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Abstract— In this paper, we propose a bio-molecular 
algorithm with O(n2 + m) biological operations, O(2n) DNA 
strands, O(n) tubes and the longest DNA strand, O(n), for 
solving the independent-set problem for any graph G with 
m edges and n vertices. Next, we show that a new kind of 
the straightforward Boolean circuit yielded from the bio-

molecular solutions with m NAND gates, (m + n  (n +1)) 

AND gates and ((n  (n + 1)) / 2) NOT gates can find the 
maximal independent-set(s) to the independent-set 
problem for any graph G with m edges and n vertices. We 
show that a new kind of the proposed quantum-molecular 
algorithm can find the maximal independent set(s) with the 

lower bound (2n/2) queries and the upper bound (2n/2) 
queries. This work offers an obvious evidence for that to 
solve the independent-set problem in any graph G with m 
edges and n vertices, bio-molecular computers are able to 
generate a new kind of the straightforward Boolean circuit 
such that by means of implementing it quantum computers 
can give a quadratic speed-up. This work also offers one 
obvious evidence that quantum computers can 
significantly accelerate the speed and enhance the 
scalability of bio-molecular computers. Next, the element 
distinctness problem with input of n bits is to determine 
whether the given 2n real numbers are distinct or not. The 
quantum lower bound of solving the element distinctness 

problem is (2n(2/3)) queries in the case of a quantum walk 
algorithm. We further show that the proposed quantum-
molecular algorithm reduces the quantum lower bound to 

((2n/2) / (21/2)) queries. Furthermore, to justify the feasibility 
of the proposed quantum-molecular algorithm, we 
successfully solve a typical independent set problem for a 
graph G with two vertices and one edge by carrying out 
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experiments on the backend ibmqx4 with five quantum bits 
and the backend simulator with 32 quantum bits on IBM’s 
quantum computer. 
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I. Introduction 

EYNMAN [1] was the first to propose molecular computation 

without implementing the idea himself. After a few decades, 

by handling DNA strands, Adleman [2] succeeded in solving an 

instance of the Hamiltonian path problem in a test tube. In 1982, 

Feynman [3] raised one of the most important problems in 

computation theory, namely, whether computing devices based 

on quantum theory will be able to complete computations faster 

than the standard Turing machines [4]. Benioff [5] has 

considered the possibility of quantum computation as well. 

Deutsch designed a general model of quantum computation – 

the quantum Turing machine [6]. 

A graph G = (V, E) is defined in terms of vertices and edges, 

where V is a set of n vertices and E is a set of m edges. 

Mathematically, an independent set of a graph G = (V, E) is a 

subset V1  V of vertices such that for every two vertices in V1, 

there is no edge connecting the two [7]. The independent-set 

problem is to find a maximum-size independent set in G. This 

problem is NP-complete [7].  
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 Our major contributions in this paper are as follows. 

• We show that the independent-set problem for any graph 

G with m edges and n vertices can be solved by the proposed 

molecular algorithm with O(n2 + m) biological operations, O(2n) 

DNA strands, O(n) tubes and the longest DNA strand, O(n). 

• We demonstrate that a new kind of the straightforward 

Boolean circuit obtained from bio-molecular solutions with m 

NAND gates, (m + n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT 

gates can find the maximal independent-set(s) to the 

independent-set problem for any graph G with m edges and n 

vertices.  

• We show that the proposed quantum-molecular algorithm 

for implementing a new kind of the straightforward Boolean 

circuit generated from bio-molecular solutions can give a 

quadratic speed-up for the same problem. This is the best known 

speed-up because the lower bound of solving the problem is 

Ω (2𝑛×
1

2) queries while the upper bound is O (2𝑛×
1

2) queries. 

• We prove that this work offers an obvious evidence for 

solving the independent set problem for any graph G with m 

edges and n vertices. Bio-molecular computers are able to 

generate a new kind of the straightforward Boolean circuit such 

that when implemented by quantum computers it can provide a 

quadratic speed-up, which is the best speed-up known for the 

given problem. 

• We demonstrate that this work offers another obvious 

evidence that quantum computers can significantly accelerate 

and enhance the speed and the scalability of bio-molecular 

circuits. 

• We show how the mathematical solutions of the same bio-

molecular solutions are encoded in terms of a unit vector in the 

finite-dimensional Hilbert. 

• We also prove that the processing of reduction among NP-

complete problems not only cannot speed up the performance 

of quantum algorithms but, to the contrary, slows it down.  

• We demonstrate that reduction among NP-complete 

problems is useless for a quantum computer and one should 

therefore independently develop a new quantum algorithm for 

solving any NP-complete problem with a quadratic speed-up. 

• We show that the proposed quantum-molecular algorithm 

with a quadratic speed-up for solving the independent set 

problem in a graph G with n vertices and m edges is not the best 

or optimal quantum algorithm. 

• The element distinctness problem with an input of n bits 

is to determine whether the given 2n real numbers are distinct 

or not. A quantum lower bound for solving it is Ω (2𝑛×
2

3) 

queries to a quantum walk algorithm. We show that the 

proposed quantum-molecular algorithm reduces the quantum 

lower bound to Ω (√
2𝑛

2
) queries. 

• We experimentally solve an instance of the independent 

set problem in a graph with two vertices and one edge on the 

IBM backend ibmqx4 with five quantum bits and the backend 

simulator with 32 quantum bits. 

 

The rest of the paper is organized as follows: in Section II, 

the motivation for this work is given. In Section III, we illustrate 

the development of molecular computers and quantum 

computers. In Section IV, the molecular algorithm for solving 

the independent set problem for any graph G with m edges and 

n vertices is proposed. In Section V, we propose a quantum 

algorithm for solving the independent set problem on any graph 

with m edges and n vertices. In Section VI, we analyze the time 

complexity and the space complexity of the proposed quantum-

molecular algorithm for solving the same problem. In Section 

VII, we show how the mathematical solutions of the molecular 

solutions for the same problem are encoded in terms of a unit 

vector in the finite-dimensional Hilbert space. In Section VIII, 

we demonstrate that reduction among NP-complete problems is 

useless and independently developing a better quantum 

algorithm for each NP-complete problem is the right way to 

approach this issue. In Section IX, we show that the quantum 

lower bound is (2𝑛×
2

3) queries for a quantum walk algorithm 

that solves the element distinctness problem with an input of n 

bits. The element distinctness problem is to determine whether 

the given 2n real numbers are distinct or not. We give a proof 

(the reasons) of why it is reduced to (√
2𝑛

2
) queries. In Section 

X, we experimentally solve an instance of the independent set 

problem in a graph with two vertices and one edge on the IBM 

backend ibmqx4 with five quantum bits and the backend 

simulator with 32 quantum bits. In Section XI, we 

experimentally solve an instance of the independent set 

problem in a graph with three vertices and two edges on the 

IBM backend simulator with 32 quantum bits. In Section XII, 

we give a brief conclusion. 

II. MOTIVATION 

Bennett et al. [8] demonstrated that the lower bound of 

quantum algorithms for solving any NP-complete problem with 

input size n bits is (2𝑛×
1

2). This result indicates that a new kind 

of quantum algorithm for solving any NP-complete problem 

can give a quadratic speed-up that is the best speed-up known 

for the problem if its upper bound is (2𝑛×
1

2). An interesting 

open question is “what are the mathematical solutions of 

molecular solutions for solving any NP-complete problem”? 

The independent set problem on any graph with m edges and n 

vertices is an NP-complete problem [7, 9], and its molecular 

solution, its quantum solution and mathematical solution of the 

same molecular solution haven’t yet been proposed. Our 

motivation for writing this article is to search for the three 

solutions.  

III. THE DEVELOPMENT OF MOLECULAR AND QUANTUM 

COMPUTERS 

A potentially significant area of application for DNA 

algorithms was the breaking of encryption schemes [10-13]. For 
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solving many well-known computational problems, the 

proposed DNA algorithms included the 3-SAT problem [14], 

three-vertex-coloring [15], the binary integer programming 

problem [16], the subset-production [17] and real DNA 

experiments of Knapsack problems [18]. Other well-known 

DNA algorithms include the set partition problem [19], 

molecular verification of rule-based systems [20], 

implementation of bio-molecular databases [21] and 

implementation of arithmetical operations of complex vectors 

[22]. Woods et al. [23] report the design and experimental 

validation of a DNA tile set that contains 355 single-stranded 

tiles and can, through simple tile selection, be reprogrammed to 

implement a wide variety of 6-bit algorithms. Noteworthy are 

also recent developments in DNA computing algorithms and 

models, such as [24-26].  

One of the first quantum algorithms was the Deutsch-Jozsa 

algorithm that showed how to exploit some inherently quantum 

mechanical features of quantum Turing machines [27]. In 1994, 

Shor proposed his quantum algorithm for efficiently solving 

factoring and discrete logarithm problems [28]. And in 1996, 

Grover’s algorithm for searching answer(s) in an unsorted 

database was proposed in [29]. A detailed description of 

quantum computation and quantum information was given in 

[30-32]. Aaronson and Shi in [33] proposed quantum lower 

bounds of quantum walk algorithms for the collision and the 

element distinctness problems. Huo and Long in [34] have 

shown that a single-photon entanglement state can be generated 

in a simple way in the linear interaction regime, and in the 

nonlinear interaction regime a scheme for generating squeezed 

states of microwaves using three-wave mixing in solid-state 

circuits was proposed. Yang et al. in [35] proposed an 

implementation of a many-qubit Grover search. Long and Xiao 

in [36] implemented a NMR quantum information processor 

with seven quantum bits. Boneh and Lipton in [37] proved that 

quantum computers are able to break any cryptosystem in 

quantum polynomial time based on what they refer to as a 

‘hidden linear form’. Lukac and Perkowski in [38] presented an 

evolutionary approach to the quantum symbolic logic synthesis 

and used a genetic algorithm to synthesize quantum circuits. 

Moylett et al. [39] showed a quantum speedup of the traveling-

salesman problem for bounded-degree graphs. Chang et al. [40] 

solved the problem of finding maximal cliques in graphs with a 

quantum speedup. Pelofske et al. in [41] demonstrated the large 

minimum vertex cover problems on a quantum annealer. Arute 

et al. in [42] determined that their Sycamore processor takes 

about 200 seconds to sample one instance of a quantum circuit 

a million times—their benchmarks currently indicate that the 

equivalent task for a state-of-the-art classical supercomputer 

would take approximately 10,000 years. An introduction to 

writing quantum programs to solve real applications on IBM’s 

quantum computers and in quantum processing units appeared 

in [43-44]. 

IV. MOLECULAR ALGORITHMS FOR SOLVING THE 

INDEPENDENT SET PROBLEM 

In this section, we introduce the definition of the independent 

set problem for any graph with m edges and n vertices. Next, 

DNA strands and biological operations proposed in [2] are 

introduced. They will be applied to design molecular circuits to 

solve the independent set problem. Then, the time complexity 

and the space complexity of the proposed molecular algorithm 

is given. After that, the straightforward Boolean circuit 

generated from bio-molecular solutions to the independent-set 

problem on any graph with m edges and n vertices is given. And 

lastly, we use data dependence analysis to prove that the 

straightforward Boolean circuit to solve the independent set 

problem on any graph with m edges and n vertices is the best 

known for the problem. 

A. Definition of the Independent Set Problem 

Let G be a graph and G = (V, E), where V is a set of vertices 

and E is a set of edges in G. We assume that V is {v1, …, vn} 

and E is {(va, vb)| va and vb are, respectively, elements in V}. We 

further assume that |V| denotes the number of vertices in V and 

|E| denotes the number of edges in E. We also suppose that |V| 

is equal to n and |E| is equal to m. The value of m is at most ((n 

 (n − 1)) / 2). An independent set of graph G is a subset V1  

V of vertices such that for all va, vb  V1, the edge (va, vb) is not 

in E [7, 9]. Definition 4-1 cited in [7, 9] is used to denote the 

independent set problem of graph G with m edges and n vertices. 

Definition 4-1: The independent set problem of graph G with 

n vertices and m edges is to find a maximum-sized independent 

set in G. 

Consider a graph G1 that consists of three vertices {v3, v2, v1} 

and two edges {(v1, v2), (v1, v3)}. The independent sets in G1 are 

{} that is an empty set, {v1}, {v2}, {v3} and {v3, v2}. The 

maximum-sized independent set for G1 is {v3, v2}. From [7, 9] 

we have that finding a maximum-sized independent set is an 

NP-complete problem. Therefore, we can formulate it as a 

“computational search” problem. 

B. Introduction and Implementation of Biological 
Molecular Operations 

DNA (deoxyribonucleic acid) encodes the genetic 

information of cellular organisms. It consists of polymer chains 

that are DNA strands. Synthesizing DNA strands is to order by 

means of using an automated process. Each strand may be made 

of a sequence of nucleotides, or bases, attached to a sugar-

phosphate “backbone”. The four DNA nucleotides are adenine, 

guanine, cytosine and thymine, commonly abbreviated to A, G, 

C and T, respectively. Each strand has a 5’ end and a 3’ end by 

chemical convention. Because one end of the single strand has 

a free (i.e., unattached to another nucleotide) 5’ phosphate 

group, and the other has a free 3’ deoxyribose hydroxyl group, 

hence, any single strand has a natural orientation, as introduced 

in [45]. 

When two separate single strands bond, this bonding forms 

the classical double helix of DNA. Bonding occurs by the 

pairwise attraction of bases: A bonds with T and G bonds with 

C. The pairs (A, T) and (G, C) are therefore known as 

complementary base pairs [45]. Also in [45] we have that 

heating the solution to a temperature determined by the 

composition of the strand may denature double-stranded DNA 

into single strands. Heating breaks the hydrogen bonds between 

complementary strands ((Fig. 4-1) in [45]). Because a G − C 

pair is joined by three hydrogen bonds, the temperature required 

to break it is slightly higher than that for an A − T pair, joined 

by only two hydrogen bonds [45]. This is the most important 

factor when designing sequences to represent computational 
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elements. 

Annealing is the reverse of melting, whereby cooling a 

solution of single strands, and allowing complementary strands 

to bind together ((Fig. 4-1) in [45]). In double-stranded DNA, 

if one of the single strands contains a discontinuity (i.e., one 

nucleotide is not bonded to its neighbor) then this may be 

repaired by DNA ligase [45]. This allows us to create a unified 

strand from several bound together by their respective 

complements. 

We will use the following bio-molecular operations cited in 

[2, 45-46] to construct molecular solutions for the independent 

set problem for any graph with m edges and n vertices. The 

implementation of the eight biological operations that are 

specified in Definition 4-2 through Definition 4-9 from [45] is 

described below. Each implementation illustrates only one 

possible way to complete the computational behavior of one 

biological operation. In laboratory techniques, future 

improvements may well yield more efficient and error-resistant 

implementations of biological operations, but this does not red- 

 

 

Fig. 4-1. DNA denaturing and annealing. 

uce the theoretical power of the model. We simply offer 

description of the implementation in order to show the 

feasibility, in principle, of executing biological operations in 

vitro (that is to say, every biological operation is completely 

feasible using existing laboratory techniques). All sequences 

produced to represent bits from a biological standpoint must be 

checked to ensure that the DNA strands that they encode do not 

form unwanted secondary structures with one another (i.e., 

strands remain separate at all times, and only bind together 

when this is required). We have addressed the problem of strand 

design for DNA-based computing at length, and we use the 

methods described in [45] to minimize the possibility of 

unwanted binding. 

 

Definition 4-2: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular operation “Append-

Head” appends xj onto the head of every element in set X. The 

formal representation is written as Append-Head(X, xj) = {xj xn 

xn − 1  x2 x1  xd  {0, 1} for 1  d  n and xj  {0, 1}}. 

