
Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 1

Abstract— In this paper, we propose a bio-molecular
algorithm with O(n2 + m) biological operations, O(2n) DNA
strands, O(n) tubes and the longest DNA strand, O(n), for
solving the independent-set problem for any graph G with
m edges and n vertices. Next, we show that a new kind of
the straightforward Boolean circuit yielded from the bio-

molecular solutions with m NAND gates, (m + n  (n +1))

AND gates and ((n  (n + 1)) / 2) NOT gates can find the
maximal independent-set(s) to the independent-set
problem for any graph G with m edges and n vertices. We
show that a new kind of the proposed quantum-molecular
algorithm can find the maximal independent set(s) with the

lower bound (2n/2) queries and the upper bound (2n/2)
queries. This work offers an obvious evidence for that to
solve the independent-set problem in any graph G with m
edges and n vertices, bio-molecular computers are able to
generate a new kind of the straightforward Boolean circuit
such that by means of implementing it quantum computers
can give a quadratic speed-up. This work also offers one
obvious evidence that quantum computers can
significantly accelerate the speed and enhance the
scalability of bio-molecular computers. Next, the element
distinctness problem with input of n bits is to determine
whether the given 2n real numbers are distinct or not. The
quantum lower bound of solving the element distinctness

problem is (2n(2/3)) queries in the case of a quantum walk
algorithm. We further show that the proposed quantum-
molecular algorithm reduces the quantum lower bound to

((2n/2) / (21/2)) queries. Furthermore, to justify the feasibility
of the proposed quantum-molecular algorithm, we
successfully solve a typical independent set problem for a
graph G with two vertices and one edge by carrying out

This work was submitted on October 19, 2020.
This work was supported by the National Science Foundation of the

Republic of China under MOST 105-2221-E-151-040-.
W.-L. Chang is with the Department of Computer Science and

Information Engineering, National Kaohsiung University of Science and
Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City,
Taiwan 807-78, Republic of China (e-mail: changwl@cc.kuas.edu.tw).

J.-C. Chen is with the Department of Computer Science and
Information Engineering, National Kaohsiung University of Science and
Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City,
Taiwan 807-78, Republic of China (e-mail: jc.chen@nkust.edu.tw).

W.-Y. Chung is with the Department of Computer Science and
Information Engineering, National Kaohsiung University of Science and
Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City,
Taiwan 807-78, Republic of China (e-mail: wychung@nkust.edu.tw).

experiments on the backend ibmqx4 with five quantum bits
and the backend simulator with 32 quantum bits on IBM’s
quantum computer.

Index Terms— data structures and algorithms,

independent-set problem, molecular algorithms, molecular
computing, quantum algorithms, quantum computing

I. Introduction

EYNMAN [1] was the first to propose molecular computation

without implementing the idea himself. After a few decades,

by handling DNA strands, Adleman [2] succeeded in solving an

instance of the Hamiltonian path problem in a test tube. In 1982,

Feynman [3] raised one of the most important problems in

computation theory, namely, whether computing devices based

on quantum theory will be able to complete computations faster

than the standard Turing machines [4]. Benioff [5] has

considered the possibility of quantum computation as well.

Deutsch designed a general model of quantum computation –

the quantum Turing machine [6].

A graph G = (V, E) is defined in terms of vertices and edges,

where V is a set of n vertices and E is a set of m edges.

Mathematically, an independent set of a graph G = (V, E) is a

subset V1  V of vertices such that for every two vertices in V1,

there is no edge connecting the two [7]. The independent-set

problem is to find a maximum-size independent set in G. This

problem is NP-complete [7].

C.-Y. Hsiao is with the Department of Computer Science and
Information Engineering, National Kaohsiung University of Science and
Technology, No. 415, Jiangong Road, Sanmin District, Kaohsiung City,
Taiwan 807-78, Republic of China (e-mail: cyhsiao@nkust.edu.tw).

R. Wong is with the Department of Computer Science and
Technology, Nanjing University, 163 Xianlin Road, 210023 Nanjing,
Jiangsu, China (e-mail: renata.wong@protonmail.com).

A. V. Vasilakos is with the School of Electrical and Data Engineering,
University of Technology, Sydney, Australia, with the College of
Mathematics and Computer Science, Fuzhou University, Fuzhou
350116, China, and with the Department of Computer Science,
Electrical and Space Engineering, Lulea University of Technology, Lulea
97187, Sweden (e-mail:th.vasilakos@gmail.com).

Quantum Speedup and Mathematical Solutions
of Implementing Bio-molecular Solutions for

the Independent Set Problem on
IBM Quantum Computers

Weng-Long Chang1*, Ju-Chin Chen 2*, Wen-Yu Chung 3*, Chun-Yuan Hsiao4*, Renata
Wong5* and Athanasios V. Vasilakos6*

F

mailto:Email%3Ath.vasilakos@gmail.com

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 2

 Our major contributions in this paper are as follows.

• We show that the independent-set problem for any graph

G with m edges and n vertices can be solved by the proposed

molecular algorithm with O(n2 + m) biological operations, O(2n)

DNA strands, O(n) tubes and the longest DNA strand, O(n).

• We demonstrate that a new kind of the straightforward

Boolean circuit obtained from bio-molecular solutions with m

NAND gates, (m + n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT

gates can find the maximal independent-set(s) to the

independent-set problem for any graph G with m edges and n

vertices.

• We show that the proposed quantum-molecular algorithm

for implementing a new kind of the straightforward Boolean

circuit generated from bio-molecular solutions can give a

quadratic speed-up for the same problem. This is the best known

speed-up because the lower bound of solving the problem is

Ω (2𝑛×
1

2) queries while the upper bound is O (2𝑛×
1

2) queries.

• We prove that this work offers an obvious evidence for

solving the independent set problem for any graph G with m

edges and n vertices. Bio-molecular computers are able to

generate a new kind of the straightforward Boolean circuit such

that when implemented by quantum computers it can provide a

quadratic speed-up, which is the best speed-up known for the

given problem.

• We demonstrate that this work offers another obvious

evidence that quantum computers can significantly accelerate

and enhance the speed and the scalability of bio-molecular

circuits.

• We show how the mathematical solutions of the same bio-

molecular solutions are encoded in terms of a unit vector in the

finite-dimensional Hilbert.

• We also prove that the processing of reduction among NP-

complete problems not only cannot speed up the performance

of quantum algorithms but, to the contrary, slows it down.

• We demonstrate that reduction among NP-complete

problems is useless for a quantum computer and one should

therefore independently develop a new quantum algorithm for

solving any NP-complete problem with a quadratic speed-up.

• We show that the proposed quantum-molecular algorithm

with a quadratic speed-up for solving the independent set

problem in a graph G with n vertices and m edges is not the best

or optimal quantum algorithm.

• The element distinctness problem with an input of n bits

is to determine whether the given 2n real numbers are distinct

or not. A quantum lower bound for solving it is Ω (2𝑛×
2

3)

queries to a quantum walk algorithm. We show that the

proposed quantum-molecular algorithm reduces the quantum

lower bound to Ω (√
2𝑛

2
) queries.

