graphs. We show how certain quantum operations are
inspired by biomolecular operations. We improve the system
size of the quantum algorithm by a significant factor compared
to the algorithm in [1]. Our quantum algorithm has a quadratic
speedup over comparable classical algorithms for the problem.

C. Overview of Registers Used in the Algorithm
In order to enable a better understanding of the presented

algorithm, below we summarize the quantum registers used
in it.
• x : each qubit in this register refers to a single vertex in

the corresponding graph
• aux : auxiliary single-qubit register used for phase inver-

sion
• r : auxiliary register used for storing the outcome of

evaluating one of the conjunctive terms in equation (1).
Each single term requires one qubit, hence 2 qubits in
total for each evaluation of the formula. With this, ri,1
refers to the first term, and ri,2 to the second term in
evaluation i .

• s: auxiliary register storing the outcome of the disjunction
in formula (1). A single qubit is used for each disjunction.

• z: auxiliary register used to store the outcomes of evalu-
ating the operations in Fig. 5. Indices i and j in zi, j run
over edges.

II. BIOMOLECULAR ALGORITHM FOR THE
MAXIMUM CUT PROBLEM

In this section, we introduce the biomolecular operations
necessary to carry out our biomolecular algorithm for the max-
imum cut problem. Then, we introduce the algorithm itself.

A. Biomolecular Operations
Biomolecular operations employed in this paper were orig-

inally introduced in [2]. Below we present them briefly based
on [10] for completeness. In the following definitions it is

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR BIOMOLECULAR SOLUTIONS 501

assumed that experimental lab tubes X = {xn xn−1 . . . x1|1 ≤
d ≤ n, xd ∈ {0, 1}}:

1) Given a tube X and a strand x j , the operation
Append_Tail appends x j onto the end of every
element in X , and the operation Append_Head
appends x j onto the front of every element in X .
Formally: Append_Tail(X, x j) = {xn xn−1 . . . x1x j }.
Append_Head(X, x j) = {x j xn xn−1 . . . x1}. This is
achieved by means of denaturation and annealing.

2) Given m tubes X1, . . . , Xm , the Merge operation unifies
their content: Merge(X1, . . . , Xm) = X1∪. . .∪Xm . This
is achieved by pouring the contents of the tubes into a
single tube.

3) Given a tube X , the operation Amplify(X, {X i }) gen-
erates a number of identical copies X i of X and
then discards X . This is achieved by polymerase chain
reaction.

4) Given a tube X and a strand x j , if x j = 1 then the
Extract operation creates two new tubes +(X, X1

j) =

{xn . . . x1
j . . . x1} and −(X, X1

j) = {xn . . . x0
j . . . x1}. This

is achieved by affinity chromatography.
5) Given a tube X , the operation Detect(X) returns a True

if X ̸= ∅. Otherwise, it returns a False.
6) Given a tube X , the bio-molecular operation Read(X)

describes any element in X . Even if X includes many
different elements, this operation can give an explicit
description of exactly one of them.

B. Biomolecular Algorithm
In the following, we present a molecular algorithm,

Algorithm 1, to solve the maximum cut problem for an
undirected unweighted graph G with n vertices and m edges.
The first parameter is an empty tube X0 that is regarded as
the input tube. Each tube T, P in the algorithm is initially
empty and is regarded as an auxiliary storage. Note that in the
following code, bits xa and xb encode vertices va and vb for
an edge e j = (va, vb) in G. Auxiliary bits s j , 1 ≤ j ≤ m store
the result of evaluating formula 1. Since there are 4 possible
input combinations, s j store the corresponding 4 outputs.
s0

j indicates that the corresponding edge e j ∈ V1 × V2 or
e j ∈ V2 × V1. Similarly, s1

j indicates that the corresponding
edge e j /∈ V1 × V2 and e j /∈ V2 × V1.

Algorithm 1 proceeds as follows. Each execution of
steps 1-2 appends the value 1 for xn as the first bit of every
element in a set T1 and the value 0 as the first bit of every
element in a set T2. Hence, T1 = {x1

n} and T2 = {x0
n}. In step 3,

a set union is performed that results in X0 = T1 ∪ T2 =

{x1
n , x0

n}. After that, the contents of T1 and T2 are discarded,
i.e., T1 = T2 = ∅. Next, in each execution of step 5, two
ideantical copies T1 and T2 of tube X0 are created and then the
content of X0 is discarded, resulting in X0 = ∅. In each step 6,
the value 1 is appended for xd onto the end of xn . . . xd+1
for every element in T1. And similarly, each execution of
step 7 appends the value 0 for xd onto the end of xn . . . xd+1
for every element in T2. After that, the two tubes T1 and
T2 are merged in step 8 to X0 = T1 ∪ T2, and T1 = T2 = ∅.