Definition 4-3: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular operation, 

“Append-Tail”, appends xj onto the end of every element in set 

X. The formal representation is written as Append-Tail(X, xj) = 

{xn xn − 1  x2 x1 xj  xd  {0, 1} for 1  d  n and xj  {0, 1}}. 

Two strands (labeled S and T in Figure 4-2) can be 

concatenated as follows: create a linker strand that includes a 

sequence that is the complement of S followed by the 

complement of T. This linker strand is affixed to a surface with 

a magnetic bead (Figure 4-2(a)). Then, strand S is added to the 

solution, and anneals with the linker strand in the appropriate 

position (Fig. 4-2(b)). Then, strand T is added to the solution, 

and it anneals with the linker strand, at a position immediately 

adjacent to strand S (Fig. 4-2(c)). Then, we add the ligase 

enzyme to the solution to seal the “nick” between S and T, 

forming a single strand that may be freed by heating the solution 

to break its bonds with the linker strand (Figure 4-2(d)). The 

implementation of the concatenate() operation mentioned 

above may easily be used to append a specific sequence, s, to 

the head of each strand in a tube X. In this case, the sequence s 

corresponds to the strand S shown in Figure 4-2, and strand T 

in Figure 4-2 corresponds to the beginning sequence of every 

strand in the tube X. Also, only the starting sequence of every 

strand anneals to the linker strand. Clearly, then, after a series 

of append-head() operations defined in Definition 4-2 has been 

completed on a strand, its sequence will be made up of a number 

of sequences representing bit-strings. A similar implementation 

can be applied to complete the append-tail() operation defined 

in Definition 4-3. 

 

 
Fig. 4-2.  Concatenation process: (a) Linker strand affixed to 

surface. (b) S anneals to linker strand. (c) T anneals to linker 

strand, adjacent to S. (d) S and T ligated to form a single strand, 

which can be freed upon heating the solution. 

 

Definition 4-4: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Discard(X)” resets 

X to an empty set and can be represented as “X = ”. 

The Discard(X) operation defined in Definition 4-4 discards 

the content of a tube X, and replaces the tube X using a new 

empty tube. Since the number of tubes will generally be one, it 

is a constant-time operation. 

Definition 4-5: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Amplify(X, {Xi})” 

creates a number of identical copies Xi of set X, and then 

discards X with the help of “Discard(X)”. 

The Amplify(X, {Xi}) operation defined in Definition 4-5 is 

implemented by applying the polymerase chain reaction (PCR) 

with its initial input being a tube X. This reaction is used to 

massively amplify (possibly small) amounts of DNA that begin 

and end with specific primer sequences. Because using these 

sequences delimits every strand in the tube X, they are all copied 



Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM…                        5 

 

 

in the reaction. Then, the result of the PCR is equally divided 

into the specified tubes (therefore, the number of PCR cycles 

may be adjusted to ensure a constant DNA volume per tube, 

regardless of the number of tubes). 

Definition 4-6: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n} and a bit xj, the bio-molecular extract operation 

has two kinds of representation. The first representation is +(X, 

xj
1) = {xn xn − 1  xj

1  x2 x1  xd  {0, 1} for 1  d  j  n} 

and −(X, xj
1) = {xn xn − 1  xj

0  x2 x1  xd  {0, 1} for 1  d  

j  n} if the value of xj is equal to one. The second representation 

is +(X, xj
0) = {xn xn − 1  xj

0  x2 x1  xd  {0, 1} for 1  d  j 

 n}and −(X, xj
0) = {xn xn − 1  xj

1  x2 x1  xd  {0, 1} for 1 

 d  j  n} if the value of xj is equal to zero. 

In order to implement the extract operation defined in 

Definition 4-6 affinity purification is used to extract any strands 

from a tube X consisting of a short strand, s, that encodes the 

value of a bit, xj. This process uses a probe sequence, which is 

complementary to the searched target sequence. Probes can 

attach to a surface and capture strands through annealing any 

strands consisting of the target sequence. Then, in the rest of the 

population, separation of captured strands is done by placing 

them in a separate solution, and then heating the solution in 

order to break the bonds between the probes and the target 

sequence. The probe used is therefore the complementary 

sequence of s. Retained strands are placed in a new tube, U = 

+(X, s), and the remainder are placed in another new tube, V = 

−(X, s). 

Definition 4-7: Given m sets X1  Xm, the bio-molecular 

merge operation is (X1, , Xm) = X1    Xm. 

The merge operation defined in Definition 4-7 is 

implemented by pouring the contents of tubes (sets) {Xi} into 

the specified tube. The number of tubes will generally be low, 

so it is a constant-time operation. 

Definition 4-8: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Detect(X)” returns 

true if X is not an empty tube. Otherwise, it returns false. 

The detect operation defined in Definition 4-8 is 

implemented by running a tube X through a gel electrophoresis 

process, which is generally used to sort DNA strands by length. 

Any DNA present in X manifests itself as a visible band in the 

gel; if DNA strands of the appropriate length are present, the 

operation returns true. If there are no visible bands 

corresponding to DNA of the correct length, then the operation 

returns false. The length criterion ensures that the present DNA 

fragments do not cause a false positive result. If the DNA in the 

band corresponding to the contents of X is required in a 

subsequent processing step, cutting the band may excise it from 

the gel. The band is then soaked to remove the strands for 

further use. 

Definition 4-9: Given set X = {xn xn − 1  x2 x1  xd  {0, 1} 

for 1  d  n}, the bio-molecular operation “Read(X)” describes 

any element in X. Even if X contains many different elements, 

this operation can give an explicit description of exactly one of 

them. 

The read operation defined in Definition 4-9 is implemented 

by using gel electrophoresis to sort DNA strands in a tube X by 

size. Electrophoresis is the movement of charged molecules in 

an electric field. Because DNA molecules carry a negative 

charge, they tend to migrate toward the positive pole when 

placed in an electric field. The rate of migration of a molecule 

in an aqueous solution depends on its shape and electric charge. 

Because DNA molecules have the same charge per unit length, 

they all migrate at the same speed in an aqueous solution. 

However, if a DNA strand completes electrophoresis in a gel 

(usually made of agarose, polyacrylamide or a combination of 

the two), then its size also affects the migration rate of a 

molecule. Therefore, the gel is a dense network of pores through 

which the molecules must travel. Smaller molecules therefore 

migrate faster through the gel, thus sorting them according to 

size. DNA strands of the appropriate length in base pairs are 

measured. 

C. Molecular Algorithms for Solving the Independent 
Set Problem 

From Definition 4-1 we have that for any graph G with n 

vertices and m edges, all possible independent sets are 2n 

possible choices containing legal and illegal independent sets in 

G. Each possible choice corresponds to a subset of vertices in 

G. Therefore, it is assumed that Y is a set of 2n possible choices 

and Y is equal to {yn yn − 1  y2 y1  yd  {0, 1} for 1  d  n}. 

With this, the length of each element in Y is n bits and each 

element represents one of the 2n possible choices. For the sake 

of presentation, we suppose that yd
0 indicates that the value of 

yd is zero and yd
1 indicates that the value of yd is one. If an 

element yn yn − 1  y2 y1 in Y is a legal independent set and the 

value of yd for 1  d  n is one, then yd
1 indicates that the dth 

vertex is within the legal independent set. If an element yn yn − 1 

 y2 y1 in Y is a legal independent set and the value of yd for 1 

 d  n is zero, then yd
0 indicates that the dth vertex does not 

appear in the legal independent set. 

We propose the following molecular algorithm to solve the 

independent-set problem for any graph G with n vertices and m 

edges. The first parameter is an empty tube (a set) Y0 that is 

regarded as the input tube (set); the second parameter n 

represents the number of vertices while the third parameter m 

represents the number of edges. Each tube in the Procedure 

Solve-independent-set-problem(Y0, n, m) is an empty tube 

that  is regarded as an auxiliary storage. 

Procedure Solve-independent-set-problem(Y0, n, m) 

(0a) Append-Tail(X1, yn
1). 

(0b) Append-Tail(X2, yn
0). 

(0c) Y0 = (X1, X2). 

(1) For d = n − 1 downto 1 

(1a) Amplify(Y0, X1, X2). 

(1b) Append-Tail(X1, yd
1). 

(1c) Append-Tail(X2, yd
0). 

(1d) Y0 = (X1, X2). 

End For 

(2) For each edge, ek = (vi, vj), in G where 1  k  m and bits 

yi and yj respectively represent vertices vi and vj. 

(2a) P1 = +(Y0, yi
1) and P3 = −(Y0, yi

1). 

(2b) P2 = +(P1, yj
1) and P4 = −(P1, yj

1). 



Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM…                        6 

 

 

(2c) Y0 = (P3, P4). 

(2d) Discard(P2). 

End For 

(3) For i = 0 to n-1 

(4) For j = i down to 0 

(4a) Yj + 1
ON = +(Yj, yi+1

1) and Yj = −(Y j, yi+1
1). 

(4b) Yj + 1 = (Yj + 1, Yj + 1
ON). 

End For 

End For 

(5) For c = n down to 1 

(5a) If (detect(Yc)) then 

(5b) Read(Yc) and terminate the algorithm. 

        EndIf 

EndFor 

EndProcedure 

  

Lemma 4-1: The independent set problem for a graph G with 

m edges and n vertices can be solved by the molecular algorithm, 

Solve-independent-set-problem(Y0, n, m). 

Proof:  

Each execution of Step (0a) and Step (0b), respectively, 

appends the value “1” for yn as the first bit of every element in 

a set X1 and the value “0” for yn as the first bit of every element 

in a set X2. This indicates that X1 = {yn
1} and X2 = {yn

0}. Next, 

each execution of Step (0c) creates the set union for the two sets 

X1 and X2 so that Y0 = X1  X2 = {yn
1, yn

0}, and X1 =  and X2 = 

. 

Next, each execution of Step (1a) creates two identical copies, 

X1 and X2, of set Y0, and Y0 = . Each execution of Step (1b) 

then appends the value “1” for yd onto the end of yn … yd + 1 for 

every element in X1. Similarly, each execution of Step (1c) also 

appends the value “0” for yd onto the end of yn … yd + 1 for every 

element in X2. Next, each execution of Step (1d) creates the set 

union for the two sets X1 and X2 so that Y0 = X1  X2, and X1 = 

 and X2 = . After repeatedly executing Steps (1a) through 

(1d), Y0 = {yn yn − 1  y2 y1  yd  {0, 1} for 1  d  n}. This is 

to say that 2n DNA strands in tube Y0 encode 2n possible choices 

(independent sets). 

Next, Step (2) is a loop that evaluates each formula with the 

form (𝑦𝑖 Λ 𝑦𝑗) for the kth edge in G where 1  k  m. On each 

execution of Step (2a), tube P1 consists of those DNA strands 

that have yi = 1, tube P3 contains those DNA strands that have 

yi = 0, and tube Y0 becomes an empty tube. Next, on each 

execution of Step (2b), tube P2 contains those DNA strands that 

have yi = 1 and yj = 1, tube P4 contains those DNA strands that 

have yi = 1 and yj = 0, and tube P1 becomes an empty tube. This 

indicates that molecular solutions in tube P2 contain two 

vertices in the kth edge and are illegal independent sets; 

molecular solutions in tube P4 only contain one vertex in the kth 

edge and are legal independent sets; and molecular solutions in 

tube P3 contain one vertex or no vertices in the kth edge and are 

legal independent sets. Then, on each execution of Step (2c), 

tube Y0 contains those DNA strands that encode legal 

independent sets, tube P3 is an empty tube, and tube P4 is also 

an empty tube. Next, on each execution of Step (2d), illegal 

independent sets encoded by DNA strands in tube P2 are 

discarded. After repeatedly executing Steps (2a) through (2d), 

tube Y0 consists of those DNA strands that satisfy 

∧𝑘=1
𝑚 (𝑦𝑖 ∧ 𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ) that is the true value for the kth edge in G for 1 

 k  m. 

Next, Steps (3) and (4) are subsequently the outer loop and 

the inner loop of the only nested loop, and the range of the first 

loop index variable i is from 0 through n − 1, while the range of 

the second loop index variable j is from i down to 0. Each 

execution of Step (4a) at the iteration (i, j) in the two-level 

nested loop is applied to compute the influence of yi + 1 on the 

number of ones in tubes (sets) Yj + 1 and Yj. Upon each execution 

of Step (4a), the extract operation forms two different tubes 

(sets), Yj + 1
ON and Yj, from tube (set) Yj. This is to say that tube 

(set) Yj + 1
ON has yi + 1 = 1 and tube (set) Yj has yi + 1 = 0. This 

indicates that at the iteration (i, j) in the two-level nested loop, 

the influence of yi + 1 on the number of ones is to record single 

ones in tube (set) Yj + 1
ON and also to record zero ones in tube 

(set) Yj. Next, upon each execution of Step (4b) at the iteration 

(i, j) in the two-level nested loop, the merge operation is applied 

to pour the content of tube (set) Yj + 1
ON into tube (set) Yj + 1. This 

indicates that at the iteration (i, j) in the two-level nested loop, 

the influence of yi + 1 on the number of ones is to record single 

ones in tube (set) Yj + 1. Next, from the iteration (i, j − 1) through 

the iteration (n − 1, 0) in the two-level nested loop, similar 

processing is applied to compute the influence of yi + 1 through 

yn on the number of ones. Hence, after each operation is 

completed, those DNA strands in tube Yi for 0  i  n have i 

ones that contain i vertices. Next, Step (5) is a loop and it is to 

read molecular solutions of a maximum-sized independent set. 

On each execution of Step (5a), if there are DNA strands in tube 

Yc, a “true” is returned. Next, on each execution of Step (5b), 

the answer of a maximum-sized independent set is read and the 

algorithm terminates. Hence, it is inferred that the independent 

set problem for a graph G with m edges and n vertices can be 

solved by the molecular algorithm Solve-independent-set-

problem(Y0, n, m).    

D. Time and Space Complexity of Molecular Algorithms 
for Solving the Independent Set Problem 

The following lemma is used to describe the time complexity, 

the volume complexity of solution space, the number of the tube 

used and the longest library strand in solution space for the 

molecular algorithm, Solve-independent-set-problem(Y0, n, 

m). 

Lemma 4-2. The independent set problem for any graph G 

with n vertices and m edges can be solved with O(n2 + m) = 

O(n2)  biological operations, O(2n) DNA strands, O(n) tubes 

and the longest DNA strand, O(n). 

Proof:  

In the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), Steps (0a), (0b) and (0c) take two “Append-

Tail” operations and one “Merge” operation. Next, on the 

execution of Step (1a) through Step (1d), it takes (n − 1) 

“Amplify” operations, (2  (n − 1)) “Append-Tail” operations 
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and (n − 1) “Merge” operations. Next, because the value of m, 

which is the number of edges, is at most ((n  (n − 1)) / 2), on 

the execution of Step (2a) through Step (2d), at most (n  (n − 

1)) “Extraction” operations, ((n  (n − 1)) / 2) “Merge” 

operations and ((n  (n − 1)) / 2) “Discard” operations are 

needed. Next, on the execution of Step (4a) through Step (4b), 

it takes ((n  (n + 1)) / 2) “Extraction” operations and ((n  (n 

+ 1)) / 2) “Merge” operations. Finally, on the execution of Step 

(5a) through Step (5b), at most (n) “Detect” operations and one 

“Read” operation are needed. 