• We experimentally solve an instance of the independent

set problem in a graph with two vertices and one edge on the

IBM backend ibmqx4 with five quantum bits and the backend

simulator with 32 quantum bits.

The rest of the paper is organized as follows: in Section II,

the motivation for this work is given. In Section III, we illustrate

the development of molecular computers and quantum

computers. In Section IV, the molecular algorithm for solving

the independent set problem for any graph G with m edges and

n vertices is proposed. In Section V, we propose a quantum

algorithm for solving the independent set problem on any graph

with m edges and n vertices. In Section VI, we analyze the time

complexity and the space complexity of the proposed quantum-

molecular algorithm for solving the same problem. In Section

VII, we show how the mathematical solutions of the molecular

solutions for the same problem are encoded in terms of a unit

vector in the finite-dimensional Hilbert space. In Section VIII,

we demonstrate that reduction among NP-complete problems is

useless and independently developing a better quantum

algorithm for each NP-complete problem is the right way to

approach this issue. In Section IX, we show that the quantum

lower bound is (2𝑛×
2

3) queries for a quantum walk algorithm

that solves the element distinctness problem with an input of n

bits. The element distinctness problem is to determine whether

the given 2n real numbers are distinct or not. We give a proof

(the reasons) of why it is reduced to (√
2𝑛

2
) queries. In Section

X, we experimentally solve an instance of the independent set

problem in a graph with two vertices and one edge on the IBM

backend ibmqx4 with five quantum bits and the backend

simulator with 32 quantum bits. In Section XI, we

experimentally solve an instance of the independent set

problem in a graph with three vertices and two edges on the

IBM backend simulator with 32 quantum bits. In Section XII,

we give a brief conclusion.

II. MOTIVATION

Bennett et al. [8] demonstrated that the lower bound of

quantum algorithms for solving any NP-complete problem with

input size n bits is (2𝑛×
1

2). This result indicates that a new kind

of quantum algorithm for solving any NP-complete problem

can give a quadratic speed-up that is the best speed-up known

for the problem if its upper bound is (2𝑛×
1

2). An interesting

open question is “what are the mathematical solutions of

molecular solutions for solving any NP-complete problem”?

The independent set problem on any graph with m edges and n

vertices is an NP-complete problem [7, 9], and its molecular

solution, its quantum solution and mathematical solution of the

same molecular solution haven’t yet been proposed. Our

motivation for writing this article is to search for the three

solutions.

III. THE DEVELOPMENT OF MOLECULAR AND QUANTUM

COMPUTERS

A potentially significant area of application for DNA

algorithms was the breaking of encryption schemes [10-13]. For

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 3

solving many well-known computational problems, the

proposed DNA algorithms included the 3-SAT problem [14],

three-vertex-coloring [15], the binary integer programming

problem [16], the subset-production [17] and real DNA

experiments of Knapsack problems [18]. Other well-known

DNA algorithms include the set partition problem [19],

molecular verification of rule-based systems [20],

implementation of bio-molecular databases [21] and

implementation of arithmetical operations of complex vectors

[22]. Woods et al. [23] report the design and experimental

validation of a DNA tile set that contains 355 single-stranded

tiles and can, through simple tile selection, be reprogrammed to

implement a wide variety of 6-bit algorithms. Noteworthy are

also recent developments in DNA computing algorithms and

models, such as [24-26].

One of the first quantum algorithms was the Deutsch-Jozsa

algorithm that showed how to exploit some inherently quantum

mechanical features of quantum Turing machines [27]. In 1994,

Shor proposed his quantum algorithm for efficiently solving

factoring and discrete logarithm problems [28]. And in 1996,

Grover’s algorithm for searching answer(s) in an unsorted

database was proposed in [29]. A detailed description of

quantum computation and quantum information was given in

[30-32]. Aaronson and Shi in [33] proposed quantum lower

bounds of quantum walk algorithms for the collision and the

element distinctness problems. Huo and Long in [34] have

shown that a single-photon entanglement state can be generated

in a simple way in the linear interaction regime, and in the

nonlinear interaction regime a scheme for generating squeezed

states of microwaves using three-wave mixing in solid-state

circuits was proposed. Yang et al. in [35] proposed an

implementation of a many-qubit Grover search. Long and Xiao

in [36] implemented a NMR quantum information processor

with seven quantum bits. Boneh and Lipton in [37] proved that

quantum computers are able to break any cryptosystem in

quantum polynomial time based on what they refer to as a

‘hidden linear form’. Lukac and Perkowski in [38] presented an

evolutionary approach to the quantum symbolic logic synthesis

and used a genetic algorithm to synthesize quantum circuits.

Moylett et al. [39] showed a quantum speedup of the traveling-

salesman problem for bounded-degree graphs. Chang et al. [40]

solved the problem of finding maximal cliques in graphs with a

quantum speedup. Pelofske et al. in [41] demonstrated the large

minimum vertex cover problems on a quantum annealer. Arute

et al. in [42] determined that their Sycamore processor takes

about 200 seconds to sample one instance of a quantum circuit

a million times—their benchmarks currently indicate that the

equivalent task for a state-of-the-art classical supercomputer

would take approximately 10,000 years. An introduction to

writing quantum programs to solve real applications on IBM’s

quantum computers and in quantum processing units appeared

in [43-44].

IV. MOLECULAR ALGORITHMS FOR SOLVING THE

INDEPENDENT SET PROBLEM

In this section, we introduce the definition of the independent

set problem for any graph with m edges and n vertices. Next,

DNA strands and biological operations proposed in [2] are

introduced. They will be applied to design molecular circuits to

solve the independent set problem. Then, the time complexity

and the space complexity of the proposed molecular algorithm

is given. After that, the straightforward Boolean circuit

generated from bio-molecular solutions to the independent-set

problem on any graph with m edges and n vertices is given. And

lastly, we use data dependence analysis to prove that the

straightforward Boolean circuit to solve the independent set

problem on any graph with m edges and n vertices is the best

known for the problem.

A. Definition of the Independent Set Problem

Let G be a graph and G = (V, E), where V is a set of vertices

and E is a set of edges in G. We assume that V is {v1, …, vn}

and E is {(va, vb)| va and vb are, respectively, elements in V}. We

further assume that |V| denotes the number of vertices in V and

|E| denotes the number of edges in E. We also suppose that |V|

is equal to n and |E| is equal to m. The value of m is at most ((n

 (n − 1)) / 2). An independent set of graph G is a subset V1 

V of vertices such that for all va, vb  V1, the edge (va, vb) is not

in E [7, 9]. Definition 4-1 cited in [7, 9] is used to denote the

independent set problem of graph G with m edges and n vertices.

Definition 4-1: The independent set problem of graph G with

n vertices and m edges is to find a maximum-sized independent

set in G.

Consider a graph G1 that consists of three vertices {v3, v2, v1}

and two edges {(v1, v2), (v1, v3)}. The independent sets in G1 are

{} that is an empty set, {v1}, {v2}, {v3} and {v3, v2}. The

maximum-sized independent set for G1 is {v3, v2}. From [7, 9]

we have that finding a maximum-sized independent set is an

NP-complete problem. Therefore, we can formulate it as a

“computational search” problem.