Algorithm 1 Overview of the Biomolecular Algorithm
for the Maximum Cut Problem

Data: X0, n, m
Result: a maximum cut

1 Append_Tail(T1, x1
n);

2 Append_Tail(T2, x0
n);

3 X0 = Merge(T1, T2);
4 for d = n − 1 down to 1 do
5 Amplify(X0, T1, T2);
6 Append_Tail(T1, x1

d);
7 Append_Tail(T2, x0

d);
8 X0 = Merge(T1, T2);
9 end

10 for j = 1 to m do
11 P1

= +(X0, x1
a) and P3

= −(X0, x1
a);

12 P2
= +(P1, x1

b) and P4
= −(P1, x1

b);
13 P6

= +(P3, x1
b) and P8

= −(P3, x1
b);

14 Append_Head(P8, s0
j);

15 Append_Head(P6, s1
j);

16 Append_Head(P4, s1
j);

17 Append_Head(P2, s0
j);

18 X0 = Merge(P8, P6, P4, P2);
19 end
20 for i = 0 to m − 1 do
21 for j = i down to 0 do
22 X O N

j+1 = +(X
1
j,si+1

) and X j = −(X1
j,si+1

);
23 X j+1 = Merge(X j+1, X O N

j+1);
24 end
25 end
26 for c = m to 1 do
27 if Detect(Xc) then
28 Read(Xc) and terminate algorithm
29 end
30 end

Having executed steps 4-9, X0 = {xn xn−1 . . . x2x1|xd ∈ {0, 1},
1 ≤ d ≤ n}. This indicates that 2n DNA strands in tube
X0 encode 2n cut candidates.

In steps 10-19, we evaluate formula 1 for j-th edge e j =

(va, vb). Upon each execution of step 11, tube P1 contains
those DNA strands that have xa = 1, while tube P3 contains
those DNA strands that have Xa = 0. The contents of X0 is
discarded. Upon each execution of step 12, tube P2 contains
those DNA strands that have xa = 1 and xb = 1, while tube
P4 contains those DNA strands that have Xa = 1 and xb = 0.
Tube P1

= ∅. Similarly, upon each execution of step 13,
tube P6 contains those DNA strands that have xa = 0 and
xb = 1, while tube P8 contains those DNA strands that have
xa = 0 and xb = 0. Tube P3 = ∅. Next, in steps 14-17 the
value 1 is appended for s j onto the head of every element in
P6 and P4. Similarly, the value 0 is appended for S j onto
the head of every element in P8 and P2. This indicates that
the molecular solutions in tubes P4 and P6 contain those
partitions for which the j-th edge is either in V1 × V2 or in

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

502 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 23, NO. 3, JULY 2024

V2 × V1. Likewise, the molecular solutions in tubes P2 and
P8 contain those partitions for which the j-th edge is neither
in V1 × V2 nor in V2 × V1.

Next, step 22 is used to judge the influence of si+1 on the
number of 1s in tubes X j+1 and X j at iteration (i, j). Upon
each execution of this step, tubes X O N

j+1 and X j are formed
from X j . Therefore, X O N

j+1 has si+1 = 1 and X j has si+1 = 0.
This means that at iteration (i, j) si+1 records single 1s in tube
X O N

j+1 and 0s in X j . Next, in step 23, the Merge operation is
used to pour the content of tube X O N

j+1 into tube X j+1. This
implies that at iteration (i, j), si+1 records single 1s in tube
X j+1. From iteration (i, j − 1) through (m − 1, 0) similar
processing is used to compute the influence of si+1 through
sm on the number of 1s. Therefore, after each operation has
been completed, the DNA strands in tube X i for 0 ≤ i ≤ m
have i 1s and contain i edges.

In steps 26-30 molecular solutions representing a
maximum-sized cut are read out. If there are DNA strands in
tube Xc, a “true” is returned. In this case, the solution is read
out and the algorithm terminates.