From the proof of Lemma 4-1 we have that the 2n DNA 

strands that encode the 2n possible independent sets are 

constructed, (2  n + 7) tubes are used. Because the length of 

each possible independent set is n bits and each bit can be 

encoded by a short DNA strand with constant length, the 

longest DNA strand is O(n). Therefore, from the statements 

above it is at once inferred that the independent-set problem for 

any graph G with n vertices and m edges can be solved with 

O(n2 + m) = O(n2) biological operations, O(2n) DNA strands, 

O(n) tubes and the longest DNA strand, O(n).    

E. The Straightforward Boolean Circuit for Determining 
Independent Sets from Bio-molecular Solutions 

After each biological operation from Step (0a) through (1d) 

in the molecular algorithm Solve-independent-set-problem(Y0, 

n, m) is completed, the 2n DNA strands in tube Y0 encode the 2n 

possible choices. Next, after each biological operation from 

Step (2a) through Step (2d) at the same iteration k for 1  k  m 

is completed, bio-molecular solutions in tube P2 contain two 

vertices in the kth edge and are illegal independent sets while 

bio-molecular solutions in tube Y0 contain one vertex or zero 

vertices in the kth edge and are legal independent sets. 

Therefore, the truth table used to implement the NAND 

operation that appears in Table 4.1 can express the 

straightforward Boolean circuit generated from Step (2a) 

through Step (2d) at the same iteration k for 1  k  m. 

 

Input Output 

yi yj 𝑦𝑖 ∧ 𝑦𝑗  = lk 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Table 4-1: The truth table for the NAND operation. 

 

Bits yi and yj are its two inputs, and bit lk for 1  k  m is its 

output. If the value of bit lk for 1  k  m is equal to 1, then the 

corresponding subsets of vertices only contain one vertex or 

zero vertices in the kth edge (vi, vj) and are legal independent 

sets. Otherwise, the corresponding subsets of vertices contain 

two vertices in the kth edge (vi, vj) and are illegal independent 

sets. Therefore, after repeatedly executing Steps (2a) through 

(2d) from iteration one through iteration m, bio-molecular 

solutions in tube Y0 contain one vertex or zero vertices in each 

edge and do not contain two vertices of any one edge. This is to 

say that bio-molecular solutions in tube Y0 encode those subsets 

of vertices in which for all vertices vi and vj, the edge (vi, vj) is 

not in E which is the set of edges in graph G. This also implies 

that bio-molecular solutions in tube Y0 satisfy the fact that each 

NAND operation of two inputs yi and yj has a true value. 

Therefore, the straightforward Boolean circuit generated from 

Step (2a) through Step (2d) at all m iterations is to implement 

the Boolean formula (∧𝑘=1
𝑚 (𝑦𝑖  ∧  𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅)) and to find which subsets 

of vertices satisfy the Boolean formula (∧𝑘=1
𝑚 (𝑦𝑖  ∧  𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅)) that 

has the true value.  

Figure 4-3 shows a flowchart for recognizing independent 

sets of the independent-set problem for a graph G with n 

vertices and m edges. In Figure 4-3, in statement S1, the index 

variable k of the first loop is set to one (1). Next, in statement 

S2, the conditional judgement of the first loop is executed. If the 

value of k is less than or equal to the value of m, then next 

executed instruction is statement S3. Otherwise, in statement S6, 

an End instruction is executed to terminate the task of 

recognizing independent sets. 

 
Fig. 4-3: Recognizing independent-sets of the independent-set 

problem for a graph G with n vertices and m edges. 

 

In statement S3, a NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” is implemented. 

Bits (Boolean variables) yi and yj respectively encode vertex vi 

and vertex vj that are connected by the kth edge in a graph G 

with n vertices and m edges. Bit (Boolean variable) lk with 1  

k  m stores the result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ) (the kth NAND 

gate). Next, in statement S4, a logical and operation “ok  lk  

ok − 1” is executed that is the kth clause in (⋀ (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ )𝑚

𝑘=1 ). Bit 

(Boolean variable) lk stores the result of implementing the kth 

NAND gate and is the first operand of the logical and operation. 

Bit (Boolean variable) ok − 1 with 1  k  m is the second operand 

of the logical and operation and stores the result of the previous 

logical and operation. Bit (Boolean variable) ok with 1  k  m 

stores the result of implementing lk  ok − 1 (the kth clause that 

is the kth AND gate). Next, in statement S5, the value of the 

index variable k to the first loop is incremented. Repeat to 

execute statements S2 through S5 until in statement S2 the 

conditional judgement results a false value. From Figure 4-3 it 

follows that the total number of NAND gates is m. The total 

number of logical and operation is m AND gates. Therefore, the 
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cost of recognizing independent set(s) corresponds to m NAND 

gates and m AND gates. 

A data dependence arises from two statements that access or 

modify the same resource. Data dependence analysis is to 

determine whether it is safe to reorder or parallelize statements. 

If the first of two statements first modifies the same resource 

and then the second of two statements reads the same resource, 

then there is a true dependence between the first statement and 

the second statement. If the first of two statements first reads 

the same resource and then the second of two statements 

modifies the same resource, then there is an anti-dependence 

between the first statement and the second statement. If the first 

of two statements first modifies the same resource and then the 

second of two statements modifies the same resource, then there 

is an output dependence between the first statement and the 

second statement. We use data dependence analysis to show 

that the straightforward Boolean circuit in Figure 4-3 for 

recognizing independent sets of the independent set problem for 

a graph G with n vertices and m edges is the best Boolean circuit 

known for the problem. 

Lemma 4-3. For the independent-set problem for any graph 

G with n vertices and m edges, in Figure 4-3, the Boolean circuit 

with m NAND gates and m AND gates generated from Step (2a) 

through Step (2d) at all m iterations in the molecular algorithm, 

Solve-independent-set-problem(Y0, n, m), is the best Boolean 

circuit known for recognizing independent-set(s) among 2n 

possible choices. 

Proof:  

In Figure 4-3, in statement S3, a NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” is 

implemented and the result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ) is written 

into Boolean variable lk. Next, in statement S4, a logical and 

operation “ok  lk  ok − 1” is executed and it needs to read the 

value of Boolean variable lk (the first operand). Therefore, there 

is a true dependence between statement S3 and statement S4. 

The true dependence between statement S3 and statement S4 

cannot be broken. Therefore, each statement in Figure 4-3 must 

be executed in sequential mode. Hence, it is at once inferred 

from the statements above that in Figure 4-3 the straightforward 

Boolean circuit with m NAND gates and m AND gates 

generated from Step (2a) through Step (2d) at all m iterations in 

the molecular algorithm, Solve-independent-set-problem(Y0, 

n, m), is the best Boolean circuit known for recognizing 

independent-set(s) among 2n possible choices.     

F. The Straightforward Boolean Circuit for Computing 
the Number of Vertex in Independent Sets from Bio-
molecular Solutions 

After each biological operation from Steps (2a) through (2d) 

in the molecular algorithm, Solve-independent-set-

problem(Y0, n, m) is completed, the DNA strands in tube Y0 

encode each solution (independent-set) that has the value of om 

equal to one (1). For computing the number of vertices, we need 

auxiliary Boolean variables wi+1, j and wi+1, j+1 with 0  i  n − 1 

and 0  j  i. Auxiliary Boolean variables wi+1, j and wi+1, j+1 with 

0  i  n − 1 and 0  j  i are set to the initial value 0 (zero). 

Boolean variable wi+1, j+1 with 0  i  n − 1 and 0  j  i stores 

the number of vertex in a solution after figuring out the 

influence of Boolean variable yi + 1 that encodes the (i + 1)th 

vertex on the number of ones (vertices). If the value of Boolean 

variable wi+1, j+1 for 0  i  n − 1 and 0  j  i is equal to 1 (one), 

then this indicates that there are (j + 1) ones (vertices) in the 

solution. Boolean variable wi+1, j for 0  i  n − 1 and 0  j  i 

stores the number of vertex in a solution after figuring out the 

influence of Boolean variable yi + 1 that encodes the (i + 1)th 

vertex on the number of ones (vertices). If the value of Boolean 

variable wi+1, j for 0  i  n − 1 and 0  j  i is equal to 1 (one), 

then this indicates that there are j ones (vertices) in the solution. 

In a solution (an independent-set) that has the value of bit om 

equal one, bit y1 encodes the first vertex v1. If the value of bit y1 

is equal to one (1), then the first vertex v1 appears in the solution 

and it increments the number of vertices (the number of ones) 

for the solution. Otherwise, the first vertex v1 does not appear 

in the solution and it preserves the number of vertices (the 

number of ones) for the solution. In the molecular algorithm, 

Solve-independent-set-problem(Y0, n, m), on the execution of 

Step (4a) in the iteration (i = 0, j = 0), the extract operation is 

used to form two different tubes, Y1
ON and Y0 out of tube (set) 

Y0. Therefore, the DNA strands in tube Y1
ON encode solutions 

that have y1 = 1 and contain vertex v1 and the DNA strands in 

tube Y0 have y1 = 0 and do not contain vertex v1. This is to say 

that the influence of y1 (the influence of vertex v1) on the 

number of ones (the number of vertices) is recorded as single 

ones in tube Y1
ON and to record zero ones in tube Y0. Next, on 

the execution of Step (4b) in the same iteration (i = 0, j = 0), the 

merge operation is applied by pouring the contents of tube Y1
ON 

into tube Y1. This indicates that in the iteration (i = 0, j = 0), the 

influence of y1 on the number of ones is recorded as single ones 

in tube (set) Y1. Therefore, for the influence of the first vertex 

v1, incrementing the number of vertices in each solution is to 

satisfy the formula (om  y1) and preserving the number of 

vertices is to satisfy the formula (om  𝑦1). 

Similarly, the influence of the (i + 1)th vertex with 1 ≤ i ≤ n 

– 1 is to decide whether in each solution the number of vertices 

(the number of ones) is incremented or is preserved. In order to 

increment the number of vertices (the number of ones) in each 

solution two conditions must be satisfied. The first condition is 

that the (i + 1)th vertex is within the solution and the second 

condition is that each solution currently has j vertices. In order 

to preserve the number of vertices (the number of ones) in each 

solution two conditions must be satisfied. The first condition is 

that the (i + 1)th vertex is not within the solution and the second 

condition is that each solution currently also has j vertices. Next, 

on each execution of Step (4a) in the iteration (i, j), the extract 

operation is used to form two different tubes (sets), Yj + 1
ON and 

Yj out of tube (set) Yj. Hence, the DNA strands in tube Yj + 1
ON 

encode each solution that has yi + 1 = 1 and contains vertex vi + 1. 

The DNA strands in tube Yj on the other hand encode each 

solution that has yi + 1 = 0 and does not contain vertex vi + 1. This 

indicates that in the iteration (i, j), the influence of yi + 1 on the 

number of ones (the number of vertices) is recorded as (j + 1) 

ones in tube Yj + 1
ON and also as j ones in tube Yj. Next, on each 

execution of Step (4b) in the iteration (i, j), the merge operation 

is applied by pouring the contents of tube (set) Yj + 1
ON into tube 
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(set) Yj + 1. This indicates that in the iteration (i, j), the influence 

of yi + 1 on the number of ones (the number of vertices) is 

recorded as having (j + 1) ones in tube Yj + 1. Therefore, for the 

influence of the (i + 1)th vertex for 1 ≤ i ≤ n – 1 in each solution, 

the two conditions for incrementing the number of vertices (the 

number of ones) in each solution are to satisfy the Boolean 

formula (yi + 1  wi, j). The two conditions for preserving the 

number of vertices in each solution are to satisfy the Boolean 

formula ((𝑦𝑖+1)  wi, j). 

Fig. 4-4 shows the logical flowchart for counting the number 

of vertices in each solution. In Fig. 4-4, in statement S1, a logical 

and operation “w1,1  om  y1” is implemented that corresponds 

to one AND gate. Boolean variable w1, 1 stores the result of 

implementing one AND gate (om  y1). If the value of w1, 1 is 

equal to 1 (one), the number of vertices is incremented so that 

the number of vertices in each solution with the first vertex v1 

is one. Next, in statement S2, a logical and operation “w1,0  om 

 𝑦1 ” is implemented that corresponds to one AND gate. 

Boolean variable w1, 0 stores the result of implementing one 

AND gate (om  𝑦1). If the value of w1, 0 is equal to 1 (one), then 

the number of vertices is preserved so that the number of 

vertices in each solution without the first vertex v1 is zero. 

 
Fig. 4-4: Flowchart for computing the number of vertices in 

each solution (independent-set). 

Next, in statement S3, the index variable i of the first loop is 

set to one. Then, in statement S4, the conditional judgement of 

the first loop is executed. If the value of i is less than or equal 

to the value of (n −1), then next executed instruction is statement 

S5. Otherwise, in statement S11, an End instruction is executed 

to terminate the task of counting the number of vertices in each 

solution. In statement S5, the index variable j of the second loop 

is set to the value of the index variable i in the first loop. Next, 

in statement S6, the conditional judgement of the second loop is 

executed. If the value of j is greater than or equal to zero, then 

the next executed instruction is statement S7. Otherwise, the 

next executed instruction is statement S10. 

In statement S7, a logical and operation “wi+1, j+1  yi+1  wi, 

j” is implemented that corresponds to one AND gate. Boolean 

variable yi+1 encodes the (i + 1)th vertex and is the first operand 

of the logical and operation. Boolean variable wi, j is the second 

operand of the logical and operation. Boolean variable wi, j 

stores the number of vertex in a solution after determining the 

influence of Boolean variable yi that encodes the ith vertex on 

the number of ones (vertices). If the value of wi, j is equal to 1 

(one), then this indicates that there are j ones (vertices) in the 

solution. Boolean variable wi+1, j+1 stores the result of 

implementing the logical and operation “wi+1, j+1  yi+1  wi, j”. 

This is to say that wi+1, j+1 stores the number of vertex in a 

solution after determining the influence of Boolean variable yi + 

1 that encodes the (i + 1)th vertex on the number of ones 

(vertices). If the value of wi+1, j+1 is equal to 1 (one), then this 

implies that there are (j + 1) ones (vertices) in the solution. 

Next, in statement S8, a logical and operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅ 

 wi, j” is implemented that corresponds to one AND gate. 

Boolean variable yi+1 encodes the (i + 1)th vertex and its 

negation 𝑦𝑖+1̅̅ ̅̅ ̅ is the first operand of the logical and operation. 

Boolean variable wi, j is the second operand of the logical and 

operation. It stores the number of vertex in a solution after 

determining the influence of Boolean variable yi that encodes 

the ith vertex on the number of ones (vertices). If the value of 

wi, j is equal to 1 (one), then this indicates that there are j ones 

(vertices) in the solution. Boolean variable wi+1, j stores the 

result of implementing the logical and operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅ 

 wi, j”. This indicates that wi+1, j stores the number of vertex in 

a soution after determining the influence of Boolean variable yi 

+ 1 that encodes the (i + 1)th vertex on the number of ones 

(vertices). The value of wi+1, j being equal to 1 (one) indicates 

that there are j ones (vertices) in the solution. 

Next, in statement S9, the value of the index variable j in the 

second loop is decremented. Repeat to execute statement S6 

through statement S9 until in statement S6 the conditional 

judgement attains a false value. Next, in statement S10, the value 

of the index variable i in the first loop is incremented. Repeat 

to execute statements S4 through S10 until in S4 the conditional 

judgement attains a false value. When this happens, the next 

executed statement is S11. In S11, an End instruction is executed 

to terminate the task of counting the number of vertices in each 

solution. The cost of each operation in Fig. 4-4 is (n  (n +1)) 

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates. Therefore, the cost of 

counting the number of vertices for each solution is to 

implement (n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT gates. 