B. Introduction and Implementation of Biological
Molecular Operations

DNA (deoxyribonucleic acid) encodes the genetic

information of cellular organisms. It consists of polymer chains

that are DNA strands. Synthesizing DNA strands is to order by

means of using an automated process. Each strand may be made

of a sequence of nucleotides, or bases, attached to a sugar-

phosphate “backbone”. The four DNA nucleotides are adenine,

guanine, cytosine and thymine, commonly abbreviated to A, G,

C and T, respectively. Each strand has a 5’ end and a 3’ end by

chemical convention. Because one end of the single strand has

a free (i.e., unattached to another nucleotide) 5’ phosphate

group, and the other has a free 3’ deoxyribose hydroxyl group,

hence, any single strand has a natural orientation, as introduced

in [45].

When two separate single strands bond, this bonding forms

the classical double helix of DNA. Bonding occurs by the

pairwise attraction of bases: A bonds with T and G bonds with

C. The pairs (A, T) and (G, C) are therefore known as

complementary base pairs [45]. Also in [45] we have that

heating the solution to a temperature determined by the

composition of the strand may denature double-stranded DNA

into single strands. Heating breaks the hydrogen bonds between

complementary strands ((Fig. 4-1) in [45]). Because a G − C

pair is joined by three hydrogen bonds, the temperature required

to break it is slightly higher than that for an A − T pair, joined

by only two hydrogen bonds [45]. This is the most important

factor when designing sequences to represent computational

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 4

elements.

Annealing is the reverse of melting, whereby cooling a

solution of single strands, and allowing complementary strands

to bind together ((Fig. 4-1) in [45]). In double-stranded DNA,

if one of the single strands contains a discontinuity (i.e., one

nucleotide is not bonded to its neighbor) then this may be

repaired by DNA ligase [45]. This allows us to create a unified

strand from several bound together by their respective

complements.

We will use the following bio-molecular operations cited in

[2, 45-46] to construct molecular solutions for the independent

set problem for any graph with m edges and n vertices. The

implementation of the eight biological operations that are

specified in Definition 4-2 through Definition 4-9 from [45] is

described below. Each implementation illustrates only one

possible way to complete the computational behavior of one

biological operation. In laboratory techniques, future

improvements may well yield more efficient and error-resistant

implementations of biological operations, but this does not red-

Fig. 4-1. DNA denaturing and annealing.

uce the theoretical power of the model. We simply offer

description of the implementation in order to show the

feasibility, in principle, of executing biological operations in

vitro (that is to say, every biological operation is completely

feasible using existing laboratory techniques). All sequences

produced to represent bits from a biological standpoint must be

checked to ensure that the DNA strands that they encode do not

form unwanted secondary structures with one another (i.e.,

strands remain separate at all times, and only bind together

when this is required). We have addressed the problem of strand

design for DNA-based computing at length, and we use the

methods described in [45] to minimize the possibility of

unwanted binding.

Definition 4-2: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n} and a bit xj, the bio-molecular operation “Append-

Head” appends xj onto the head of every element in set X. The

formal representation is written as Append-Head(X, xj) = {xj xn

xn − 1  x2 x1  xd  {0, 1} for 1  d  n and xj  {0, 1}}.

Definition 4-3: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n} and a bit xj, the bio-molecular operation,

“Append-Tail”, appends xj onto the end of every element in set

X. The formal representation is written as Append-Tail(X, xj) =

{xn xn − 1  x2 x1 xj  xd  {0, 1} for 1  d  n and xj  {0, 1}}.

Two strands (labeled S and T in Figure 4-2) can be

concatenated as follows: create a linker strand that includes a

sequence that is the complement of S followed by the

complement of T. This linker strand is affixed to a surface with

a magnetic bead (Figure 4-2(a)). Then, strand S is added to the

solution, and anneals with the linker strand in the appropriate

position (Fig. 4-2(b)). Then, strand T is added to the solution,

and it anneals with the linker strand, at a position immediately

adjacent to strand S (Fig. 4-2(c)). Then, we add the ligase

enzyme to the solution to seal the “nick” between S and T,

forming a single strand that may be freed by heating the solution

to break its bonds with the linker strand (Figure 4-2(d)). The

implementation of the concatenate() operation mentioned

above may easily be used to append a specific sequence, s, to

the head of each strand in a tube X. In this case, the sequence s

corresponds to the strand S shown in Figure 4-2, and strand T

in Figure 4-2 corresponds to the beginning sequence of every

strand in the tube X. Also, only the starting sequence of every

strand anneals to the linker strand. Clearly, then, after a series

of append-head() operations defined in Definition 4-2 has been

completed on a strand, its sequence will be made up of a number

of sequences representing bit-strings. A similar implementation

can be applied to complete the append-tail() operation defined

in Definition 4-3.

Fig. 4-2. Concatenation process: (a) Linker strand affixed to

surface. (b) S anneals to linker strand. (c) T anneals to linker

strand, adjacent to S. (d) S and T ligated to form a single strand,

which can be freed upon heating the solution.

Definition 4-4: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n}, the bio-molecular operation “Discard(X)” resets

X to an empty set and can be represented as “X = ”.

The Discard(X) operation defined in Definition 4-4 discards

the content of a tube X, and replaces the tube X using a new

empty tube. Since the number of tubes will generally be one, it

is a constant-time operation.

Definition 4-5: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n}, the bio-molecular operation “Amplify(X, {Xi})”

creates a number of identical copies Xi of set X, and then

discards X with the help of “Discard(X)”.

The Amplify(X, {Xi}) operation defined in Definition 4-5 is

implemented by applying the polymerase chain reaction (PCR)

with its initial input being a tube X. This reaction is used to

massively amplify (possibly small) amounts of DNA that begin

and end with specific primer sequences. Because using these

sequences delimits every strand in the tube X, they are all copied

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 5

in the reaction. Then, the result of the PCR is equally divided

into the specified tubes (therefore, the number of PCR cycles

may be adjusted to ensure a constant DNA volume per tube,

regardless of the number of tubes).

Definition 4-6: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n} and a bit xj, the bio-molecular extract operation

has two kinds of representation. The first representation is +(X,

xj
1) = {xn xn − 1  xj

1  x2 x1  xd  {0, 1} for 1  d  j  n}

and −(X, xj
1) = {xn xn − 1  xj

0  x2 x1  xd  {0, 1} for 1  d 

j  n} if the value of xj is equal to one. The second representation

is +(X, xj
0) = {xn xn − 1  xj

0  x2 x1  xd  {0, 1} for 1  d  j

 n}and −(X, xj
0) = {xn xn − 1  xj

1  x2 x1  xd  {0, 1} for 1

 d  j  n} if the value of xj is equal to zero.