C. Time and Space Complexity
The maximum cut problem for any undirected, unweighted

graph G with n vertices and m edges can be solved with
O(n + m2) biomolecular operations, O(2n) DNA strands,
O(m) tubes and the longest DNA strand of O(n + m) base
pairs. This analysis follows directly from the structure of
Algorithm 1.

III. BIOINSPIRED QUANTUM ALGORITHM FOR THE
MAXIMUM CUT PROBLEM

In this section, we present our quantum algorithm that was
inspired by the biomolecular algorithm described in Section II.

A. Deciding to Which Cut an Edge Belongs
After completion of steps 10-19 in Algorithm 1, tube

P2 contains those DNA strands that have xa = xb = 1 and
s j = 0, tube P4 contains those DNA strands that have
xa = 1, xb = 0 and s j = 1, tube P6 includes those DNA
strands that have xa = 0, xb = 1 and s j = 1 and tube
P8 consists of those DNA strands that have xa = xb = 0 and
s j = 0. Hence, the bioinspired truth table generated from these
steps at the same iteration is the same as the truth table for
formula 1.

We use auxiliary bits r j,1 and r j,2, where 1 ≤ j ≤ m,
to store the result of evaluating the first term xk ∧ x p and the
second term xk∧x p of formula 1. Further auxiliary bits s j , 1 ≤
j ≤ m are used to store the result of evaluating r j,1 ∨ r j,2 in
formula 1. As assumed previously, s1

j indicates that j-th edge
(va, vb) is in V1 × V2 or in V2 × V1, while s0

j stands for the
fact that j-th edge is in V1 × V1 or V2 × V2. Flowchart in
Fig. 2 shows the procedure for determining to which cut an
edge belongs step-by-step.

B. Computing Number of Edges in a Cut
In order to compute the number of edges in each cut,

we introduce auxiliary Boolean variables zi+1, j and zi+1, j+1,

Fig. 2. Flowchart for deciding to which cut an edge belongs.

1 ≤ i ≤ m, 0 ≤ j ≤ i . All the variables are initialized to 0.
zi+1, j+1 stores the number of edges in a cut after determining
the influence of bits (xk, x p) encoding the (i + 1)-th edge
(vk, vp) on the number of edges (this corresponds to the
number of 1s). Hence, zi+1, j+1 = 1 indicates that there are
j + 1 edges in the cut. Likewise, zi+1, j stores the number of
edges in a cut after determining the influence of bits (xk, x p)

encoding the (i +1)-th edge (vk, vp) on the number of edges.
zi+1, j = 1 indicates that there are j edges in the cut.

In the molecular Algorithm 1, upon each execution of
step 22 at iteration (i = 0, j = 0), the extract operation
forms tubes X O N

j+1 and X j from tube X j . This indicates that
X O N

j+1 has s1 = 1 and X j has s1 = 0. Therefore, s1 records
single 1s in tube X O N

j+1 and zero 1s in tube X j . Then, upon
each execution of step 23 at iteration (i = 0, j = 0), the
merge operation is used to pour the content of tube X O N

1
into tube X1. This implies that at this iteration s1 records
single 1s in X1. Therefore, incrementing the number of 1s in
each solution is to satisfy the following bioinspired Boolean
formula:

s1 (2)

Preserving the number of 1s is to satisfy the following bioin-
spired Boolean formula

s1 (3)

Next, the extract operation and the merge operation at each
execution of steps 22-23 at iterations other than (i = 0, j = 0)
is to determine the influence of auxiliary bit si+1 on the num-
ber of 1s. The biological operations indicate that increasing the
number of 1s in a cut corresponds to satisfying the condition
that the cut currently has to have j 1s and si+1 = 1. The
bioinspired Boolean formula for increasing the number of 1s
in a cut is

si+1 ∧ zi, j (4)

The biological operations also indicate that preserving the
number of 1s in a cut is to satisfy that the cut currently has j 1s
and si+1 = 0. The bioinspired Boolean formula for preserving
the number of 1s in a cut is

si+1 ∧ zi, j (5)

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR BIOMOLECULAR SOLUTIONS 503

Fig. 3. Flowchart for calculating the number of edges in a cut.