We use data dependence analysis to show that in Fig. 4-4 the 

straightforward Boolean circuit for counting the number of 
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vertices in each solution is the best Boolean circuit known for 

the problem. 

Lemma 4-4. In Fig. 4-4, the Boolean circuit with (n  (n +1)) 

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates generated from Steps (4a) 

through (4b) in each iteration in the molecular algorithm, Solve-

independent-set-problem(Y0, n, m), is the best Boolean circuit 

known for counting the number of vertices in each solution. 

Proof:  

As shown in Figure 4-4, in statement S7, an AND gate “wi+1, 

j+1  yi+1  wi, j” is implemented and the result of implementing 

(yi+1  wi, j) is written into Boolean variable wi+1, j+1 for 1  i  

(n − 1) and i  j  0. In iteration (i = 1, j = 1) in statement S7 the 

value of Boolean variable w2, 2 is modified and later, in iteration 

(i = 2, j = 2) in statement S7, the value of w2, 2 is read. There are 

similar cases of modifying and reading the same resource in 

Statement S7 in later iterations. Hence, there is a true 

dependence in statement S7. Next, in statement S8, a logical and 

operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j” is executed and the result of 

implementing (𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) is written into Boolean variable wi+1, 

j with 1  i  (n − 1) and i  j  0. In iteration (i = 1, j = 1) in 

statement S8 the value of Boolean variable w2, 1 is modified and 

later, in iteration (i = 2, j = 1) in statement S8, the value of w2, 1 

is read. There are similar cases of modifying and reading the 

same resource in Statement S8 in later iterations. Therefore, 

there is a true dependence in statement S8. The true 

dependence in both statements S7 and S8 cannot be broken. 

Next, in iteration (i = 1, j = 1) in Statement S7 the value of 

Boolean variable w2, 2 is modified and later, in iteration (i = 2, j 

= 2) in Statement S8, the value of w2, 2 is read. There are similar 

cases of modifying and reading the same resource between 

Statements S7 and S8 in later iterations. Hence, there is a true 

dependence between S7 and S8. Next, in iteration (i = 1, j = 1) 

in Statement S8 the value of Boolean variable w2, 1 is modified 

and later, in iteration (i = 2, j = 1) in Statement S7, the value of 

w2, 1 is read. There are similar cases of modifying and reading 

the same resource between Statements S8 and S7 in later 

iterations. Hence, there is a true dependence between S8 and S7. 

Next, in iteration (i = 1, j = 1) in Statement S8 the value of 

Boolean variable w2, 1 is written and later in iteration (i = 1, j = 

0) in Statement S7 the value of w2, 1 is read. There are similar 

cases of modifying the same resource between Statements S8 

and S7 in later iterations. Hence, there is an output dependence 

between Statements S8 and S7. This indicates that there are 

simultaneously two true dependences and one output 

dependence between statements S7 and S8. The two true 

dependences and the output dependence between statement S7 

and statement S8 cannot be broken. Therefore, only sequential 

mode can be used in each statement in Figure 4-4. From the 

statements above it is at once derived that in Fig. 4-4, the 

Boolean circuit with (n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT 

gates generated in Step (4a) through Step (4b) in each iteration 

in the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), is the best Boolean circuit known for 

counting the number of vertices in each solution.     

V. QUANTUM ALGORITHMS FOR IMPLEMENTING THE 

STRAIGHTFORWARD BOOLEAN CIRCUITS FROM MOLECULAR 

SOLUTIONS FOR SOLVING THE INDEPENDENT SET PROBLEM 

In this section, we introduce quantum bits and quantum gates. 

Then, we use them to design a new kind of quantum algorithm 

to implement the straightforward Boolean circuits generated 

from molecular solutions for solving the independent set 

problem on any graph with m edges and n vertices. 

A. Introduction to Quantum Bits and Quantum Gates 

In the two-dimensional Hilbert space [30-32, 43-44], a 

quantum bit has two computational basis vectors |0> and |1>, 

and corresponds to the classical bit values 0 and 1. We refer to 

a collection of n quantum bits as a quantum register of size n. 

A quantum register may consist of any of the 2n-dimensional 

computational basis vectors, n quantum bits of size, or an 

arbitrary superposition of these vectors [30-32, 43-44]. If the 

content of the quantum bits of a quantum register is known, then 

the state of the quantum register can be computed by a tensor 

product in the following way: |𝜕⟩ = (|𝑞𝑛⟩  |𝑞𝑛−1⟩    |𝑞2⟩ 
 |𝑞1⟩). If the state of a quantum register of size n is an arbitrary 

superposition of the 2n-dimensional computational basis 

vectors, then it can be represented as |𝛾⟩  = (∑ 𝑏𝑎
2𝑛−1
𝑎=0 |𝑎⟩ ), 

where each weighted factor ba  C is a so-called probability 

amplitude; hence they must satisfy (∑ |𝑏𝑎|22𝑛−1
𝑎=0 ) = 1. 

Unitary operators are often referred to as quantum gates [30-

32, 43-44]. Using quantum gates one can model the time 

evolution of the states of quantum registers. Hence, a quantum 

gate is an elementary quantum-computing device that 

completes a fixed unitary operation on selected quantum bits 

during a fixed period. As given in [30-32, 43-44], the 

Hadamard gate H is a quantum gate of one quantum bit (a 2  

2 matrix). Its four entries are, respectively, H1, 1 = 1 / (21 / 2), H1, 

2 = 1 / (21 / 2), H2, 1 = 1 / (21 / 2), and H2, 2 = −1 / (21 / 2). The NOT 

gate with one quantum bit sets only the (target) bit to its 

negation. The CNOT (controlled-NOT) gate with two quantum 

bits flips the second quantum bit (the target quantum bit) if and 

only if the first quantum bit (the control quantum bit) is equal 

to one. The controlled-controlled-NOT (CCNOT) gate with 

three quantum bits flips the third quantum bit (the target 

quantum bit) if and only if the first and second quantum bits 

(the two control quantum bits) are both one. A quantum gate, 

Hn, that stands for the joined Hadamard gates of n quantum 

bits is applied to an initial state vector |0000⟩  with n 

quantum bits, and its outcome is |𝜆⟩ = (
1

√2𝑛 ∑ |𝑎⟩2𝑛−1
𝑎=0 ). 

B. Computational State Space of Molecular Solutions for the 

Independent Set Problem 

Based on the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), 2n possible choices (independent sets) are 

generated in Steps (0a) through (1d), and are stored in set (tube) 

Y0 which is equal to {yn yn − 1  y2 y1  yd  {0, 1} for 1  d  

n}. We use the following lemma to describe computational state 

space of molecular solutions for solving the independent-set 

problem for a graph G with n vertices and m edges. 

Lemma 5-1: For solving the independent-set problem on a 

graph with m edges and n vertices, the set of the corresponding 

computational state vectors of 2n possible choices (independent 
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sets) generated in Steps (0a) through (1d) in the molecular 

algorithm Solve-independent-set-problem(Y0, n, m) forms an 

orthonormal basis of a 2n dimensional Hilbert space (a complex 

vector space, 𝐶2𝑛
). 

Proof:  

We use a unique computational basis vector with 2n-tuples 

of binary numbers to represent each element in set (tube) Y0. 

The first corresponding computational basis vector for the first 

element yn
0 yn − 1

0  y2
0 y1

0 is ([1 0 ⋯ 0]1×2𝑛
𝑇 ). The second 

computational basis vector for the second element yn
0 yn − 1

0  

y2
0 y1

1 is ( [0 1 ⋯ 0]1×2𝑛
𝑇 ). And so on, with the last 

corresponding computational basis vector for the last element 

yn
1 yn − 1

1  y2
1 y1

1 being ([0 0 ⋯ 1]1×2𝑛
𝑇 ). Therefore, the 

set of the corresponding computational basis vectors for each 

element (each possible independent set) in set (tube) Y0 is D = 

{ [1 0 ⋯ 0]1×2𝑛
𝑇  , [0 1 ⋯ 0]1×2𝑛

𝑇 , , 

[0 0 ⋯ 1]1×2𝑛
𝑇 }. Each computational basis vector in D is 

a coordinated vector [27], and the vectors together span D = 

𝐶2𝑛
. Therefore, it is at once inferred that the set of the 

corresponding computational state vectors of 2n possible 

choices (independent sets) generated in Steps (0a) through (1d) 

in the molecular algorithm Solve-independent-set-problem(Y0, 

n, m) forms an orthonormal basis of a 2n dimensional Hilbert 

space (a complex vector space, 𝐶2𝑛
).  █ 

C. Quantum Circuits and Mathematical Solutions for 

Computational State Space of Molecular Solutions for the 

Independent Set Problem 

In light of Lemma 5-1, for solving the independent-set 

problem of a graph with m edges and n vertices, 2n possible 

molecular solutions generated in Steps (0a) through (1d) in the 

molecular algorithm Solve-independent-set-problem(Y0, n, m) 

form an orthonormal basis of a Hilbert space (a complex vector 

space, 𝐶2𝑛
). This is to say that each possible molecular solution 

corresponds to an element in an orthonormal basis of a Hilbert 

space ( 𝐶2𝑛
). For simultaneously encoding 2n possible 

molecular solutions, we assume that a quantum register of n bits, 

(⨂𝑝=𝑛
1 |𝑦𝑝⟩), is applied to initialize a system that has Q = 2n 

states which are labeled as P0, P1, P2, , PQ − 1, where each state 

Pk for 0  k  2n − 1 corresponds to the kth possible molecular 

solution. We also assume that a quantum register with one 

quantum bit, (|1⟩), is used to label the amplitude of the answer(s) 

among the 2n states. For completing the purpose, we use one 

Hadamard gate on the state |1⟩  and the new quantum state 

vector is (
1

√2
 (|0⟩ − |1⟩)). 

The initial states in (⨂𝑝=𝑛
1 |𝑦𝑝⟩) are set to (⨂𝑝=𝑛

1 |𝑦𝑝
0⟩) and 

we assume that |𝜆0⟩ = (⨂𝑝=𝑛
1 |𝑦𝑝

0⟩). We also suppose that the 

initial quantum state vector is (|𝜆0⟩). Using n Hadamard gates 

to operate on the initial quantum state vector (|𝜆0⟩), the system 

that has Q = 2n states which are labeled as P0, P1, P2, , PQ − 1 

is 

|𝜆5−1⟩  = (Hn) |𝜆0⟩  = 
1

√2𝑛 ( ⊗𝑝=𝑛
1 (|𝑦𝑝

0⟩ + |𝑦𝑝
1⟩) ) =

1

√2𝑛 

(∑ |𝑦⟩2𝑛−1
𝑦=0 ).                                                                          (5-1) 

In the new state vector (|𝜆5−1⟩), state |yn
0 yn − 1

0  y2
0 y1

0> 

with the amplitude (
1

√2𝑛) encodes the first element yn
0 yn − 1

0  

y2
0 y1

0 of molecular solution space that does not contain any 

vertices. State |yn
0 yn − 1

0  y2
0 y1

1> with the amplitude (
1

√2𝑛) 

encodes the second element yn
0 yn − 1

0  y2
0 y1

1 of molecular 

solution space containing the first vertex v1. And so on, with 

state |yn
1 yn − 1

1  y2
1 y1

1> with the amplitude (
1

√2𝑛) encoding the 

last element yn
1 yn − 1

1  y2
1 y1

1 of molecular solution space 

containing n vertices {vn vn − 1  v2 v1}. 

D. Quantum Circuits and Mathematical Solutions for 

Implementing Molecular Solutions for legal Independent Sets 

among 2n Possible Choices 

To solve an instance of the independent set problem for a 

graph G with n vertices and m edges, in Figure 4-3, the 

straightforward Boolean circuit generated in Steps (2a) through 

(2d) in all m iterations in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) is used to recognize and to 

label independent-sets among the 2n possible choices. The 

straightforward Boolean circuit for labelling legal independent 

sets among the 2n possible choices in Figure 4-3 is 

(⋀𝑘=1
𝑚

(𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ )),                           (5-2) 

where bits yi and yj respectively represent vertices vi and vj in 

the kth edge, ek = (vi, vj), in G for 1  k  m. The Boolean 

formula (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) consists of m NAND operations and m 

AND operations. The operations NAND and AND are, 

respectively, implemented by quantum circuits in Figures 5-1(a) 

and 5-1(b). Therefore, we assume that the second quantum 

register with m quantum bits, |lm lm − 1  l1>, for 1  k  m, stores 

the result of evaluating the kth NAND gate with the form 

(𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ) that corresponds to one NAND operation. The initial 

state for each quantum bit in |lm lm − 1  l1> is prepared in state 

|1>. The mth quantum bit lm in the second quantum register 

stores the result of the evaluating computation for the last 

NAND operation. 

 
Fig. 5-1: (a) NAND operation of two Boolean variables, and (b) 

AND operation of two Boolean variables. 

Next, in order to evaluate the AND operation of the previous 

clause (the (k − 1)th clause) and the current clause (the kth 

clause), a third quantum register |om om − 1  o1 o0> is needed. 

The first quantum bit |o0> in the third quantum register is 

initially prepared in state |1>. Other m bits in the third quantum 

register are initially in state |0>. The (m + 1)th quantum bit |om> 

in the third quantum register stores the result of the evaluation 

of the AND operation of the previous clause (the (m − 1)th 

clause) and the last clause (the mth clause). This indicates that 

the (m + 1)th quantum bit |om> in the third register stores the 

result of the evaluating computation for all of the clauses. We 

use Lemma 5-2 to show how the quantum circuit in Figure 5-2 

implements the straightforward Boolean circuit in equation (5-

2) for recognizing legal independent-sets among 2n possible 

choices. 

Lemma 5-2: To solve the independent set problem for any 
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graph G = (V, E) with n vertices and m edges, the quantum 

circuit, LIS, in Figure 5-2 with (2  m) CCNOT gates can 

implement the straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) 

in equation (5-2) and is the best quantum circuit known for 

labelling legal independent sets among 2n possible choices. 

Proof:  

To solve an instance of the independent set problem for a 

graph G with n vertices and m edges, in Figure 4-3, the 

straightforward Boolean circuit generated in Steps (2a) through 

(2d) in all m iterations in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) is used to recognize and to 

label independent sets among 2n possible choices. We use the 

Boolean formula (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (5-2) to represent 

the straightforward Boolean circuit for labelling legal 

independent sets among 2n possible choices in Figure 4-3. We 

show how to implement each instruction in the flowchart of 

Figure 4-3 to complete the proof. In Figure 4-3, in statement S1, 

the value of the loop index variable k is set to one (1). Next, in 

statement S2 in Figure 4-3, the conditional judgement of the first 

loop is executed. If the value of k is less than or equal to the 

value of m, then the next executed instruction is statement S3 in 

Figure 4-3. Otherwise, in statement S6 in Figure 4-3, an End 

instruction is executed to terminate the task of recognizing legal 

independent sets among 2n possible choices. 

We assume that the kth edge ek is (vi, vj) and bits yi and yj are 

used to respectively represent vertices vi and vj. Next, in 

statement S3 in Figure 4-3, the choices that include one vertex 

(vi or vj) or zero vertices are labeled and the choices that include 

two vertices vi and vj are discarded. This is to say that the legal 

independent sets satisfy the formula of the form ( 𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ). 

Hence, one CCNOT gate, (|lk
1  yi • yj>), with the target bit lk

1 

and the two controlled bits yi and yj are used to implement a 

NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” in statement S3 of Figure 4-3 and the 

result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ) is written into the target bit |lk

1>. 