In order to implement the extract operation defined in

Definition 4-6 affinity purification is used to extract any strands

from a tube X consisting of a short strand, s, that encodes the

value of a bit, xj. This process uses a probe sequence, which is

complementary to the searched target sequence. Probes can

attach to a surface and capture strands through annealing any

strands consisting of the target sequence. Then, in the rest of the

population, separation of captured strands is done by placing

them in a separate solution, and then heating the solution in

order to break the bonds between the probes and the target

sequence. The probe used is therefore the complementary

sequence of s. Retained strands are placed in a new tube, U =

+(X, s), and the remainder are placed in another new tube, V =

−(X, s).

Definition 4-7: Given m sets X1  Xm, the bio-molecular

merge operation is (X1, , Xm) = X1    Xm.

The merge operation defined in Definition 4-7 is

implemented by pouring the contents of tubes (sets) {Xi} into

the specified tube. The number of tubes will generally be low,

so it is a constant-time operation.

Definition 4-8: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n}, the bio-molecular operation “Detect(X)” returns

true if X is not an empty tube. Otherwise, it returns false.

The detect operation defined in Definition 4-8 is

implemented by running a tube X through a gel electrophoresis

process, which is generally used to sort DNA strands by length.

Any DNA present in X manifests itself as a visible band in the

gel; if DNA strands of the appropriate length are present, the

operation returns true. If there are no visible bands

corresponding to DNA of the correct length, then the operation

returns false. The length criterion ensures that the present DNA

fragments do not cause a false positive result. If the DNA in the

band corresponding to the contents of X is required in a

subsequent processing step, cutting the band may excise it from

the gel. The band is then soaked to remove the strands for

further use.

Definition 4-9: Given set X = {xn xn − 1  x2 x1  xd  {0, 1}

for 1  d  n}, the bio-molecular operation “Read(X)” describes

any element in X. Even if X contains many different elements,

this operation can give an explicit description of exactly one of

them.

The read operation defined in Definition 4-9 is implemented

by using gel electrophoresis to sort DNA strands in a tube X by

size. Electrophoresis is the movement of charged molecules in

an electric field. Because DNA molecules carry a negative

charge, they tend to migrate toward the positive pole when

placed in an electric field. The rate of migration of a molecule

in an aqueous solution depends on its shape and electric charge.

Because DNA molecules have the same charge per unit length,

they all migrate at the same speed in an aqueous solution.

However, if a DNA strand completes electrophoresis in a gel

(usually made of agarose, polyacrylamide or a combination of

the two), then its size also affects the migration rate of a

molecule. Therefore, the gel is a dense network of pores through

which the molecules must travel. Smaller molecules therefore

migrate faster through the gel, thus sorting them according to

size. DNA strands of the appropriate length in base pairs are

measured.

C. Molecular Algorithms for Solving the Independent
Set Problem

From Definition 4-1 we have that for any graph G with n

vertices and m edges, all possible independent sets are 2n

possible choices containing legal and illegal independent sets in

G. Each possible choice corresponds to a subset of vertices in

G. Therefore, it is assumed that Y is a set of 2n possible choices

and Y is equal to {yn yn − 1  y2 y1  yd  {0, 1} for 1  d  n}.

With this, the length of each element in Y is n bits and each

element represents one of the 2n possible choices. For the sake

of presentation, we suppose that yd
0 indicates that the value of

yd is zero and yd
1 indicates that the value of yd is one. If an

element yn yn − 1  y2 y1 in Y is a legal independent set and the

value of yd for 1  d  n is one, then yd
1 indicates that the dth

vertex is within the legal independent set. If an element yn yn − 1

 y2 y1 in Y is a legal independent set and the value of yd for 1

 d  n is zero, then yd
0 indicates that the dth vertex does not

appear in the legal independent set.

We propose the following molecular algorithm to solve the

independent-set problem for any graph G with n vertices and m

edges. The first parameter is an empty tube (a set) Y0 that is

regarded as the input tube (set); the second parameter n

represents the number of vertices while the third parameter m

represents the number of edges. Each tube in the Procedure

Solve-independent-set-problem(Y0, n, m) is an empty tube

that is regarded as an auxiliary storage.

Procedure Solve-independent-set-problem(Y0, n, m)

(0a) Append-Tail(X1, yn
1).

(0b) Append-Tail(X2, yn
0).

(0c) Y0 = (X1, X2).

(1) For d = n − 1 downto 1

(1a) Amplify(Y0, X1, X2).

(1b) Append-Tail(X1, yd
1).

(1c) Append-Tail(X2, yd
0).

(1d) Y0 = (X1, X2).

End For

(2) For each edge, ek = (vi, vj), in G where 1  k  m and bits

yi and yj respectively represent vertices vi and vj.

(2a) P1 = +(Y0, yi
1) and P3 = −(Y0, yi

1).

(2b) P2 = +(P1, yj
1) and P4 = −(P1, yj

1).

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 6

(2c) Y0 = (P3, P4).

(2d) Discard(P2).

End For

(3) For i = 0 to n-1

(4) For j = i down to 0

(4a) Yj + 1
ON = +(Yj, yi+1

1) and Yj = −(Y j, yi+1
1).

(4b) Yj + 1 = (Yj + 1, Yj + 1
ON).

End For

End For

(5) For c = n down to 1

(5a) If (detect(Yc)) then

(5b) Read(Yc) and terminate the algorithm.

 EndIf

EndFor

EndProcedure

Lemma 4-1: The independent set problem for a graph G with

m edges and n vertices can be solved by the molecular algorithm,

Solve-independent-set-problem(Y0, n, m).

Proof:

Each execution of Step (0a) and Step (0b), respectively,

appends the value “1” for yn as the first bit of every element in

a set X1 and the value “0” for yn as the first bit of every element

in a set X2. This indicates that X1 = {yn
1} and X2 = {yn

0}. Next,

each execution of Step (0c) creates the set union for the two sets

X1 and X2 so that Y0 = X1  X2 = {yn
1, yn

0}, and X1 =  and X2 =

.

Next, each execution of Step (1a) creates two identical copies,

X1 and X2, of set Y0, and Y0 = . Each execution of Step (1b)

then appends the value “1” for yd onto the end of yn … yd + 1 for

every element in X1. Similarly, each execution of Step (1c) also

appends the value “0” for yd onto the end of yn … yd + 1 for every

element in X2. Next, each execution of Step (1d) creates the set

union for the two sets X1 and X2 so that Y0 = X1  X2, and X1 =

 and X2 = . After repeatedly executing Steps (1a) through

(1d), Y0 = {yn yn − 1  y2 y1  yd  {0, 1} for 1  d  n}. This is

to say that 2n DNA strands in tube Y0 encode 2n possible choices

(independent sets).

Next, Step (2) is a loop that evaluates each formula with the

form (𝑦𝑖 Λ 𝑦𝑗) for the kth edge in G where 1  k  m. On each

execution of Step (2a), tube P1 consists of those DNA strands

that have yi = 1, tube P3 contains those DNA strands that have

yi = 0, and tube Y0 becomes an empty tube. Next, on each

execution of Step (2b), tube P2 contains those DNA strands that

have yi = 1 and yj = 1, tube P4 contains those DNA strands that

have yi = 1 and yj = 0, and tube P1 becomes an empty tube. This

indicates that molecular solutions in tube P2 contain two

vertices in the kth edge and are illegal independent sets;

molecular solutions in tube P4 only contain one vertex in the kth

edge and are legal independent sets; and molecular solutions in

tube P3 contain one vertex or no vertices in the kth edge and are

legal independent sets. Then, on each execution of Step (2c),

tube Y0 contains those DNA strands that encode legal

independent sets, tube P3 is an empty tube, and tube P4 is also

an empty tube. Next, on each execution of Step (2d), illegal

independent sets encoded by DNA strands in tube P2 are

discarded. After repeatedly executing Steps (2a) through (2d),

tube Y0 consists of those DNA strands that satisfy

∧𝑘=1
𝑚 (𝑦𝑖 ∧ 𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅) that is the true value for the kth edge in G for 1

 k  m.