A flowchart on the calculation of the number of edges in
a cut is given in Fig. 3. Recall that the number of edges
corresponds to the number of 1s. Boolean variable z1,1 in
S1 stores the result of implementing formula (2). If z1,1 = 1,
the number of edges is incremented so that the number of
edges in each cut with the first edge (va, vb) is 1. In S2,
variable z1,0 stores the result of implementing formula (3).
If z1,0 = 1, then the number of edges is preserved so that the
number of edges in each cut with two vertices va and vb of
the first edge (va, vb) is 0. S3 sets the index of the first loop
variable to 1. S4 checks the condition if i is smaller than m.
If so, S5 is executed, otherwise the procedure of counting the
number of edges is terminated. In S5, the index variable j of
the second loop is set to the value of i . S6 checks if j ≥ 0.
If so, S7 is executed. Otherwise, the next executed instruction
is S10. In S7, Boolean variable zi, j stores the number of edges
in a cut after determining the influence of the i-th edge on
the number of 1s (edges). zi, j = 1 indicates that there are j
edges in the cut. Boolean variable zi+1, j+1 stores the number
of edges in a cut after determining the influence of si+1 on
the number of edges. zi+1, j+1 = 1 indicates that there are
j + 1 edges in the cut.

In S8, Boolean variable zi, j stores the number of edges in
a cut after determining the influence of the i-th edge on the
number of edges. zi, j = 1 indicates that there are j edges
in the cut. Variable zi+1, j stores the number of edges in a
cut after determining the influence of si+1 on the number of
edges. zi+1, j = 1 indicates that there are j edges in the cut.
S9 decrements the value of the index variable j in the second
loop. Execute repeatedly S6 through S9 until S6 results in a
False. Then, S10 increments the value of the index variable
i in the first loop. Loop over S4 through S10 until a False
in obtained in S4. When this happens, S11 is executed and
the procedure terminates. The total cost for Fig. 3 is 2 CNOT
gates, m(m+1) AND gates and m(m+1)/2 NOT gates. This
is the cost of counting the number of edges for each cut.

Fig. 4. Quantum circuit EIIAC is used to implement bioinspired Boolean
circuits from S3 through S5 in Fig. 2 and to determine if k -th edge
(va, vb) is in a cut or not.

C. Bioinspired Quantum Circuits for Calculating to Which
Cut an Egde Belongs

We use auxiliary quantum bits |r j,1⟩ and |r j,2⟩, where 1 ≤
j ≤ m to respectively store the result of evaluating the two
disjunctions in equation 1. The initial state of each auxiliary
quantum bit r j,k is set to |0⟩. We further use auxiliary quantum
bits |s j ⟩ to respectively store the result of evaluating |r j,1⟩ ∨

|r j,2⟩ in equation 1. The initial state of each |s j ⟩ is set to |1⟩.
The quantum circuit in Fig. 4 determines whether an edge
belongs to a cut or not.

D. Bioinspired Quantum Circuits for Computing the
Number of Edges

The bioinspired circuits in instructions S1, S2, S7 and S8 of
Fig. 3 for counting the number of 1s in a cut are respectively

z1,1 ← s1

z1,0 ← s1

zi+1, j+1 ← si+1 ∧ zi, j

zi+1, j ← si+1 ∧ zi, j (6)

The outcomes of the operations in (6) are stored in auxiliary
qubits |zi+1, j ⟩ and |zi+1,i+1⟩, where 0 ≤ i ≤ m − 1, 0 ≤ j ≤
i . Each of these qubits is initially prepared in the state |0⟩.
We assume that |zi+1,i+1⟩ store the number of edges in a cut
after determining the influence of Boolean variable si+1 that
increases the number of 1s. We also assume that |zi+1, j ⟩ store
the number of edges in a cut after determining the influence
of Boolean variable si+1 that preserves the number of 1s.

In the quantum circuit INO in Fig. 5, a CNOT gate with
target qubit |z0

1,1⟩ and control qubit |s1⟩ implements the
formula z1,1 ← s1 in (6) and copies the value of qubit |s1⟩

to |z1,1⟩. Next, in the quantum circuit PNO in Fig. 5, a NOT
gate on |s1⟩ and a CNOT gate with target qubit |z0

1,0⟩ and
control qubit |s1⟩ implement the formula z1,0 ← s1 in (6)
and copy the value of |s1⟩ to |z1,0⟩. Then, another NOT gate
restores |s1⟩ to its original state. In the quantum circuit CIO
of Fig. 5, a CCNOT gate with target qubit |z0

i+1, j+1⟩ and
two control qubits |zi, j ⟩ and |si+1⟩ implements the formula
zi+1, j+1 ← si+1 ∧ zi, j in (6). Next, in the quantum circuit
CPO in Fig. 5, a NOT gate on qubit |si+1⟩ and a CCNOT
gate with target qubit |z0

i+1, j ⟩ and two control qubits |zi, j ⟩

and |si+1⟩ implement the last operation in (6). Then, another
NOT gate restores qubit |si+1⟩ to its original state.