Next, in statement S4 in Figure 4-3, one CCNOT gate, (|ok
0  

lk • ok − 1>), with the target bit ok
0 and the two controlled bits lk 

and ok − 1 are used to implement a logical and operation “ok  

lk  ok − 1” that is the kth AND gate in (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation 

(5-2). The result of implementing (lk  ok − 1) is written into the 

target bit |ok
0>. 

Next, in statement S5 in Figure 4-3, the value of the index 

variable k in the first loop is incremented. Repeat to execute 

statements S2 through S5 in Figure 4-3 until in S2 the conditional 

judgement attains a false value. Based on Figure 4-3, the total 

number of NAND gates is m. The total number of logical and 

operation uses m AND gates. Therefore, the cost of the quantum 

gate for recognizing the labelling of legal independent sets 

among 2n possible choices is (2  m) CCNOT gates. As shown 

in the proof of Lemma 4-3, there is a true dependence between 

statements S3 and S4 in Figure 4-3. The true dependence 

between S3 and S4 cannot be broken. Therefore, each statement 

in Figure 4-3 must be executed in sequential mode. Based on 

the statements above, the quantum circuit LIS in Figure 5-2 can 

implement the straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) 

in equation (5-2). 

Each bit in |lm
1 lm − 1

1  l1
1> in Figure 5-2 is an auxiliary 

quantum bit and is used to store the result of evaluating each 

clause of the form (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ). Hence, this step requires m NAND 

operations through the relations (|lk
1  yi • yj>) with the target 

bit lk
1 and the two control bits yi and yj where 1  i and j  n and 

1  k  m. In Figure 5-2, each bit in |om
0 om − 1

0  o1
0 o0

1> is 

also an auxiliary quantum bit, and it is used to store the result 

of evaluating the (k − 1)th clause and the kth clause where 1  

k  m. This step requires m AND operations through the relation 

(|ok
0  lk • ok − 1>) with the target bit ok

0 and the two control bits 

lk and ok − 1 for 1  k  m. From the statements above, it is at 

once inferred that the quantum circuit, LIS, in Figure 5-2 with 

(2  m) CCNOT gates can implement the straightforward 

Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (5-2) and is the best 

quantum circuit known for labelling legal independent sets 

among 2n possible choices.   ▉ 

 
Fig. 5-2: The quantum circuit, LIS, used to label legal 

independent sets among 2n possible choices. 

E. Quantum Circuits and Mathematical Solutions of 

Molecular Solutions to the Maximum-sized Independent Sets 

The straightforward Boolean circuits in Figure 4-4 obtained 

from Steps (4a) through (4b) at each iteration in the molecular 

algorithm Solve-independent-set-problem(Y0, n, m) count the 

number of vertices in each solution. The straightforward 

Boolean circuits in Figure 4-4 for counting the number of 

vertices in each legal independent sets are 

(w1,1  om  y1) and (w1,0  om  𝑦1) and                           (5-3) 

(wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n − 

1 and 0  j  i.                                                                      (5-4) 

Auxiliary quantum bits |wi + 1, j> and |wi + 1, i+ 1>, where 0  i  

n − 1 and 0  j  i, are needed to execute these operations. For 

0  i  n − 1 and 0  j  i, each quantum bit in |wi + 1, j> and |wi + 

1, i+ 1> is initially prepared in state |0>. We assume that for 0  i 

 n − 1 and 0  j  i, quantum bit |wi + 1, j+ 1> will record the 

status of tube (set) Yj + 1 that has (j + 1) ones after the influence 

of yi + 1 on the number of ones. We also suppose that for 0  i  

n − 1 and 0  j  i, quantum bit |wi + 1, j> is to record the status 

of tube (set) Yj that has j ones after the influence of yi + 1 to the 

number of ones. We use Lemma 5-3 to show how the quantum 

circuits from Figures 5-3 through 5-4 implement the 
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straightforward Boolean circuit in equation (5-3) and equation 

(5-4) for counting the number of vertices in each legal 

independent-set. 

Lemma 5-3: The quantum circuit CFFV in Figure 5-3 

implements the straightforward Boolean circuit (w1,1  om  y1) 

and (w1,0  om  𝑦1) in equation (5-3). The quantum circuit 

CMO in Figure 5-4 implements the straightforward Boolean 

circuit (wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  

i  n − 1 and 0  j  i in equation (5.4). 

Proof:  

If a legal independent set has the first vertex v1, then it 

satisfies the straightforward Boolean circuit (w1,1  om  y1) in 

equation (5-3). Otherwise, it satisfies the straightforward 

Boolean circuit (w1,0  om  𝑦1) in equation (5-3). After the 

influence of y1 on the number of ones is determined, quantum 

bit |w1, 1> that encodes bit w1,1 will record which legal 

independent sets have only one value 1 and contain the first 

vertex v1. Quantum bit |w1, 0> that encodes bit w1,0 will record 

which legal independent sets have zero ones and do not contain 

the first vertex v1. Therefore, one CCNOT gate (|w1, 1
0  om • 

y1>) with the target bit |w1, 1
0 > and two control bits |om> and 

|y1> implements (w1,1  om  y1)  (the first condition of equation 

(5-3)). One NOT gate operating on |y1> (|𝑦1̅̅ ̅>) and another 

CCNOT gate (|w1, 0
0  om • 𝑦1̅̅ ̅>) with the target bit |w1, 0

0 > and 

two control bits |om> and |𝑦1̅̅ ̅> implement (w1,0  om  𝑦1) (the 

second condition of equation (5-3)). Next, another NOT gate 

operating on |𝑦1̅̅ ̅> (|y1>) will restore |y1> in |yn  y1> to its 

superposition state. This is to say that if the value of quantum 

bit |w1, 1> is equal to one, then quantum bit |w1, 1
1> indicates 

which legal independent sets have only one value 1 and contain 

the first vertex v1. Similarly, if the value of quantum bit |w1, 0> 

is equal to one, then quantum bit |w1, 0
1> indicates which legal 

independent sets do not contain the first vertex v1 and have zero 

ones. In light of the statements above, the quantum circuit 

CFFV in Figure 5-3 implements the first and second conditions 

of equation (5-3). 

 
Fig. 5-3: Implementation of the first and the second conditions 

of equation (5-3) using the quantum circuit CFFV. 

Next, if a legal independent set contains the (i + 1)th vertex 

vi + 1 and has j ones, then it satisfies the straightforward Boolean 

circuit (wi+1, j+1  yi+1  wi, j) with 1  i  n − 1 and 0  j  i in 

equation (5-4). If a legal independent set does not contain the (i 

+ 1)th vertex vi + 1 and has j ones, then it satisfies the 

straightforward Boolean circuit (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) with 1  i 

 n − 1 and 0  j  i in equation (5.4). After the influence of yi + 

1 on the number of ones is determined, quantum bit |wi + 1, j + 1> 

that encodes bit wi + 1, j + 1 will record which legal independent 

sets have (j + 1) ones and contain the (i + 1)th vertex vi + 1. 

Quantum bit |wi + 1, j> encoding bit wi + 1, j will record which legal 

independent sets have j ones and do not contain the (i + 1)th 

vertex vi + 1. 

Hence, one CCNOT gate (|wi + 1, j + 1
0  wi, j • yi + 1>) with the 

target bit |wi + 1, j + 1
0 > and two control bits |wi, j > and |yi + 1> 

implement (wi+1, j+1  yi+1  wi, j) for 1  i  n − 1 and 0  j  i 

(the first condition of equation (5-4)). One NOT gate operating 

on quantum bit |yi + 1> (|𝑦𝑖+1̅̅ ̅̅ ̅>) and another CCNOT gate (|wi + 

1, j
0  wi, j • 𝑦𝑖+1̅̅ ̅̅ ̅>) with the target bit |wi + 1, j

 0 > and two control 

bits |wi, j > and |𝑦𝑖+1̅̅ ̅̅ ̅> implement (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i 

 n − 1 and 0  j  i (the second condition of equation (5-4)). 

Next, using another NOT gate operating on quantum bit |𝑦𝑖+1̅̅ ̅̅ ̅> 

(|yi + 1>) will restore |yi + 1> in |yn  y1> to its superposition state. 

This implies that if the value of quantum bit |wi + 1, j + 1> is equal 

to one, then quantum bit |wi + 1, j + 1
1> will indicate which legal 

independent sets have (j + 1) ones and contain the (i + 1)th 

vertex vi + 1. Similarly, if the value of quantum bit |wi + 1, j > is 

equal to one, then quantum bit |wi + 1, j
 1> will indicate which 

legal independent sets do not contain the (i + 1)th vertex vi + 1 

and have j ones. According to the statements above, the 

quantum circuit, CMO, in Figure 5-4 implements the first and 

second conditions of equation (5-4). 

 
Fig. 5-4: Implementation of the first and the second conditions 

of (5-4) using the quantum circuit CMO. 

Therefore, from the statements above can be inferred that 

the quantum circuit CFFV in Figure 5-3 can implement the 

straightforward Boolean circuit (w1,1  om  y1) and (w1,0  om 

 𝑦1 ) in equation (5-3). Similarly, it is inferred that the 

quantum circuit CMO in Figure 5-4 can implement the 

straightforward Boolean circuit (wi+1, j+1  yi+1  wi, j) and (wi+1, 

j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n − 1 and 0  j  i in equation (5.4).   

▉ 

F. Quantum Circuits and Mathematical Solutions for 

Reading Molecular Solutions for the Maximum-sized 

Independent Sets 

The 2n possible molecular solutions that are created by Steps 

(0a) through (1d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) are initialized in the 
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distribution: (
1

√2𝑛 
1

√2𝑛 
1

√2𝑛  
1

√2𝑛). This indicates that there is the 

same amplitude in each of the 2n possible molecular solutions. 

The previously proposed quantum circuits have labelled the 

answer(s), but the amplitude or probability of finding the 

answer(s) will decrease exponentially. Hence, based on [26], 

the diffusion operator is applied to increase exponentially the 

amplitude or probability of finding the answer(s), and is defined 

by matrix G as follows: Gi, j = (2 / 2n) if i  j and Gi, i = (−1 + (2 

/ 2n)). Algorithm 5-1 is used to measure the answer(s) that are 

generated by Steps (5a) and (5b) in the molecular algorithm 

Solve-independent-set-problem(Y0, n, m). 

For convenience of presentation, we assume that |yb
1>, |lk

1>, 

|ok
1>, |wi + 1, j

1> and |wi + 1, i + 1
1> for 1  b  n, 0  k  m, 0  i  

n − 1, and 0  j  i, subsequently, represent the fact that the 

value of their corresponding quantum bits is 1. We further 

assume that |yb
0>, |lk

0>,  |ok
0>, |wi + 1, j

0> and |wi + 1, i + 1
0> for 1  

b  n, 0  k  m, 0  i  n − 1, and 0  j  i, subsequently, 

represent tha fact that the value of their corresponding quantum 

bits is 0. Furthermore, we have made use of the notation from 

Algorithm 5-1 below in previous subsections. We use the first 

parameter t in Algorithm 5-1 to represent the maximum size of 

vertex sets among legal answers, and the execution of Step (1a) 

in Algorithm 5-2 in the next subsection passes its value. 

Algorithm 5-1 (t): Mathematical solutions obtained by 

reading molecular solutions of the maximum-sized independent 

sets for any graph G with m edges and n vertices. 

(0) A unitary operator, Uinit = (H) ( ⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) 

(⊗𝑘=𝑚
1 I2  2) (I2  2) (⊗𝑘=𝑚

1 I2  2) (Hn), operates on an 

initial quantum state vector, (|1>) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) 

(⊗𝑘=𝑚
1 |ok

0>) (|o0
1>) (⊗𝑘=𝑚

1 |lk
1>) (⊗𝑏=𝑛

1 |yb
0>), and the 

2n possible choices of n bits (containing all possible 

independent sets) are 

|φ0,0> = (
1

√2
 (|0> − |1>)) 

1

√2𝑛 (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>) 

(|o0
1>) (⊗𝑘=𝑚

1 |lk
1>) (⊗𝑏=𝑛

1 (|yb
0> + |yb

1>)). 

(1) For labeling which among the 2n possible choices are 

legal independent sets and which are not answers, a 

quantum circuit in Figure 5-2, (I2  2) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) 

(LIS), is used to operate on the quantum state vector 

|φ0,0>, and the following new quantum state vector is 

obtained 

|φ1,0> = (
1

√2
 (|0> − |1>)) 

1

√2𝑛 (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) 

(∑ (2𝑛−1
𝑦=0 ⊗𝑘=𝑚

1 |ok
0  lk • ok − 1>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1  yi • yj>) 

(|y>)). 

(2) For implementing (w1,1  om  y1) and (w1,0  om  𝑦1) 

in equation (5-3), a quantum circuit in Figure 5-3, (I2  

2) (CFFV), is applied to the quantum state vector |φ1,0>, 

and the following new quantum state vector is 

|φ2,0> = (
1

√2
 (|0> − |1>)) 

1

√2𝑛 (⊗𝑖=𝑛
2 ⊗𝑗=𝑖

0 |wi, j
0>) (∑ (2𝑛−1

𝑦=0 |w1, 1
0 

 om • y1>) (|w1, 0
0  om • 𝑦1̅̅ ̅>) (⊗𝑘=𝑚

1 |ok>) (|o0
1>)(⊗𝑘=𝑚

1 |lk>) 

(|y>)). 

(3) For i = 1 to n − 1 

(4) For j = i down to 0 

(4a) A quantum circuit in Figure 5-4, (I2  2) (CMO), is to 

determine the number of vertices among the legal 

independent sets and operates on the quantum state 

vector (|φ
2+(∑ (𝜃1+1)𝑖−1

𝜃1=0 )+(𝑖−𝑗),0
>). Since Step (4a) is 

embedded in the only loop, after repeateadly executing 

the quantum circuit in Figure 5-4, (I2  2) (CMO), the 

resulting state vector for calculating the number of 

vertices in each legal independent set is 

|φ
2+

𝑛2+𝑛−2

2
,0

⟩ =(
1

√2
(|0>−|1>))

1

√2𝑛 ( ∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗⟩) 2𝑛−1
𝑦=0 (

⊗𝑘=𝑚
1 |ok>) (|o0

1>) (⊗𝑘=𝑚
1 |lk>) (|y>)). 

End For 

End For 

(5) A CNOT gate (
|0>−|1>

√2
  wn, t) with the target bit 

|
|0>−|1>

√2
> and the control bit |wn, t> labels the legal 

independent set(s) with the maximum number of 

vertices in the quantum state vector (|φ
2+

𝑛2+𝑛−2

2
,0

>), 

and the following new quantum state vector is  

|φ
2+

𝑛2+𝑛−2

2
+1,0

> = (
1

√2
 (|0> − |1>)) 

1

√2𝑛  

(−1)𝑤𝑛,𝑡 (∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗 >) 2𝑛−1
𝑦=0 (⊗𝑘=𝑚

1 |ok>) (|o0
1>) 

(⊗𝑘=𝑚
1 |lk>) (|y>)). 

(6) Because quantum operations are reversible by nature, 

reversing all the operations carried out by Steps (4a), 

(2) and (1) can restore the auxiliary quantum bits to 

their initial states. 

(7) Apply the diffusion operator to the quantum state vector 

 produced in Step (6). 

(8) Repeatedly execute Step (1) to Step (7) at most O(√
2𝑛

𝑅
 ) 

times, where the value of R is the number of solutions 

and can be efficiently determined with the quantum 

counting algorithm [28, 41]. 

(9) The answer is obtained with a probability of success of  

at least (1 / 2) after a measurement is completed. 

End Algorithm 

Lemma 5-4: The output of Algorithm 5-1 is mathematical 

solutions obtained by reading molecular solutions of the 

maximum-sized independent sets for any graph G with m edges 

and n vertices. 