Next, Steps (3) and (4) are subsequently the outer loop and

the inner loop of the only nested loop, and the range of the first

loop index variable i is from 0 through n − 1, while the range of

the second loop index variable j is from i down to 0. Each

execution of Step (4a) at the iteration (i, j) in the two-level

nested loop is applied to compute the influence of yi + 1 on the

number of ones in tubes (sets) Yj + 1 and Yj. Upon each execution

of Step (4a), the extract operation forms two different tubes

(sets), Yj + 1
ON and Yj, from tube (set) Yj. This is to say that tube

(set) Yj + 1
ON has yi + 1 = 1 and tube (set) Yj has yi + 1 = 0. This

indicates that at the iteration (i, j) in the two-level nested loop,

the influence of yi + 1 on the number of ones is to record single

ones in tube (set) Yj + 1
ON and also to record zero ones in tube

(set) Yj. Next, upon each execution of Step (4b) at the iteration

(i, j) in the two-level nested loop, the merge operation is applied

to pour the content of tube (set) Yj + 1
ON into tube (set) Yj + 1. This

indicates that at the iteration (i, j) in the two-level nested loop,

the influence of yi + 1 on the number of ones is to record single

ones in tube (set) Yj + 1. Next, from the iteration (i, j − 1) through

the iteration (n − 1, 0) in the two-level nested loop, similar

processing is applied to compute the influence of yi + 1 through

yn on the number of ones. Hence, after each operation is

completed, those DNA strands in tube Yi for 0  i  n have i

ones that contain i vertices. Next, Step (5) is a loop and it is to

read molecular solutions of a maximum-sized independent set.

On each execution of Step (5a), if there are DNA strands in tube

Yc, a “true” is returned. Next, on each execution of Step (5b),

the answer of a maximum-sized independent set is read and the

algorithm terminates. Hence, it is inferred that the independent

set problem for a graph G with m edges and n vertices can be

solved by the molecular algorithm Solve-independent-set-

problem(Y0, n, m). 

D. Time and Space Complexity of Molecular Algorithms
for Solving the Independent Set Problem

The following lemma is used to describe the time complexity,

the volume complexity of solution space, the number of the tube

used and the longest library strand in solution space for the

molecular algorithm, Solve-independent-set-problem(Y0, n,

m).

Lemma 4-2. The independent set problem for any graph G

with n vertices and m edges can be solved with O(n2 + m) =

O(n2) biological operations, O(2n) DNA strands, O(n) tubes

and the longest DNA strand, O(n).

Proof:

In the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), Steps (0a), (0b) and (0c) take two “Append-

Tail” operations and one “Merge” operation. Next, on the

execution of Step (1a) through Step (1d), it takes (n − 1)

“Amplify” operations, (2  (n − 1)) “Append-Tail” operations

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 7

and (n − 1) “Merge” operations. Next, because the value of m,

which is the number of edges, is at most ((n  (n − 1)) / 2), on

the execution of Step (2a) through Step (2d), at most (n  (n −

1)) “Extraction” operations, ((n  (n − 1)) / 2) “Merge”

operations and ((n  (n − 1)) / 2) “Discard” operations are

needed. Next, on the execution of Step (4a) through Step (4b),

it takes ((n  (n + 1)) / 2) “Extraction” operations and ((n  (n

+ 1)) / 2) “Merge” operations. Finally, on the execution of Step

(5a) through Step (5b), at most (n) “Detect” operations and one

“Read” operation are needed.

From the proof of Lemma 4-1 we have that the 2n DNA

strands that encode the 2n possible independent sets are

constructed, (2  n + 7) tubes are used. Because the length of

each possible independent set is n bits and each bit can be

encoded by a short DNA strand with constant length, the

longest DNA strand is O(n). Therefore, from the statements

above it is at once inferred that the independent-set problem for

any graph G with n vertices and m edges can be solved with

O(n2 + m) = O(n2) biological operations, O(2n) DNA strands,

O(n) tubes and the longest DNA strand, O(n). 

E. The Straightforward Boolean Circuit for Determining
Independent Sets from Bio-molecular Solutions

After each biological operation from Step (0a) through (1d)

in the molecular algorithm Solve-independent-set-problem(Y0,

n, m) is completed, the 2n DNA strands in tube Y0 encode the 2n

possible choices. Next, after each biological operation from

Step (2a) through Step (2d) at the same iteration k for 1  k  m

is completed, bio-molecular solutions in tube P2 contain two

vertices in the kth edge and are illegal independent sets while

bio-molecular solutions in tube Y0 contain one vertex or zero

vertices in the kth edge and are legal independent sets.

Therefore, the truth table used to implement the NAND

operation that appears in Table 4.1 can express the

straightforward Boolean circuit generated from Step (2a)

through Step (2d) at the same iteration k for 1  k  m.

Input Output

yi yj 𝑦𝑖 ∧ 𝑦𝑗 = lk

0 0 1

0 1 1

1 0 1

1 1 0

Table 4-1: The truth table for the NAND operation.

Bits yi and yj are its two inputs, and bit lk for 1  k  m is its

output. If the value of bit lk for 1  k  m is equal to 1, then the

corresponding subsets of vertices only contain one vertex or

zero vertices in the kth edge (vi, vj) and are legal independent

sets. Otherwise, the corresponding subsets of vertices contain

two vertices in the kth edge (vi, vj) and are illegal independent

sets. Therefore, after repeatedly executing Steps (2a) through

(2d) from iteration one through iteration m, bio-molecular

solutions in tube Y0 contain one vertex or zero vertices in each

edge and do not contain two vertices of any one edge. This is to

say that bio-molecular solutions in tube Y0 encode those subsets

of vertices in which for all vertices vi and vj, the edge (vi, vj) is

not in E which is the set of edges in graph G. This also implies

that bio-molecular solutions in tube Y0 satisfy the fact that each

NAND operation of two inputs yi and yj has a true value.

Therefore, the straightforward Boolean circuit generated from

Step (2a) through Step (2d) at all m iterations is to implement

the Boolean formula (∧𝑘=1
𝑚 (𝑦𝑖 ∧ 𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅)) and to find which subsets

of vertices satisfy the Boolean formula (∧𝑘=1
𝑚 (𝑦𝑖 ∧ 𝑦𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅)) that

has the true value.