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

504 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 23, NO. 3, JULY 2024

Fig. 5. Top left: Increasing the number of 1s for the influence of s1
in each cut using the quantum circuit INO. Top right: Preserving the
number of 1s for the influence of s1 in each cut using the quantum circuit
PNO. Bottom left: Increasing the number of 1s for the influence of si+1
in each cut using the quantum circuit CIO. Bottom right: Preserving the
number of 1s for the influence of si+1 in each cut using the quantum
circuit CPO.

E. Putting the Algorithm Together

The pieces of our quantum algorithm described above need
to be put together and combined with Grover’s algorithm for
amplification of solutions. This is shown by the pseudo-code
in Algorithm 2. The input to the algorithm are: number of
vertices n, number of edges m in graph G, and the maximum
number of edges among the 2n possible cuts. We note that R
in line (24) of the algorithm is the number of maximum cuts.
R can be determined by the quantum counting algorithm [3].

In Algorithm 2 the initial state is

|ψ0⟩ = |1⟩
1⊗

i=m

0⊗
j=i

|z0
i, j ⟩

1⊗
k=m

|s1
k ⟩

1⊗
k=m

1⊗
a=2

|r0
k,a⟩

1⊗
d=n

|x0
d⟩

The first register (|1⟩) is a standard auxilliary register used in
Grover’s routine for both the oracle and the diffusion operator.
We will refer to it as aux.

Grover’s search algorithm consists of two steps: phase
inversion, and diffusion. The starting point of the Grover
algorithm is a quantum system in a uniform superposition,
and an auxiliary qubit in the state |1⟩. The auxiliary qubit is
set into this state by applying to it the quantum NOT gate,
followed by the Hadamard gate. For example, in Fig. 7, our
primary quantum system consists of the work qubits x_regi ,
while the auxiliary qubit is aux . In each iteration of Grover’s
algorithm, we calculate the location of the maximum cut using
the sequence of operations starting from the first EIIAC block
to the second EIIAC_dg block. The purpose of this calculation

Algorithm 2 Overview of the Quantum Algorithm for
the Maximum Cut Problem

Data: quantum system in state |ψ0⟩

Result: a maximum cut
1 Apply Hadamard gates to |aux⟩ and |x⟩ to set the

auxiliary register into superposition and to generate
the search space over register |x⟩;

2 for edge e = 1 to m do
3 Apply EIIAC to e
4 end
5 if t > 0 then
6 Apply INO to implement z1,1 ← s1
7 end
8 if t < m then
9 Apply PNO to implement z1,0 ← s1

10 end
11 for i = 1 to m − 1 do
12 for j = i down to 0 do
13 if j + 1 <= t and m − i + j = t then
14 Apply CIO to implement

zi+1, j+1 ← si+1 ∧ zi, j
15 end
16 if j <= t and m − i + j − 1 = t then
17 Apply CPO to implement

zi+1, j ← si+1 ∧ zi, j
18 end
19 end
20 end
21 Apply CNOT on control |zm,t ⟩ and target |aux⟩ to

label the cuts with the largest number of edges;
22 Reverse the operations from row 20 down to 2 to

restore auxiliary qubits to original state;
23 Apply diffusion operator;

24 Repeat rows 2 through 23 at most
√

2n

R times. ;
25 Measure to obtain a solution with a probability ≥ 1

2 .

is to invert the phase of the maximum cut for the graph in
Fig. 1. The phase inversion is applied to the aux qubit. This
operation effectively inverts the phase of the quantum state
corresponding to the maximum cut. In the example case, it is
the states |010⟩ and |101⟩. After phase inversion, we apply the
diffusion operator to the work qubits. This is usually done in
five steps: (1) a block of NOT gates on all qubits, (2) followed
by a block of Hadamard gates on all qubits, (3) followed by
a CCZ gate with one of the qubits being the target and the
other two qubits being the controls, (4) followed by a block of
Hadamard gates on all qubits, (5) followed by a block of NOT
gates on all qubits. Essentially, the diffusion operator flips the
amplitudes of all states by the mean of amplitudes. This way,
the desired solution’s amplitude is amplified in each iteration.
The number of iterations is specified by the formula given in
Section V.