Proof:  

Since there are 2n possible choices (including all possible 

independent sets) to the independent set problem for any graph 

G with m edges and n vertices, a quantum register of n bits 

(⊗𝑏=𝑛
1 |yb>) can represent 2n choices with initial state vector 

(⊗𝑏=𝑛
1 |yb

0>). The independent set problem for any graph G with 

m edges and n vertices requires finding a maximum-sized 

independent set in G, so those auxiliary quantum registers are 

necessary. By executing Step (0), an initial state vector |> = 

(|1>) ( ⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) ( ⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) ( ⊗𝑘=𝑚
1 |lk

1>) 
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(⊗𝑏=𝑛
1 |yb

0>) starts the quantum computation of the independent 

set problem. A unitary operator, Uinit = (H) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2) 

(⊗𝑘=𝑚
1 I2  2) (I2  2) (⊗𝑘=𝑚

1 I2  2) (Hn), operates on the initial 

state vector |>, and the resulting state vector becomes |φ0,0> 

with 2n choices. This indicates that 2n possible molecular 

choices generated by Steps (0a) through (1d) in the molecular 

algorithm Solve-independent-set-problem(Y0, n, m) can be 

implemented by Step (0) in Algorithm 5-1. 

Next, Step (1) in Algorithm 5-1 acts as the unitary operator 

LIS which is the quantum circuit in Figure 5-2. On the 

execution of Step (1) in Algorithm 5-1, those choices among 

the 2n possible are labeled that satisfy the straightforward 

Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (5-2). After the 

execution of Step (1) has been completed, the resulting state 

vector |φ1,0> is obtained, containing those choices with |om
1> 

that indicate them to be legal independent sets and those illegal 

choices with |om
0> that do not satisfy the condition. Hence, the 

straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅ )) in equation (5-

2) generated by Steps (2a) through (2d) in the molecular 

algorithm Solve-independent-set-problem(Y0, n, m) can be 

implemented by Step (1) in Algorithm 5-1. 

Next, Step (2) in Algorithm 5-1 acts as the unitary operator 

CFFV that corresponds to the quantum circuit in Figure 5-3. 

On the execution of Step (2) in Algorithm 5-1, the number of 

ones from the influence of the first vertex in each legal 

independent set is computed. After the execution of Step (2), 

the state vector |φ2,0> is obtained, which includes those legal 

independent sets with |w1, 1
1> that have one ones and contain the 

first vertex and those legal independent sets with |w1, 0
1> that 

have zero ones and do not contain the first vertex. This implies 

that the straightforward Boolean circuit (w1,1  om  y1) and 

(w1,0  om  𝑦1) in equation (5-3) generated by Steps (4a) and 

(4b) in the first iteration (0, 0) in Solve-independent-set-

problem(Y0, n, m) can be implemented by Step (2) in 

Algorithm 5-1. 

Next, Step (4a) is the only statement in the first loop in 

Algorithm 5-1 and works as the unitary operator CMO which 

corresponds to the quantum circuit in Figure 5-4. This step is to 

determine the number of ones (the number of vertices) among 

the legal independent sets. Step (3) and Step (4) consist each of 

a two-level loop. When the value of the index variable i is equal 

to one and the value of the index variable j is from one down to 

zero, Step (4a) is executed repeatedly two times. Similarly, 

when the value of the index variable i is equal to two and the 

value of the index variable j is from two down to zero, Step (4a) 

is executed repeatedly three times. Similarly, when the value of 

the index variable i is equal to (n − 1) and the value of the index 

variable j is from (n − 1) down to zero, Step (4a) is repeatedly 

executed n times. This is to say that the total number of 

executions of Step (4a) is (2 + 3 +  n) = (n2 + n − 2) / 2. 

Because the state vector |φ2,0> is generated from Step (2) and 

its index is 2 (two), after repeatedly executing Step (4a), we use 

2 + ((n2 + n − 2) / 2) as the index of the resulting state and the 

resulting state vector |φ
2+

𝑛2+𝑛−2

2
,0

> is obtained in which the 

number of vertices in each legal independent set is calculated. 

This indicates that the straightforward Boolean circuit (wi+1, j+1 

 yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n − 1 and 0 

 j  i in equation (5-4) generated in Steps (4a) and (4b) in the 

same iteration (i, j) in Solve-independent-set-problem(Y0, n, 

m) can be implemented by Step (4a) in Algorithm 5-1. 

Next, one CNOT gate, (
|0>−|1>

√2
  wn, t) with the target bit 

|
|0>−|1>

√2
> and the control bit |wn, t >, in the execution of Step (5) 

of Algorithm 5.1 labels the answer(s) with the phase (−1). The 

resulting state vector |φ
2+

𝑛2+𝑛−2

2
+1,0

> consists of the part of the 

answer with the phase (−1) and the other part with the phase 

(+1). Because quantum operations are reversible by nature, the 

execution of Step (6) will reverse all these operations completed 

by Step (4a), Step (2) and Step (1) that can restore the auxiliary 

quantum bits to their initial states. Next, on the execution of 

Step (7) in Algorithm 5-1, the diffusion operator is applied to 

complete the task of increasing the probability of success in 

measuring the answer(s). In Step (8) in Algorithm 5-1, after 

repeatedly executing Steps (1) through (7) O(√
2𝑛

𝑅
 ) times, a 

maximum probability of success is generated. Next, by 

executing Step (9) in Algorithm 5-1, a measurement is 

obtained and the answer(s) is/are returned to Algorithm 5-2. 

Because the result produced by each step in Algorithm 5-1 is a 

unit vector in a finite-dimensional Hilbert space, therefore, we 

at once infer that the output of Algorithm 5-1 is mathematical 

solutions obtained by reading molecular solutions of the 

maximum-sized independent sets to any graph G with m edges 

and n vertices.    

G. Solving the Independent Set Problem on any Graph G 

with m Edges and n Vertices 

The following algorithm solves the independent-set problem 

for any graph G with m edges and n vertices. We have used the 

notations used in Algorithm 5-2 in the previous subsections. 

Algorithm 5-2: Solving the independent set problem for any 

Graph G with m edges and n vertices. 

(1) For t = n to 1 

(1a) Call Algorithm 5-1(t). 

(1b) If the answer is obtained from the tth execution of Step 

(1a) then 

(1c) Terminate Algorithm 5-2. 

End If 

End For 

End Algorithm 

Lemma 5-5: Algorithm 5-2 obtains the maximum-sized 

independent sets to the independent set problem in any graph G 

with m edges and n vertices. 

Proof:  

In each execution of Step (1a) in Algorithm 5-2, 

Algorithm 5-1 is called to complete two main tasks. The first 

task is to calculate the number of vertices in each legal 

independent set. This demonstrates that mathematical solutions 

of molecular solutions for finding the maximum-sized 

independent sets in the independent set problem for any graph 

G with m edges and n vertices are a unit vector in the finite-

dimensional Hilbert space. The second task is to use the 
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diffusion operator that increases exponentially the probability 

of success in measuring the answer(s) from molecular solutions 

of the maximum-sized independent sets. By this we show that 

mathematical solutions obtained by reading molecular solutions 

of the maximum-sized independent sets for any graph G with m 

edges and n vertices are still a unit vector in the finite-

dimensional Hilbert space. Next, in each execution of Step (1b) 

in Algorithm 5-2, if from the tth execution of Step (1a) in 

Algorithm 5-2 the answer(s) is(are) found, then the tth 

execution of Step (1c) in Algorithm 5-2 will terminate 

Algorithm 5-2. Otherwise, repeatedly execute Steps (1a) 

through (1c) until the answer(s) to the independent set problem 

for any graph G with m edges and n vertices is(are) found. 

Hence, it is immediately derived that Algorithm 5-2 can be 

used to obtain the answer(s) to the independent set problem for 

any graph G with m edges and n vertices.   ▉ 

H. Durr-Hoyer’s Algorithm and Ahuja-Kapoor’s Algorithm 

and the Quantum Existence Testing not Solving the 

Independent Set Problem for any Graph G with m Edges and n 

Vertices 

Many information processing and computing problems can 

be traced back to the problem of finding an extremum of a 

database or a cost function. The Durr−Hoyer algorithm [48] 

finds the minimum value(s) satisfying any given condition in 

an unsorted database or a cost function with 2n items. 

Ahuja−Kapoor’s algorithm [49] finds the maximum value(s) 

satisfying any given condition in an unsorted database or a cost 

function with 2n items. In order to improve the performance of 

the two algorithms, quantum existence testing which integrates 

quantum counting and binary search [31] can be used to find 

the minimum value(s) or the maximum values satisfying any 

given condition in an unsorted database or a cost function with 

2n items. The independent set problem for any graph G with m 

edges and n vertices entails finding the maximum-sized 

independent set with the maximum number of vertices in an 

unsorted database or a cost function with 2n subsets of vertices. 

We use the following lemma to show why Durr−Hoyer’s 

algorithm, Ahuja−Kapoor’s algorithm and quantum existence 

testing cannot solve the independent set problem for any graph 

G with m edges and n vertices. 

Lemma 5-6: Durr−Hoyer’s algorithm, Ahuja−Kapoor’s 

algorithm and quantum existence testing cannot solve the 

independent set problem for any graph G with m edges and n 

vertices. 

Proof:  

In Durr−Hoyer’s algorithm, Ahuja−Kapoor’s algorithm and 

in quantum existence testing algorithm, the solution space Y is 

a set of 2n possible choices and Y is equal to {yn yn − 1  y2 y1 

 yd  {0, 1} for 1  d  n}. This indicates that the length of 

each element in Y is n bits and that each element represents one 

of the 2n possible choices. For the sake of presentation, we 

assume that yd
0 indicated that the value of yd is zero and yd

1 

indicates that the value of yd is one. The first element yn
0 yn − 1

0 

 y2
0 y1

0 encodes the decimal value 0 (zero). The second 

element yn
0 yn − 1

0  y2
0 y1

1 encodes the decimal value 1 (one). 

The third element yn
0 yn − 1

0  y2
1 y1

0 encodes the decimal value 

2 (two). And so on, with the last element yn
1 yn − 1

1  y2
1 y1

1 

encoding the decimal value 2n −1. Because the solution space 

does not contain any subsets of vertices, these three algorithms 

cannot find the maximum-sized independent set(s). Therefore, 

from the statements above, we at once derive that Durr−Hoyer’s 

algorithm, Ahuja−Kapoor’s algorithm and quantum existing 

testing cannot solve the independent set problem for any graph 

G with m edges and n vertices.   ◼ 

VI. COMPLEXITY ASSESSMENT 

In this section, we estimate the time complexity and the 

spatial complexity of Algorithm 5-2 for solving the 

independent set problem for any graph G with m edges and n 

vertices. Subsequently, we demonstrate that Algorithm 5-2 

provides a quadratic speedup for solving the independent set 

problem for any graph G with m edges and n vertices, which is 

the best speed-up known for the problem. 

A. The Time and Space Complexity of Algorithm 5-2 

Lemma 6-1: The best case time complexity for Algorithm 

5-2 involves ((2n / 2  (2  n)) + (n + 1)) Hadamard gates, (2n / 

2  (2  (n2 + n))) NOT gates, (2n / 2) CNOT gates, (2n / 2  (4  

m + (2  (n2 + n)))) CCNOT gates, (2n / 2) phase shift gates of n 

quantum bits and a quantum measurement. 

Proof:  

In Algorithm 5-2, Step (1) is the main loop and the steps 

embedded in this mail loop are executed in n iterations. Hence, 

the first execution of Step (1a) invokes Algorithm 5-1. In Step 

(0) of Algorithm 5-1, (n + 1) Hadamard gates are applied. 

Next, in Step (1) of Algorithm 5-1, (2  m) CCNOT gates are 

applied. Next, in Step (2) of Algorithm 5-1, two CCNOT gates 

and two NOT gates are applied. Then, Step (4a) of Algorithm 

5-1 is the only instruction in the first loop, and Step (4a) of 

Algorithm 5-1 results in (n2 + n − 2) NOT gates and (n2 + n − 

2) CCNOT gates. Next, in Step (5) of Algorithm 5-1, one 

CNOT gate is applied. Then, Step (6) of Algorithm 5-1 

restores the auxiliary quantum bits back to their original status. 

Therefore, Step (6) of Algorithm 5-1 generates (n2 + n) NOT 

gates and ((2  m) + (n2 + n)) CCNOT gates. This is to say that 

Steps (1) through (6) complete the oracle work and label the 

answer(s) with the phase (−1). It is very clear from Step (7) of 

Algorithm 5-1 that one diffusion operator is executed. In Step 

(8) of Algorithm 5-1, implementing (√2𝑛) oracle works and 

(√2𝑛) diffusion operators is the worst case because the value of 

R is equal to one and this case is the worst case. We suppose 

that a phase shift gate UPSG of n quantum bits acts as follows: 

UPSG: {
|𝑥 > →  −|𝑥 >, 𝑥 ≠  0

|0 > → |0 >           
. 

Since according to [28, 41] a single physical operation can 

accomplish the controlled phase shift gate of n quantum bits 

UPSG, it to a fundamental gate. From [28, 41] we have that the 

decomposition of the diffusion operator, Hn UPSG Hn, can 

implement each diffusion operator. Next, in Step (9) of 

Algorithm 5-1, a measurement is carried out. Therefore, after 

the first call of Algorithm 5-1, it is derived that ((2n / 2  (2  n)) 

+ (n + 1)) Hadamard gates, (2n / 2  (2  (n2 + n))) NOT gates, 

(2n / 2) CNOT gates, (2n / 2  (4  m + (2  (n2 + n)))) CCNOT 

gates, (2n / 2) phase shift gates of n quantum bits and a quantum 

measurement are implemented. 
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After the first call of Algorithm 5-1 has been completed, 

and then in the first execution of Step (1b) in Algorithm 5-2, if 

the first execution of Step (1a) in Algorithm 5-2 returns the 

answer, then Algorithm 5-2 is terminated in the first execution 

of Step (1c) in Algorithm 5-2. Therefore, the best case of the 

time complexity for Algorithm 5-2 involves ((2n / 2  (2  n)) + 

(n + 1)) Hadamard gates, (2n / 2  (2  (n2 + n))) NOT gates, 

(2n / 2) CNOT gates, (2n / 2  (4  m + (2  (n2 + n)))) CCNOT 

gates, (2n / 2) phase shift gates of n quantum bits and a quantum 

measurement.    

Lemma 6-2: The worst case time complexity for Algorithm 

5-2 is (n  ((2n / 2  (2  n)) + (n + 1))) Hadamard gates, (n  

(2n / 2  (2  (n2 + n)))) NOT gates, (n  2n / 2) CNOT gates, (n 

 (2n / 2  (4  m + (2  (n2 + n))))) CCNOT gates, (n  2n / 2) 

phase shift gates of n quantum bits and (n) quantum 

measurements. 

Proof:  

Based on Algorithm 5-2, for solving the independent set 

problem for any graph G with m edges and n vertices, the worst 

case is to find the answer after a measurement of the result 

yielded from the nth execution of Step (1a) in Algorithm 5-2 is 

completed. This is to say that Step (1a) and Step (1b) in 

Algorithm 5-2 are executed n times and Step (1c) in Algorithm 

5-2 is executed once. Therefore, the worst case time complexity 

for Algorithm 5-2 is (n  ((2n / 2  (2  n)) + (n + 1))) 

Hadamard gates, (n  (2n / 2  (2  (n2 + n)))) NOT gates, (n  

2n / 2) CNOT gates, (n  (2n / 2  (4  m + (2  (n2 + n))))) 

CCNOT gates, (n  2n / 2) phase shift gates of n quantum bits 

and (n) quantum measurements.    