Figure 4-3 shows a flowchart for recognizing independent

sets of the independent-set problem for a graph G with n

vertices and m edges. In Figure 4-3, in statement S1, the index

variable k of the first loop is set to one (1). Next, in statement

S2, the conditional judgement of the first loop is executed. If the

value of k is less than or equal to the value of m, then next

executed instruction is statement S3. Otherwise, in statement S6,

an End instruction is executed to terminate the task of

recognizing independent sets.

Fig. 4-3: Recognizing independent-sets of the independent-set

problem for a graph G with n vertices and m edges.

In statement S3, a NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” is implemented.

Bits (Boolean variables) yi and yj respectively encode vertex vi

and vertex vj that are connected by the kth edge in a graph G

with n vertices and m edges. Bit (Boolean variable) lk with 1 

k  m stores the result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅) (the kth NAND

gate). Next, in statement S4, a logical and operation “ok  lk 

ok − 1” is executed that is the kth clause in (⋀ (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅)𝑚

𝑘=1). Bit

(Boolean variable) lk stores the result of implementing the kth

NAND gate and is the first operand of the logical and operation.

Bit (Boolean variable) ok − 1 with 1  k  m is the second operand

of the logical and operation and stores the result of the previous

logical and operation. Bit (Boolean variable) ok with 1  k  m

stores the result of implementing lk  ok − 1 (the kth clause that

is the kth AND gate). Next, in statement S5, the value of the

index variable k to the first loop is incremented. Repeat to

execute statements S2 through S5 until in statement S2 the

conditional judgement results a false value. From Figure 4-3 it

follows that the total number of NAND gates is m. The total

number of logical and operation is m AND gates. Therefore, the

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 8

cost of recognizing independent set(s) corresponds to m NAND

gates and m AND gates.

A data dependence arises from two statements that access or

modify the same resource. Data dependence analysis is to

determine whether it is safe to reorder or parallelize statements.

If the first of two statements first modifies the same resource

and then the second of two statements reads the same resource,

then there is a true dependence between the first statement and

the second statement. If the first of two statements first reads

the same resource and then the second of two statements

modifies the same resource, then there is an anti-dependence

between the first statement and the second statement. If the first

of two statements first modifies the same resource and then the

second of two statements modifies the same resource, then there

is an output dependence between the first statement and the

second statement. We use data dependence analysis to show

that the straightforward Boolean circuit in Figure 4-3 for

recognizing independent sets of the independent set problem for

a graph G with n vertices and m edges is the best Boolean circuit

known for the problem.

Lemma 4-3. For the independent-set problem for any graph

G with n vertices and m edges, in Figure 4-3, the Boolean circuit

with m NAND gates and m AND gates generated from Step (2a)

through Step (2d) at all m iterations in the molecular algorithm,

Solve-independent-set-problem(Y0, n, m), is the best Boolean

circuit known for recognizing independent-set(s) among 2n

possible choices.

Proof:

In Figure 4-3, in statement S3, a NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” is

implemented and the result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅) is written

into Boolean variable lk. Next, in statement S4, a logical and

operation “ok  lk  ok − 1” is executed and it needs to read the

value of Boolean variable lk (the first operand). Therefore, there

is a true dependence between statement S3 and statement S4.

The true dependence between statement S3 and statement S4

cannot be broken. Therefore, each statement in Figure 4-3 must

be executed in sequential mode. Hence, it is at once inferred

from the statements above that in Figure 4-3 the straightforward

Boolean circuit with m NAND gates and m AND gates

generated from Step (2a) through Step (2d) at all m iterations in

the molecular algorithm, Solve-independent-set-problem(Y0,

n, m), is the best Boolean circuit known for recognizing

independent-set(s) among 2n possible choices. 

F. The Straightforward Boolean Circuit for Computing
the Number of Vertex in Independent Sets from Bio-
molecular Solutions

After each biological operation from Steps (2a) through (2d)

in the molecular algorithm, Solve-independent-set-

problem(Y0, n, m) is completed, the DNA strands in tube Y0

encode each solution (independent-set) that has the value of om

equal to one (1). For computing the number of vertices, we need

auxiliary Boolean variables wi+1, j and wi+1, j+1 with 0  i  n − 1

and 0  j  i. Auxiliary Boolean variables wi+1, j and wi+1, j+1 with

0  i  n − 1 and 0  j  i are set to the initial value 0 (zero).

Boolean variable wi+1, j+1 with 0  i  n − 1 and 0  j  i stores

the number of vertex in a solution after figuring out the

influence of Boolean variable yi + 1 that encodes the (i + 1)th

vertex on the number of ones (vertices). If the value of Boolean

variable wi+1, j+1 for 0  i  n − 1 and 0  j  i is equal to 1 (one),

then this indicates that there are (j + 1) ones (vertices) in the

solution. Boolean variable wi+1, j for 0  i  n − 1 and 0  j  i

stores the number of vertex in a solution after figuring out the

influence of Boolean variable yi + 1 that encodes the (i + 1)th

vertex on the number of ones (vertices). If the value of Boolean

variable wi+1, j for 0  i  n − 1 and 0  j  i is equal to 1 (one),

then this indicates that there are j ones (vertices) in the solution.

In a solution (an independent-set) that has the value of bit om

equal one, bit y1 encodes the first vertex v1. If the value of bit y1

is equal to one (1), then the first vertex v1 appears in the solution

and it increments the number of vertices (the number of ones)

for the solution. Otherwise, the first vertex v1 does not appear

in the solution and it preserves the number of vertices (the

number of ones) for the solution. In the molecular algorithm,

Solve-independent-set-problem(Y0, n, m), on the execution of

Step (4a) in the iteration (i = 0, j = 0), the extract operation is

used to form two different tubes, Y1
ON and Y0 out of tube (set)

Y0. Therefore, the DNA strands in tube Y1
ON encode solutions

that have y1 = 1 and contain vertex v1 and the DNA strands in

tube Y0 have y1 = 0 and do not contain vertex v1. This is to say

that the influence of y1 (the influence of vertex v1) on the

number of ones (the number of vertices) is recorded as single

ones in tube Y1
ON and to record zero ones in tube Y0. Next, on

the execution of Step (4b) in the same iteration (i = 0, j = 0), the

merge operation is applied by pouring the contents of tube Y1
ON

into tube Y1. This indicates that in the iteration (i = 0, j = 0), the

influence of y1 on the number of ones is recorded as single ones

in tube (set) Y1. Therefore, for the influence of the first vertex

v1, incrementing the number of vertices in each solution is to

satisfy the formula (om  y1) and preserving the number of

vertices is to satisfy the formula (om  𝑦1).

Similarly, the influence of the (i + 1)th vertex with 1 ≤ i ≤ n

– 1 is to decide whether in each solution the number of vertices

(the number of ones) is incremented or is preserved. In order to

increment the number of vertices (the number of ones) in each

solution two conditions must be satisfied. The first condition is

that the (i + 1)th vertex is within the solution and the second

condition is that each solution currently has j vertices. In order

to preserve the number of vertices (the number of ones) in each

solution two conditions must be satisfied. The first condition is

that the (i + 1)th vertex is not within the solution and the second

condition is that each solution currently also has j vertices. Next,

on each execution of Step (4a) in the iteration (i, j), the extract

operation is used to form two different tubes (sets), Yj + 1
ON and

Yj out of tube (set) Yj. Hence, the DNA strands in tube Yj + 1
ON

encode each solution that has yi + 1 = 1 and contains vertex vi + 1.