IV. COMPLEXITY ASSESSMENT

The maximum cut problem is known to be NP-hard, i.e.
no polynomial-time algorithms are known for general graphs.

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

CHANG et al.: BIOINSPIRED QUANTUM ORACLE CIRCUITS FOR BIOMOLECULAR SOLUTIONS 505

For planar graphs, finding a maximum cut can be solved
exactly in polynomial time [13]. For other types of graphs,
approximations are usually used. However, even so there is
no polynomial time approximation scheme arbitrarily close
to the exact solution [17]. For this reason, every known
approximation algorithm will never give an exact solution.
The quantum approach proposed in this work doesn’t run
in polynomial time, however it provides a quadratic speedup
over classical algorithms, which is due to Grover’s routine
having the complexity of O(2n/2). This algorithm can be used
for arbitrary type of graph without limitations. The proper
execution of the algorithm assumes that the parameter t , which
stipulates the maximum possible number of edges in a cut,
is known. Due to the application of Grover’s algorithm, one
must also know the number of solutions upfront. This can
be achieved by using the quantum counting algorithm [3].
The probability of success is dictated by Grover’s algorithm
and is at least 1/2. The success probability gets below 1/2
for M > N/2 [19], where M is the number of solutions
and N is the size of the search space, i.e. 2n for n qubits.
It is noteworthy that in principle the probability of success of
Grover’s algorithm can be made arbitrarily high [18] or higher
by using partial diffusion [19], so that one is not limited to
the lower bound of 1/2.

This version of the algorithm is an improvement over the
quantum algorithm by Chang et al. [1]. It reduces the number
of qubits from 5m2

+9m+1
2 + n to m2

+ 5m + n + 1, where
n is the number of vertices, and m is the number of edges.
This analysis follows closely the structure of Algorithm 2. The
main factor m2 comes from the double loop in steps 11-20.
In [1], we had a quadruple loop that required a much higher
number of resources. The difference can be also observed in
a more direct way by comparing the respective logic formulas
that form the basis of each of the two algorithms. In [1], the
formula used was

f (xk, x p) = (xk ∧ xk) ∨ (xk ∧ x p)

g(xk, x p) = (xk ∧ xk) ∨ (xk ∧ x p) (7)

while in this work, through supplementation with other minor
functions, it is reduced to just the first part

f (xk, x p) = (xk ∧ xk) ∨ (xk ∧ x p) (8)

V. EXPERIMENTAL VALIDATION

We have coded [16] and executed our algorithm on IBM
Quantum qasm simulator for the example graph given in
Fig. 1. The statistical outcome is shown in Fig. 6. The maxi-
mum cut V1 = {v1, v3}, V2 = {v2} (or vice versa) is measured
with a probability greater than 1/2.

The circuit was executed using IBM Quantum Qiskit
platform. For the experiment, we used the noiseless qasm-
simulator with 1024 shots and a generic noisy simulator. The
average runtime for the noiseless simulator was 25.4 ms, while
the average runtime for the noisy simulator was 3 s. This is
due to the fact that the noisy simulator requires a transpilation
procedure prior to the execution, where the gates are translated
into native gates of the noisy simulator. The native gates are:
x, sx, rz, id, and cx. The average qubit properties were as

TABLE I
COMPARISON OF AVERAGE GATE DURATIONS AND ERRORS

Fig. 6. The maximum cut found for the example graph in Fig.1. Note
that both 010 and 101 indicate equivalent maximum cuts. Hence, the
maximum cut for Fig.1 is obtained with probability 1. Left: Output from
an exact simulator. Right: output from a noisy simulator.

Fig. 7. The circuit for the example graph in Fig.1.

follows: T1: 0.00015735 µs, T2: 0.00015063 µs, frequency:
5279379335.4190855 Hz. The average gate durations and
average errors are given in Table I. These properties contribute
to the undesired superposition factors (see Fig. 6 right) that are
not present in the noiseless execution.