Lemma 6-3: The worst and the best case spatial complexity 

for solving the independent set problem for any graph G with m 

edges and n vertices are the same: ((2  m + 2  n + 2) + ((n  

(n + 1)) / 2)) quantum bits. 

Proof:  

As for any graph G with m edges and n vertices there are 2n 

possible choices (including all possible independent sets) for 

solving the independent set problem, using a quantum register 

with n quantum bits ( ⊗𝑏=𝑛
1 |yb

0>) encodes 2n choices. The 

independent set problem for any graph G with m edges and n 

vertices is to find a maximum-sized independent set of G. This 

is possible by using the auxiliary quantum registers. The initial 

states of those auxiliary quantum registers are (|1>) 

(⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1>). Based on 

Algorithm 5-2 we have than the best case spatial complexity 

for Algorithm 5-2 is to find the answer after implementing 

Algorithm 5-1 once. Hence, the best case spatial complexity 

for Algorithm 5-2 involves ((2  m + 2  n + 2) + ((n  (n + 1)) 

/ 2)) quantum bits. Since quantum bits can be reused, the worst 

case is still ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) quantum 

bits. Hence, it is at once inferred that the worst and the best case 

spatial complexity for Algorithm 5-2 are the same, and they 

both are equal to ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) 

quantum bits.     

B. Proof of a Quadratic Speedup for Solving the Independent 

Set Problem for any Graph G with m Edges and n Vertices 

Lemma 6-4: Algorithm 5-2 gives a quadratic speed-up for 

solving the independent set problem for any graph G with m 

edges and n vertices. This speedup is the best speed-up known 

for the problem. 

Proof:  

Bennett et al. [8] have proved that a quadratic speed-up for 

classical algorithms is the best speed-up known for solving any 

NP-complete problem. From Lemma 6-2 we have that the 

worst case of Algorithm 5-2 for solving the independent set 

problem of any graph G with m edges and n vertices matches a 

quadratic speed-up for classical algorithms. Hence, we 

immediately derive that Algorithm 5-2 gives a quadratic speed-

up, which is the best speed-up known for solving the 

independent set problem for any graph G with m edges and n 

vertices.   █ 

VII. MATHEMATICAL REPRESENTATION OF MOLECULAR 

SOLUTIONS FOR INDEPENDENT SET PROBLEM FOR ANY 

GRAPH WITH M EDGES AND N VERTICES 

We use the following lemma to demonstrate that 

mathematical solutions of molecular solutions for solving the 

independent set problem for any graph G with m edges and n 

vertices are a unit vector in the finite-dimensional Hilbert space. 

Lemma 7-1: Mathematical solutions of molecular solutions 

for solving the independent set problem for any graph G with m 

edges and n vertices are a unit vector in the finite-dimensional 

Hilbert space. 

Proof:  

In Steps (0a) through (1d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m), 2n possible choices 

(independent sets) encoded by 2n DNA sequences are produced, 

and encoded by n Hadamard gates operating on n initial 

quantum bits in Step (0) in Algorithm 5-1. This is to say that 

mathematical solutions for the 2n possible choices (independent 

sets) encoded by the 2n DNA sequences are a vector unit in the 

finite-dimensional Hilbert space. Next, on each execution of 

Steps (2a) through (2d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m), legal choices (legal 

independent sets) and illegal choices (illegal independent sets) 

among the 2n possible choices encoded by the 2n DNA 

sequences are decided. The same task can be completed by 

using the unitary operators from Step (1) in Algorithm 5-1. 

This indicates that mathematical solutions for legal choices and 

illegal choices among 2n possible choices encoded by 2n DNA 

sequences are still a unit vector in the finite-dimensional Hilbert 

space. 

Next, on each execution of Steps (4a) through (4b) in the 

molecular algorithm Solve-independent-set-problem(Y0, n, 

m), the legal choices among the 2n choices encoded by the 2n 

DNA sequences are classified according to the number of 

vertices. The same task can be completed using the unitary 

operators from Step (2) and Step (4a) in Algorithm 5-1. This 

implies that the mathematical solutions of those legal choices 

classified among the 2n choices encoded by the 2n DNA 

sequences are still a unit vector in the finite-dimensional Hilbert 

space. Next, on each execution of Steps (5a) and (5b) in the 

molecular algorithm Solve-independent-set-problem(Y0, n, 

m), the maximum-sized independent sets encoded by the DNA 

sequences with the maximum number of vertices are read, and 

they are also read by carrying out a measurement after their 

amplitude has been exponentially amplified. This is to say that 
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the mathematical solutions for the maximum-sized independent 

sets encoded by the DNA sequences with the maximum number 

of vertices are still a unit vector in the finite-dimensional 

Hilbert space. Hence, from the statements above, we right away 

derive that mathematical solutions of molecular solutions for 

solving the independent set problem for any graph G with m 

edges and n vertices are a unit vector in the finite-dimensional 

Hilbert space.    

VIII. PROOF THAT REDUCTION AMONG NP-COMPLETE 

PROBLEMS IS USELESS AND THAT EACH NP-COMPLETE 

PROBLEM THAT HAS ITS OWN BEST ALGORITHM 

We assume a collection C = {c1, c2, ..., cm} of clauses on a 

finite set U of variables, {u1, u2, …, un}, such that |cx| is equal 

to 3 for 1  x  m, where |cx| is the number of variables in the 

xth clause. The 3-satisfiability problem (3-SAT) is to find 

whether there is a truth assignment for U that satisfies all of the 

clauses in C. The simple structure for the 3-SAT problem makes 

it one of the most widely used problems for other NP-complete 

results [7]. The Cook–Levin theorem, also known as Cook’s 

theorem [50], states that the 3-satisfiability problem (3-SAT), 

which is one of the Boolean satisfiability problems, is NP-

complete. That is, it is in NP, and any problem in NP can be 

reduced in polynomial time by a deterministic Turing machine 

that is a digital computer to the 3-satisfiability problem (3-SAT). 

An important consequence of this theorem is that if there exists 

a deterministic polynomial time algorithm for solving 3-

satisfiability problem (3-SAT), then every NP problem can be 

solved by a deterministic polynomial time algorithm. We use 

Lemma 8-1 to show that reduction among NP-complete 

problems is useless and that each NP-complete problem has its 

own, best quantum algorithm. Lemma 8-2 shows then that the 

proposed quantum-molecular algorithm with a quadratic speed-

up for solving the independent set problem in a graph G with n 

vertices and m edges is not the best or optimal quantum 

algorithm. 

Lemma 8-1: Reduction among NP-complete problems is 

useless, and each NP-complete problem has its own, best 

quantum algorithm. 

Proof:  

We suppose that U is {u1, u2, …, un} and C is {c1, c2, ..., cm}. 

U and C are any instance for the 3-SAT problem. [7] use a 

polynomial time algorithm to transform the 3-SAT problem 

with m clauses and n Boolean variables into the independent set 

problem for a graph G with (3  n) vertices and ((3  m) + w) 

edges. w is the number of the pair (ui, 𝑢𝑖̅) in which ui and 𝑢𝑖̅ 

appear in different clauses and the value of w is less than the 

value of m. This indicates that if Algorithm 5-2 and Algorithm 

5-1 are applied to solve the reduced 3-SAT problem, then the 

time complexity of the best case is O(2(3  n) / 2). This implies that 

for solving the reduced 3-SAT problem Algorithm 5-2 and 

Algorithm 5-1 cannot give a quadratic speed-up and the 

process of reduction among NP-complete problems not only 

cannot speed up the performance of quantum algorithms but, to 

the contrary, slows it down. Therefore, from the statements 

above we at once infer that reduction among NP-complete 

problems is useless and that each NP-complete problem has its 

own best quantum algorithm.   ◼ 

Lemma 8-2: The proposed quantum-molecular algorithm 

with a quadratic speed-up for solving the independent set 

problem in a graph G with n vertices and m edges is not the best 

or optimal quantum algorithm. 

Proof:  

From Lemma 6-1 through Lemma 6-4 it follows that the 

lower and the upper bound of the time complexity for the 

proposed quantum-molecular algorithm for solving the 

independent set problem in a graph G with n vertices and m 

edges are, respectively, (2𝑛×
1

2) queries and (2𝑛×
1

2) queries 

with ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) quantum bits. The 

proposed quantum-molecular algorithm satisfies the important 

result in [8] which says that a quadratic speed-up for solving 

any NP-complete problem is a tight lower bound. However, 

from the poof of Lemma 8-1 it follows that a polynomial time 

algorithm can transform the 3-SAT problem with m clauses and 

n Boolean variables into the independent set problem for a 

graph G with (3  n) vertices and ((3  m) + w) edges. This is 

to say that a reduction among NP-complete problems makes the 

size of the input of the reduced problem become larger than that 

of the original problem. This is the reason why the proposed 

quantum-molecular algorithm for solving the reduced problem 

cannot give any speed-up. It appears to be the case that the 

important result of [8] violates an important consequence of 

Cook’s theorem [50]. Therefore, from the statements above, we 

at once infer that the proposed quantum-molecular algorithm 

with a quadratic speed-up for solving the independent set 

problem in a graph G with n vertices and m edges is not the best 

or optimal quantum algorithm.   ◼ 

IX. PROOF OF A QUANTUM LOWER BOUND OF Ω(√
𝟐𝒏

𝟐
) 

QUERIES FOR SOLVING THE ELEMENT DISTINCTNESS 

PROBLEM WITH AN INPUT OF N BITS 

From [33] we have that the element distinctness problem 

with an input of n bits is to determine whether the given 2n real 

numbers are distinct or not. A quantum lower bound of solving 

it is (2𝑛×
2

3) queries for a quantum walk algorithm [33]. The 

formal definition of the problem is as follows: given a function 

H : {a| 0  a  2n − 1} → {b| 0  b  2m − 1}, the r-element 

distinctness problem is to find r-distinct elements a1, a2, ..., ar 

∈{a| 0  a  2n − 1} such that H(a1) = H(a2) = ... = H(ar). 

Childs and Eisenberg in [51] extend the r-element distinctness 

problem to a much more general problem, namely the problem 

of finding a subset of size r that satisfies any given property. 

Childs and Eisenberg in [51] assume that there is a black-box 

function OF: D → R, where the domain D is a finite set and the 

range R is also a finite set. They further assume that the domain 

D is equal to {X1, X2, ,  XN} and that |D| represents the size of 

the domain D and that this size is equal to N, which is the 

problem size. They also assume a set (D  R)r = {((X1, OF(X1)), 

,  (Xr, OF(Xr))) | Xk  D and OF(Xk)  R} and that there is a 

property P  (D  R)r. The more formal definition of the r-

subset finding problem is to find some r-subset {X1, X2, , Xr} 

⊂ D such that ((X1, OF(X1)), ,  (Xr, OF(Xr))) ∈ P, or reject if 

none exists. We use the following lemma to show that a new 
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quantum lower bound for solving it is (√
2𝑛

2
) queries. 

Lemma 9-1: For solving the element distinctness problem 

with an input of n bits, the proposed quantum-molecular 

algorithm improves a quantum lower bound (2𝑛×
2

3) queries 

with a quantum walk algorithm to (√
2𝑛

2
) queries. 

Proof:  

We assume that G = (V, E) is a graph where V is the set of 

vertices in G and E is the set of edges in G. We also suppose 

that V is {v1, …, vn} and E is {(va, vb)| va and vb are, respectively, 

elements in V}. An independent set of graph G with n vertices 

and m edges is a subset V1  V of vertices such that for all va, vb 

 V1, the edge (va, vb) is not in E [7, 9]. The independent set 

problem for graph G with n vertices and m edges is to find a 

maximum-sized independent set in G. For graph G with n 

vertices and m edges, the number of subsets of the set of n 

vertices is 2n. We suppose that there is a black-box function, OF: 

D → R that computes which subsets of vertices are the 

independent sets with the maximum number of vertices. We 

also suppose that the domain D is equal to {yn yn − 1  y2 y1  

yd  {0, 1} for 1  d  n}. 

We assume that r binary numbers of n bits in length, X1, X2, 

, Xr, are all elements in D. We also suppose that a set (D  

R)r = {((X1, OF(X1)), ,  (Xr, OF(Xr))) | Xk  D and OF(Xk)  

R}. We assume that there is a property P  (D  R)r. We also 

suppose that each binary number of n bits, Xk, for 1  k  r 

encodes a subset of vertices in which a black-box function, OF, 

can determine a maximum-sized independent set. This is to say 

that ((X1, OF(X1)), ,  (Xr, OF(Xr))) is the answer of the 

independent set problem for graph G with n vertices and m 

edges, and {X1, X2, ,  Xr} ⊂ D such that ((X1, OF(X1)), , (Xr, 

OF(Xr))) ∈ P. Therefore, the independent set problem of graph 

G with n vertices and m edges is a type of the element 

distinctness problem and is a type of the r-subset finding 

problem. 

From Lemma 6-1 through Lemma 6-2, for solving the 

independent set problem for graph G with n vertices and m 

edges, a quantum lower bound is (√
2𝑛

𝑟
) queries and a quantum 

upper bound is O(√
2𝑛

𝑟
) queries. When the value of r is equal to 

two, the quantum lower bound is ( 2𝑛×
2

3 ) queries with a 

quantum walk algorithm [30]. However, the proposed quantum-

molecular algorithm for the value of r equal to two gives a 

quantum lower bound of (√
2𝑛

2
) queries and a quantum upper 

bound of O(√
2𝑛

2
) queries. Therefore, we at once infer that for 

solving the element distinctness problem with an input of n bits, 

the proposed quantum-molecular algorithm enhances a 

quantum lower bound of (2𝑛×
2

3) queries with a quantum walk 

algorithm to (√
2𝑛

2
) queries.      ◼ 

X. EXPERIMENTAL RESULTS OF FINDING THE 

MAXIMUM-SIZED INDEPNDENT SETS IN A GRAPH 

WITH TWO VERTICES AND ONE EDGE 

In Fig. 10-1, graph G1 consists of two vertices and an edge. 

All of the independent sets in G1 are {v1}, {v2} and {}, which is 

an empty set. The maximum-sized independent sets for G1 are 

{v1} and {v2}. We use the quantum circuit in Figure 10-2 and 

the quantum circuit in Figure 10-3 to respectively find the 

answer {v1} and the answer {v2}. To that end, we use the 

backend ibmqx4 with five quantum bits in IBM's quantum 

computers to test our theory. 

 
Fig. 10-1: The graph G1 for our problem. 

 

 
Fig. 10-2: The quantum circuit for finding the answer {v1}. 

 

 
Fig. 10-3: The quantum circuit for finding the answer {v2}. 

In IBM’s graphical interface of ibmqx4, the available gates 

are CNOT, which is the only gate with two quantum bits, and 

other gates that act on single quantum bits. In the backend 

ibmqx4 with five quantum bits, there are only six pairs of 

CNOT gates. We decompose CCNOT gate into six CNOT 

gates and gates of one quantum bit that appear in Figure 10-4 

[30]. In Figure 10-4, H is the Hadamard gate, T = [
1 0

0 𝑒√−1×
𝜋

4
] 

and T+ = [
1 0

0 𝑒−1×√−1×
𝜋

4
].  In the backend ibmqx4, we use 

quantum bits q[3], q[4], q[2], q[1] and q[0] to respectively 

implement quantum bits |𝑦1
0⟩,  |𝑦2

0⟩,  |𝑜1
1⟩,  |𝑤1,1

   0⟩  and |1⟩  in 

Figure 10-2. Similarly we also use quantum bits q[3], q[4], q[2], 

q[1] and q[0] to respectively implement quantum bits |𝑦1
0⟩, 

|𝑦2
0⟩,  |𝑜1

1⟩,  |𝑤2,1
   0⟩  and |1⟩  in Figure 10-3. Because in the 

backend ibmqx4 a CNOT gate cannot be applied to quantum 

bits q[3] and q[1], the second and the third CCNOT gates in 

Figure 10-2 and in Figure 10-3 cannot be implemented by the 

backend ibmqx4. Therefore, we use the quantum circuit in 

Figure 10-5 and the quantum circuit in Figure 10-6 to 

respectively find the answer {v1} and the answer {v2}. 
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Fig. 10-4: Decomposing CCNOT gate into six CNOT gates and 

gates of one quantum bit. 