The DNA strands in tube Yj on the other hand encode each

solution that has yi + 1 = 0 and does not contain vertex vi + 1. This

indicates that in the iteration (i, j), the influence of yi + 1 on the

number of ones (the number of vertices) is recorded as (j + 1)

ones in tube Yj + 1
ON and also as j ones in tube Yj. Next, on each

execution of Step (4b) in the iteration (i, j), the merge operation

is applied by pouring the contents of tube (set) Yj + 1
ON into tube

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 9

(set) Yj + 1. This indicates that in the iteration (i, j), the influence

of yi + 1 on the number of ones (the number of vertices) is

recorded as having (j + 1) ones in tube Yj + 1. Therefore, for the

influence of the (i + 1)th vertex for 1 ≤ i ≤ n – 1 in each solution,

the two conditions for incrementing the number of vertices (the

number of ones) in each solution are to satisfy the Boolean

formula (yi + 1  wi, j). The two conditions for preserving the

number of vertices in each solution are to satisfy the Boolean

formula ((𝑦𝑖+1)  wi, j).

Fig. 4-4 shows the logical flowchart for counting the number

of vertices in each solution. In Fig. 4-4, in statement S1, a logical

and operation “w1,1  om  y1” is implemented that corresponds

to one AND gate. Boolean variable w1, 1 stores the result of

implementing one AND gate (om  y1). If the value of w1, 1 is

equal to 1 (one), the number of vertices is incremented so that

the number of vertices in each solution with the first vertex v1

is one. Next, in statement S2, a logical and operation “w1,0  om

 𝑦1 ” is implemented that corresponds to one AND gate.

Boolean variable w1, 0 stores the result of implementing one

AND gate (om  𝑦1). If the value of w1, 0 is equal to 1 (one), then

the number of vertices is preserved so that the number of

vertices in each solution without the first vertex v1 is zero.

Fig. 4-4: Flowchart for computing the number of vertices in

each solution (independent-set).

Next, in statement S3, the index variable i of the first loop is

set to one. Then, in statement S4, the conditional judgement of

the first loop is executed. If the value of i is less than or equal

to the value of (n −1), then next executed instruction is statement

S5. Otherwise, in statement S11, an End instruction is executed

to terminate the task of counting the number of vertices in each

solution. In statement S5, the index variable j of the second loop

is set to the value of the index variable i in the first loop. Next,

in statement S6, the conditional judgement of the second loop is

executed. If the value of j is greater than or equal to zero, then

the next executed instruction is statement S7. Otherwise, the

next executed instruction is statement S10.

In statement S7, a logical and operation “wi+1, j+1  yi+1  wi,

j” is implemented that corresponds to one AND gate. Boolean

variable yi+1 encodes the (i + 1)th vertex and is the first operand

of the logical and operation. Boolean variable wi, j is the second

operand of the logical and operation. Boolean variable wi, j

stores the number of vertex in a solution after determining the

influence of Boolean variable yi that encodes the ith vertex on

the number of ones (vertices). If the value of wi, j is equal to 1

(one), then this indicates that there are j ones (vertices) in the

solution. Boolean variable wi+1, j+1 stores the result of

implementing the logical and operation “wi+1, j+1  yi+1  wi, j”.

This is to say that wi+1, j+1 stores the number of vertex in a

solution after determining the influence of Boolean variable yi +

1 that encodes the (i + 1)th vertex on the number of ones

(vertices). If the value of wi+1, j+1 is equal to 1 (one), then this

implies that there are (j + 1) ones (vertices) in the solution.

Next, in statement S8, a logical and operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅

 wi, j” is implemented that corresponds to one AND gate.

Boolean variable yi+1 encodes the (i + 1)th vertex and its

negation 𝑦𝑖+1̅̅ ̅̅ ̅ is the first operand of the logical and operation.

Boolean variable wi, j is the second operand of the logical and

operation. It stores the number of vertex in a solution after

determining the influence of Boolean variable yi that encodes

the ith vertex on the number of ones (vertices). If the value of

wi, j is equal to 1 (one), then this indicates that there are j ones

(vertices) in the solution. Boolean variable wi+1, j stores the

result of implementing the logical and operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅

 wi, j”. This indicates that wi+1, j stores the number of vertex in

a soution after determining the influence of Boolean variable yi

+ 1 that encodes the (i + 1)th vertex on the number of ones

(vertices). The value of wi+1, j being equal to 1 (one) indicates

that there are j ones (vertices) in the solution.

Next, in statement S9, the value of the index variable j in the

second loop is decremented. Repeat to execute statement S6

through statement S9 until in statement S6 the conditional

judgement attains a false value. Next, in statement S10, the value

of the index variable i in the first loop is incremented. Repeat

to execute statements S4 through S10 until in S4 the conditional

judgement attains a false value. When this happens, the next

executed statement is S11. In S11, an End instruction is executed

to terminate the task of counting the number of vertices in each

solution. The cost of each operation in Fig. 4-4 is (n  (n +1))

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates. Therefore, the cost of

counting the number of vertices for each solution is to

implement (n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT gates.

We use data dependence analysis to show that in Fig. 4-4 the

straightforward Boolean circuit for counting the number of

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 10

vertices in each solution is the best Boolean circuit known for

the problem.

Lemma 4-4. In Fig. 4-4, the Boolean circuit with (n  (n +1))

AND gates and (
𝑛×(𝑛+1)

2
) NOT gates generated from Steps (4a)

through (4b) in each iteration in the molecular algorithm, Solve-

independent-set-problem(Y0, n, m), is the best Boolean circuit

known for counting the number of vertices in each solution.

Proof:

As shown in Figure 4-4, in statement S7, an AND gate “wi+1,

j+1  yi+1  wi, j” is implemented and the result of implementing

(yi+1  wi, j) is written into Boolean variable wi+1, j+1 for 1  i 

(n − 1) and i  j  0. In iteration (i = 1, j = 1) in statement S7 the

value of Boolean variable w2, 2 is modified and later, in iteration

(i = 2, j = 2) in statement S7, the value of w2, 2 is read. There are

similar cases of modifying and reading the same resource in

Statement S7 in later iterations. Hence, there is a true

dependence in statement S7. Next, in statement S8, a logical and

operation “wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j” is executed and the result of

implementing (𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) is written into Boolean variable wi+1,

j with 1  i  (n − 1) and i  j  0. In iteration (i = 1, j = 1) in

statement S8 the value of Boolean variable w2, 1 is modified and

later, in iteration (i = 2, j = 1) in statement S8, the value of w2, 1

is read. There are similar cases of modifying and reading the

same resource in Statement S8 in later iterations. Therefore,

there is a true dependence in statement S8. The true

dependence in both statements S7 and S8 cannot be broken.