Fig. 7 shows the circuit used to produce the outcomes
in Fig. 6. The gates applied before the first occurrentce of
EIIAC circuit belong to the initialization step. The circuit
is run once only in accordance with the formula π

4

√
2n

R ,
where R = 2 since the maximum cut sets are counted twice,
as indicated in Fig. 6. The single run consists of a block of
two IEEAC circuits, one for each edge, followed by a CNOT
gate that flips the phase of the oracle qubit aux for the case
where aux = 1. After the CNOT gate, all the gates inserted
after the initialization step must be uncomputed to free qubits
for eventual further runs in the case such runs are specified
by the formula π

4

√
2n

R . And lastly, we have a diffusion block
that amplifies the solution in each iteration/run of the Grover
routine.

VI. CONCLUSION

In the present paper, we have devised both a biomolecular
and a a quantum algorithm for the max-cut problem and

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

506 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 23, NO. 3, JULY 2024

have shown how a quantum algorithm can be inspired by
biomolecular operations.

The quantum algorithm offers a quadratic speedup over
its classical, exact counterparts. We have further successfully
executed an instance of the proposed quantum algorithm using
IBM’s Qiskit SDK [14]. This version of the algorithm is an
improvement over the quantum algorithm by Chang et al. [1].
It reduces the number of qubits from 5m2

+9m+1
2 + n to

m2
+ 5m + n + 1, where n is the number of vertices, and

m is the number of edges.

CODE AVAILABILITY

The Python/Qiskit code for the proposed algorithm can
be obtained from R. Wong’s GitHub repository https://
github.com/renatawong/quantum-maxcut [16].

REFERENCES

[1] W.-L. Chang, R. Wong, W.-Y. Chung, Y.-H. Chen, J.-C. Chen, and
A. V. Vasilakos, “Quantum speedup for the maximum cut problem,”
2023, arXiv:2305.16644.

[2] L. M. Adleman, “Molecular computation of solutions to combi-
natorial problems,” Science, vol. 266, no. 5187, pp. 1021–1024,
Nov. 1994.

[3] G. Brassard, P. Hoyer, and A. Tapp, “Quantum counting,” in
Automata, Languages and Programming ICALP (Lecture Notes in
Computer Science), vol. 1443, K. G. Larsen, S. Skyum, and
G. Winskel, Eds. Berlin, Germany: Springer, 1998, doi: 10.1007/
BFb0055105.

[4] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
doi: 10.1109/SFCS.1994.365700.

[5] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp. Theory Comput. Philadelphia,
PA, USA: Association for Computing Machinery, 1996, pp. 212–219,
doi: 10.1145/237814.237866.

[6] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quan-
tum, vol. 2, p. 79, Aug. 2018, doi: 10.22331/q-2018-08-06-79.

[7] W.-L. Chang et al., “Quantum speedup for inferring the value of each
bit of a solution state in unsorted databases using a bio-molecular
algorithm on IBM quantum’s computers,” IEEE Trans. Nanobiosci.,
vol. 21, no. 2, pp. 286–293, Apr. 2022, doi: 10.1109/TNB.2021.
3130811.

[8] W.-L. Chang, J.-C. Chen, W.-Y. Chung, C.-Y. Hsiao, R. Wong, and
A. V. Vasilakos, “Quantum speedup and mathematical solutions of
implementing bio-molecular solutions for the independent set problem
on IBM quantum computers,” IEEE Trans. Nanobiosci., vol. 20, no. 3,
pp. 354–376, Jul. 2021, doi: 10.1109/tnb.2021.3075733.

[9] M. X. Goemans and D. P. Williamson, “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite
programming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995, doi:
10.1145/227683.227684.

[10] R. Wong, W.-L. Chang, W.-Y. Chung, and A. V. Vasilakos, “Biomolec-
ular and quantum algorithms for the dominating set problem in
arbitrary networks,” Sci. Rep., vol. 13, no. 1, p. 4205, Mar. 2023, doi:
10.1038/s41598-023-30600-4.

[11] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Can. J. Math., vol. 8, pp. 399–404, 1956, doi: 10.4153/CJM-1956-045-
5.

[12] R. Wong and W.-L. Chang, “Quantum speedup for protein structure
prediction,” IEEE Trans. Nanobiosci., vol. 20, no. 3, pp. 323–330,
Jul. 2021, doi: 10.1109/TNB.2021.3065051.