 

 
Fig. 10-5: The quantum circuit for finding the answer {v1} 

adapted for execution on the backend ibmqx4. 

 

 
Fig. 10-6: The quantum circuit for finding the answer {v2} 

adapted for execution on the backend ibmqx4. 

 

We write two programs in open quantum assembly language 

version 2.0 for the backend ibmqx4 to implement the two 

quantum circuits in Figures 10-5 and 10-6. In the first program, 

we use the four statements -  “OPENQASM 2.0;”, “include 

"qelib1.inc";”, “qreg q[5];” and “creg c[5];” - to declare five 

quantum bits with the initial state |0> and five classic bits with 

the initial value 0. Next, we use the two statements “x q[2];” 

and “x q[0];” to set q[2] and q[0] to the state |1>. Then, the three 

statements “h q[3];”, “h q[4];”, “h q[0];” are used to complete 

the three Hadamard gates in the first time slot in Fig. 10-5. Next, 

the fifteen statements - “h q[2];”, “cx q[4],q[2];”, ”tdg q[2];”, 

“cx q[3],q[2];”, “t q[2];”, “cx q[4],q[2];”, “tdg q[2];”, “cx 

q[3],q[2];”, “t q[4];”, “t q[2];”, “cx q[3],q[4];”, “h q[2];”, “t 

q[3];”, “tdg q[4];” and “cx q[3],q[4];” – are used to complete 

the first CCNOT gate in the second time slot of Figure 10-5. 

Then, the two statements “cx q[3],q[2];” and “x q[2];” 

implement a CNOT gate and a NOT gate for labelling the 

answer from the third time slot through the fourth time slot in 

Figure 10-5. 

 

Next, in the first program, the statement “cx q[2],q[0];” is 

used to label the target state with its amplitude by (－1) in the 

fifth time slot in Figure 10-5. After that, seventeen statements 

are used to complete the reversal operations from the sixth time 

slot through the eighth time slot in Figure 10-5. The seventeen 

statements are “x q[2];”, “cx q[3],q[2];”, “cx q[3],q[4];”, “tdg 

q[4];”, “t q[3];”, “h q[2];”, “cx q[3],q[4];”, “t q[2];”, “t q[4];”, 

“cx q[3],q[2];”, “tdg q[2];”, “cx q[4],q[2];”, “t q[2];”, “cx 

q[3],q[2];”, “tdg q[2];”, “cx q[4],q[2];” and “h q[2];”. 

 

Next, the eleven statements  “h q[3];”, “h q[4];”, “x q[3];”, 

“x q[4];”, “h q[4];”, “cx q[3],q[4];”, “h q[4];”, “x q[4];”, “x 

q[3];”, “h q[4];” and “h q[3];” are used to complete the 

amplification of the amplitude of the answer(s) from the ninth 

time slot through the fifteenth time slot in Figure 10-5. And 

finally, the two statements “measure q[3] -> c[3];” and 

“measure q[4] -> c[4];” compete the measurement of the 

answer(s) from the sixteenth time slot in Figure 10-5. Similarly, 

in the second program, the following statements are used to find 

the answer {v2}: “OPENQASM 2.0; include "qelib1.inc"; qreg 

q[5]; creg c[5]; x q[2]; x q[0]; h q[3]; h q[4]; h q[0]; h q[2]; cx 

q[4],q[2]; tdg q[2]; cx q[3],q[2]; t q[2]; cx q[4],q[2]; tdg q[2]; 

cx q[3],q[2]; t q[4]; t q[2]; cx q[3],q[4]; h q[2]; t q[3]; tdg q[4]; 

cx q[3],q[4]; cx q[4],q[2]; x q[2]; cx q[2],q[0]; x q[2]; cx 

q[4],q[2]; cx q[3],q[4]; tdg q[4]; t q[3]; h q[2]; cx q[3],q[4]; t 

q[2]; t q[4]; cx q[3],q[2]; tdg q[2]; cx q[4],q[2]; t q[2]; cx 

q[3],q[2]; tdg q[2]; cx q[4],q[2]; h q[2]; h q[4]; x q[3]; x q[4]; h 

q[4]; cx q[3],q[4]; h q[4]; x q[4]; x q[3]; h q[4]; h q[3]; measure 

q[3] -> c[3]; measure q[4] -> c[4];”.  

 

Figures 10-7 and 10-8, respectively, show the corresponding 

circuits of the two programs. In Figure 10-7 on the backend 

ibmqx4, we use quantum bits q[3], q[4], q[2], q[1] and q[0] to 

respectively implement quantum bits |𝑦1
0⟩,  |𝑦2

0⟩,  |𝑜1
1⟩,  |𝑤1,1

   0⟩ 

and |1⟩ in Figure 10-5. Similarly, in Figure 10-8 on the backend 

ibmqx4, we also use quantum bits q[3], q[4], q[2], q[1] and q[0] 

to respectively implement quantum bits |𝑦1
0⟩, |𝑦2

0⟩, |𝑜1
1⟩, |𝑤2,1

   0⟩ 

and |1⟩ in Figure 10-6. 

 

 
Fig. 10-7: The corresponding circuits of the first program to 

find the answer {v1}. 

 
Fig. 10-8: The corresponding circuits of the second program to 

find the answer {v2}. 

 

We use the command “simulate” to execute the two circuits 

in Figure 10-7 and Figure 10-8 on the target device, which is 

the backend Simulator. Figure 10-9 and Figure 10-10, 

respectively, show the two measured results. In Figure 10-9, we 

obtain the state 01000 with the probability 1.000. Because the 

value of q[4] is 0 and the value of q[3] is 1, we obtain the first 

answer {v1} with the probability 1.000. Similarly, in Figure 10-

10, we obtain the state 10000 with the probability 1.000. The 

value of q[4] is 1 and the value of q[3] is 0, so we obtain the 

second answer {v2} with the probability 1.000. 

 
Fig. 10-9: The measured result of finding the answer {v1} on 

the backend Simulator. 
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Fig. 10-10: The measured result of finding the answer {v2} on 

the backend Simulator. 

 

We use the command “Run” to execute the two circuits in 

Figures 10-7 and 10-8 on real processors of the backend 

ibmqx4. Figure 10-11 and Figure 10-12, respectively, show the 

two measured results. In Figure 10-11, we obtain the state 

01000 with the probability 0.541 or the state 00000 with the 

probability 0.154 or the state 10000 with the probability 0.112 

or the state 11000 with the probability 0.217. This result is 

caused by the noise in real processors of the backend ibmqx4. 

Because for the state 01000 with the probability 0.541 the value 

of q[4] is 0 and the value of q[3] is 1, we obtain the first answer 

{v1} with the probability 0.541. Similarly, in Figure 10-12, we 

obtain the state 10000 with the probability 0.258 or the state 

00000 with the probability 0.163 or the state 01000 with the 

probability 0.244 or the state 11000 with the probability 0.359. 

Similarly, this result is caused by the noise in real processors 

of the backend ibmqx4. Although the state 11000 has the higher 

probability 0.359, it encodes the set {v2, v1} which is not an 

independent-set. Therefore, we do not select it as the answer. 

For the state 10000 with the probability 0.258, the value of q[4] 

is 1 and the value of q[3] is 0, so we obtain the second answer 

{v2} with the probability 0.258. 

 
Fig. 10-11: The measured result of finding the answer {v1} on 

real processors of the backend ibmqx4. 

 

 
Fig. 10-12: The measured result of finding the answer {v2} on 

real processors of the backend ibmqx4. 

XI. EXPERIMENTAL RESULTS OF FINDING THE 

MAXIMUM-SIZED INDEPENDENT SETS IN A GRAPH 

WITH THREE VERTICES AND TWO  EDGES 

In Figure 10-13, graph G2 consists of three vertices and two 

edges. The independent sets in G2 are {v2, v3}, {v1}, {v2}, {v3} 

and {}, which is an empty set. The maximum-sized independent 

set for G2 is {v2, v3}. We write the third program in open 

quantum assembly language version 2.0 to find the maximum-

sized independent set {v2, v3} of graph G2. Figure 10-14 is the 

corresponding quantum circuit. 

 

 
Fig. 10-13: Graph G2 with three vertices and two edges. 

 

 
Fig. 10-14: The corresponding quantum circuit of the third 

program to find the answer {v2, v3}. 

 

The third program labels the amplitude of the answer(s) by 

(－1) and amplifies the amplitude of the answer(s) twice. It 

specifies the four statements “OPENQASM 2.0; include 

"qelib1.inc"; qreg q[9]; creg c[3];” to declare nine quantum bits 

with the initial state |0> and three classical bits with the initial 

value 0. Quantum bit q[2] encodes vertex v3, quantum bit q[1] 

encodes vertex v2 and quantum bit q[0] encodes vertex v1. Next, 

we use the seven statements “h q[0]; h q[1]; h q[2]; x q[8]; h 

q[8]; x q[3]; x q[4];” to generate all possible solutions and to set 

the initial state of these auxiliary quantum bits.  

 

Then, we use the eleven statements “ccx q[0], q[1], q[3]; ccx 

q[0],q[2],q[4]; ccx q[3],q[4],q[5]; ccx q[1],q[5],q[6]; ccx 

q[2],q[6],q[7]; cx q[7],q[8]; ccx q[2],q[6],q[7]; ccx 

q[1],q[5],q[6]; ccx q[3],q[4],q[5]; ccx q[0],q[2],q[4]; ccx 

q[0],q[1],q[3];” to label the amplitude of the answer(s) by (－

1). Next, we use the statements “h q[0]; h q[1]; h q[2]; x q[0]; x 

q[1]; x q[2]; x q[3]; x q[4]; ccx q[0],q[1],q[3]; ccx q[3],q[2],q[4]; 

cz q[4],q[8]; ccx q[3],q[2],q[4]; ccx q[0],q[1],q[3]; x q[0]; x 

q[1]; x q[2]; x q[3]; x q[4]; h q[0]; h q[1]; h q[2];” to execute 

the amplification of the amplitude of the answer(s). 

 

Next, we use the eleven statements “ccx q[0], q[1], q[3]; ccx 

q[0],q[2],q[4]; ccx q[3],q[4],q[5]; ccx q[1],q[5],q[6]; ccx 

q[2],q[6],q[7]; cx q[7],q[8]; ccx q[2],q[6],q[7]; ccx 

q[1],q[5],q[6]; ccx q[3],q[4],q[5]; ccx q[0],q[2],q[4]; ccx 

q[0],q[1],q[3];” to label the amplitude of the answer(s) by (－

1). Then, we use the statements “h q[0]; h q[1]; h q[2]; x q[0]; 

x q[1]; x q[2]; x q[3]; x q[4]; ccx q[0],q[1],q[3]; ccx 

q[3],q[2],q[4]; cz q[4],q[8]; ccx q[3],q[2],q[4]; ccx 

q[0],q[1],q[3]; x q[0]; x q[1]; x q[2]; x q[3]; x q[4]; h q[0]; h 

q[1]; h q[2];” to execute the amplification of the amplitude of 

the answer(s). And finally, we use the three statements 

“measure q[0] -> c[0]; measure q[1] -> c[1]; measure q[2] -> 

c[2];” to complete the measurement of the answer(s). 

 

We use the command “simulate” to execute the quantum 

circuit in Figure 10-14 on the target device, which is the 

backend Simulator. Figure 10-15 shows the measured results 

for the third program. In Figure 10-15, we obtain the state 110 

with the highest probability 0.55. Because the value of q[2] is 

1, the value of q[1] is 1 and the value of q[0] is 0, we obtain the 

answer {v2, v3} with the probability 0.55.  
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Fig. 10-15: The measured result of finding the answer {v2, v3} 

on the backend Simulator. 

XII. CONCLUSION 

Many information processing and computing problems can 

be traced back to finding an extremum of a database or a cost 

function. Durr−Hoyer’s algorithm and Ahuja−Kapoor’s 

algorithm, which are rather useful extensions of the quantum 

search algorithm, are designed  to find the minimum/maximum 

point of an unsorted database or a cost function. It is indicated 

in [31] that many famous quantum algorithms for finding the 

minimum/maximum point of an unsorted database or a cost 

function provide the extreme value efficiently in terms of the 

expected value; thus, no reasonable upper bound for the number 

of required elementary steps can be given. For improving the 

performance of Durr−Hoyer’s and Ahuja−Kapoor’s algorithm, 

quantum existence testing which integrates quantum counting 

and binary search [31] is proposed. The independent set 

problem for any graph G with m edges and n vertices is to find 

the maximum-sized independent set with the maximum number 

of vertices in an unsorted database or a cost function with 2n 

subsets of vertices. However, in Lemma 5-6, we show that 

Durr−Hoyer’s algorithm, Ahuja−Kapoor’s algorithm and 

quantum existing testing cannot solve the independent set 

problem for any graph G with m edges and n vertices. 

Lemma 4-1 to Lemma 4-2 show that the independent set 

problem for any graph G with n vertices and m edges can be 

solved by the molecular algorithm Solve-independent-set-

problem(Y0, n, m) with O(n2 + m) biological operations, O(2n) 

DNA strands, O(n) tubes and the longest DNA strand, O(n). 

Lemma 5-1 to Lemma 5-5 show that the same problem can be 

solved with a quadratic speed-up by Algorithm 5-2 and 

Algorithm 5-1 which implement the straightforward Boolean 

circuits generated from the molecular algorithm Solve-

independent-set-problem(Y0, n, m). In Lemma 6-1 to Lemma 

6-4, we show that Algorithm 5-2 and Algorithm 5-1 give a 

quadratic speed-up which is the best speed-up known for 

dealing with the independent set problem for any graph G with 

n vertices and m edges. For solving the same problem, the time 

complexity of the worst-case for the best classical algorithm 

known [52] is still O(2n). To the best of our knowledge, this is 

an alternative approach to the currently available best method 

for solving the same problem.  

 

Furthermore, in Lemma 7-1, we demonstrate that 

mathematical solutions of molecular solutions for solving the 

same problem are a unit vector in the finite-dimensional Hilbert 

space. In Lemma 8-1, we show that the process of a reduction 

among NP-complete problems not only cannot speed up the 

performance of quantum algorithms but, to the contrary, slows 

it down. Therefore, reduction among NP-complete problems is 

useless and each NP-complete problem has its own best 

quantum algorithm. This means that using standard reductions 

followed by the proposed quantum-molecular algorithm does 

not necessarily lead to the best quantum algorithm for a 

problem in NP. Furthermore, in Lemma 8-2, we show that the 

proposed quantum-molecular algorithm with a quadratic speed-

up for solving the independent set problem in a graph G with n 

vertices and m edges is not the best or optimal quantum 

algorithm. In Lemma 9-1, we demonstrate that for solving the 

element distinctness problem with an input of n bits, the 

proposed quantum-molecular algorithm improves the quantum 

lower bound of (2𝑛×
2

3) queries with a quantum walk algorithm 

to (√
2𝑛

2
) queries. 
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