[13] F. Hadlock, “Finding a maximum cut of a planar graph in polynomial
time,” SIAM J. Comput., vol. 4, no. 3, pp. 221–225, Sep. 1975, doi:
10.1137/0204019.

[14] Qiskit contributors. (2023). Qiskit: An Open-source Framework for
Quantum Computing. [Online]. Available: http://dx.doi.org/10.5281/
zenodo.2573505

[15] R. Wong and W.-L. Chang, “Fast quantum algorithm for protein structure
prediction in hydrophobic-hydrophilic model,” J. Parallel Distrib. Com-
put., vol. 164, pp. 178–190, Jun. 2022, doi: 10.1016/j.jpdc.2022.03.011.

[16] R. Wong. (2023). Quantum Maximum Cut Algorithm. [Online]. Avail-
able: http://dx.doi.org/10.5281/zenodo.7790804

[17] C. H. Papadimitriou and M. Yannakakis, “Optimization, approxima-
tion, and complexity classes,” J. Comput. Syst. Sci., vol. 43, no. 3,
pp. 425–440, Dec. 1991, doi: 10.1016/0022-0000(91)90023-x.

[18] G. L. Long, “Grover algorithm with zero theoretical failure rate,” Phys.
Rev. A, Gen. Phys., vol. 64, no. 2, Jul. 2001, Art. no. 022307, doi:
10.1103/physreva.64.022307.

[19] A. Younes, “Quantum search algorithm with more reliable behaviour
using partial diffusion,” in Proc. AIP Conf., 2004, pp. 171–174, doi:
10.1063/1.1834408.

[20] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
J. Comput., vol. 26, no. 5, pp. 1411–1473, Oct. 1997, doi:
10.1137/S0097539796300921.

[21] D. N. Diep, K. Nagata, and R. Wong, “Continuous-variable quantum
computing and its applications to cryptography,” Int. J. Theor. Phys.,
vol. 59, no. 10, pp. 3184–3188, Oct. 2020, doi: 10.1007/s10773-020-
04571-5.

[22] N. Moll et al., “Quantum optimization using variational algorithms
on near-term quantum devices,” Quantum Sci. Technol., vol. 3, no. 3,
Jul. 2018, Art. no. 030503, doi: 10.1088/2058-9565/aab822.

[23] E. Farhi, J. Goldstone, and S. Gutman, “A quantum approximate
optimization algorithm,” 2014, arXiv.1411.4028.

[24] N. Kuete Meli, F. Mannel, and J. Lellmann, “A universal quantum
algorithm for weighted maximum cut and Ising problems,” Quantum
Inf. Process., vol. 22, no. 7, Jul. 2023, Art. no. 279, doi: 10.1007/
s11128-023-04025-x.

[25] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, “Quantum approx-
imate optimization algorithm for MaxCut: A fermionic view,” Phys.
Rev. A, Gen. Phys., vol. 97, no. 2, Feb. 2018, Art. no. 022304, doi:
10.1103/physreva.97.022304.

Authorized licensed use limited to: National Kaohsiung Univ. of Science & Technology. Downloaded on July 03,2024 at 02:31:34 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/BFb0055105
http://dx.doi.org/10.1007/BFb0055105
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1145/237814.237866
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1109/TNB.2021.3130811
http://dx.doi.org/10.1109/TNB.2021.3130811
http://dx.doi.org/10.1109/tnb.2021.3075733
http://dx.doi.org/10.1145/227683.227684
http://dx.doi.org/10.1038/s41598-023-30600-4
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.4153/CJM-1956-045-5
http://dx.doi.org/10.1109/TNB.2021.3065051
http://dx.doi.org/10.1137/0204019
http://dx.doi.org/10.1016/j.jpdc.2022.03.011
http://dx.doi.org/10.1016/0022-0000(91)90023-x
http://dx.doi.org/10.1103/physreva.64.022307
http://dx.doi.org/10.1063/1.1834408
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1007/s10773-020-04571-5
http://dx.doi.org/10.1007/s10773-020-04571-5
http://dx.doi.org/10.1088/2058-9565/aab822
http://dx.doi.org/10.1007/s11128-023-04025-x
http://dx.doi.org/10.1007/s11128-023-04025-x
http://dx.doi.org/10.1103/physreva.97.022304