Next, in iteration (i = 1, j = 1) in Statement S7 the value of

Boolean variable w2, 2 is modified and later, in iteration (i = 2, j

= 2) in Statement S8, the value of w2, 2 is read. There are similar

cases of modifying and reading the same resource between

Statements S7 and S8 in later iterations. Hence, there is a true

dependence between S7 and S8. Next, in iteration (i = 1, j = 1)

in Statement S8 the value of Boolean variable w2, 1 is modified

and later, in iteration (i = 2, j = 1) in Statement S7, the value of

w2, 1 is read. There are similar cases of modifying and reading

the same resource between Statements S8 and S7 in later

iterations. Hence, there is a true dependence between S8 and S7.

Next, in iteration (i = 1, j = 1) in Statement S8 the value of

Boolean variable w2, 1 is written and later in iteration (i = 1, j =

0) in Statement S7 the value of w2, 1 is read. There are similar

cases of modifying the same resource between Statements S8

and S7 in later iterations. Hence, there is an output dependence

between Statements S8 and S7. This indicates that there are

simultaneously two true dependences and one output

dependence between statements S7 and S8. The two true

dependences and the output dependence between statement S7

and statement S8 cannot be broken. Therefore, only sequential

mode can be used in each statement in Figure 4-4. From the

statements above it is at once derived that in Fig. 4-4, the

Boolean circuit with (n  (n +1)) AND gates and (
𝑛×(𝑛+1)

2
) NOT

gates generated in Step (4a) through Step (4b) in each iteration

in the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), is the best Boolean circuit known for

counting the number of vertices in each solution. 

V. QUANTUM ALGORITHMS FOR IMPLEMENTING THE

STRAIGHTFORWARD BOOLEAN CIRCUITS FROM MOLECULAR

SOLUTIONS FOR SOLVING THE INDEPENDENT SET PROBLEM

In this section, we introduce quantum bits and quantum gates.

Then, we use them to design a new kind of quantum algorithm

to implement the straightforward Boolean circuits generated

from molecular solutions for solving the independent set

problem on any graph with m edges and n vertices.

A. Introduction to Quantum Bits and Quantum Gates

In the two-dimensional Hilbert space [30-32, 43-44], a

quantum bit has two computational basis vectors |0> and |1>,

and corresponds to the classical bit values 0 and 1. We refer to

a collection of n quantum bits as a quantum register of size n.

A quantum register may consist of any of the 2n-dimensional

computational basis vectors, n quantum bits of size, or an

arbitrary superposition of these vectors [30-32, 43-44]. If the

content of the quantum bits of a quantum register is known, then

the state of the quantum register can be computed by a tensor

product in the following way: |𝜕⟩ = (|𝑞𝑛⟩  |𝑞𝑛−1⟩    |𝑞2⟩
 |𝑞1⟩). If the state of a quantum register of size n is an arbitrary

superposition of the 2n-dimensional computational basis

vectors, then it can be represented as |𝛾⟩ = (∑ 𝑏𝑎
2𝑛−1
𝑎=0 |𝑎⟩),

where each weighted factor ba  C is a so-called probability

amplitude; hence they must satisfy (∑ |𝑏𝑎|22𝑛−1
𝑎=0) = 1.

Unitary operators are often referred to as quantum gates [30-

32, 43-44]. Using quantum gates one can model the time

evolution of the states of quantum registers. Hence, a quantum

gate is an elementary quantum-computing device that

completes a fixed unitary operation on selected quantum bits

during a fixed period. As given in [30-32, 43-44], the

Hadamard gate H is a quantum gate of one quantum bit (a 2 

2 matrix). Its four entries are, respectively, H1, 1 = 1 / (21 / 2), H1,

2 = 1 / (21 / 2), H2, 1 = 1 / (21 / 2), and H2, 2 = −1 / (21 / 2). The NOT

gate with one quantum bit sets only the (target) bit to its

negation. The CNOT (controlled-NOT) gate with two quantum

bits flips the second quantum bit (the target quantum bit) if and

only if the first quantum bit (the control quantum bit) is equal

to one. The controlled-controlled-NOT (CCNOT) gate with

three quantum bits flips the third quantum bit (the target

quantum bit) if and only if the first and second quantum bits

(the two control quantum bits) are both one. A quantum gate,

Hn, that stands for the joined Hadamard gates of n quantum

bits is applied to an initial state vector |0000⟩ with n

quantum bits, and its outcome is |𝜆⟩ = (
1

√2𝑛 ∑ |𝑎⟩2𝑛−1
𝑎=0).

B. Computational State Space of Molecular Solutions for the

Independent Set Problem

Based on the molecular algorithm, Solve-independent-set-

problem(Y0, n, m), 2n possible choices (independent sets) are

generated in Steps (0a) through (1d), and are stored in set (tube)

Y0 which is equal to {yn yn − 1  y2 y1  yd  {0, 1} for 1  d 

n}. We use the following lemma to describe computational state

space of molecular solutions for solving the independent-set

problem for a graph G with n vertices and m edges.

Lemma 5-1: For solving the independent-set problem on a

graph with m edges and n vertices, the set of the corresponding

computational state vectors of 2n possible choices (independent

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 11

sets) generated in Steps (0a) through (1d) in the molecular

algorithm Solve-independent-set-problem(Y0, n, m) forms an

orthonormal basis of a 2n dimensional Hilbert space (a complex

vector space, 𝐶2𝑛
).

Proof:

We use a unique computational basis vector with 2n-tuples

of binary numbers to represent each element in set (tube) Y0.

The first corresponding computational basis vector for the first

element yn
0 yn − 1

0  y2
0 y1

0 is ([1 0 ⋯ 0]1×2𝑛
𝑇). The second

computational basis vector for the second element yn
0 yn − 1

0 

y2
0 y1

1 is ([0 1 ⋯ 0]1×2𝑛
𝑇). And so on, with the last

corresponding computational basis vector for the last element

yn
1 yn − 1

1  y2
1 y1

1 being ([0 0 ⋯ 1]1×2𝑛
𝑇). Therefore, the

set of the corresponding computational basis vectors for each

element (each possible independent set) in set (tube) Y0 is D =

{ [1 0 ⋯ 0]1×2𝑛
𝑇 , [0 1 ⋯ 0]1×2𝑛

𝑇 , ,

[0 0 ⋯ 1]1×2𝑛
𝑇 }. Each computational basis vector in D is

a coordinated vector [27], and the vectors together span D =

𝐶2𝑛
. Therefore, it is at once inferred that the set of the

corresponding computational state vectors of 2n possible

choices (independent sets) generated in Steps (0a) through (1d)

in the molecular algorithm Solve-independent-set-problem(Y0,

n, m) forms an orthonormal basis of a 2n dimensional Hilbert

space (a complex vector space, 𝐶2𝑛
). █

C. Quantum Circuits and Mathematical Solutions for

Computational State Space of Molecular Solutions for the

Independent Set Problem

In light of Lemma 5-1, for solving the independent-set

problem of a graph with m edges and n vertices, 2n possible

molecular solutions generated in Steps (0a) through (1d) in the

molecular algorithm Solve-independent-set-problem(Y0, n, m)

form an orthonormal basis of a Hilbert space (a complex vector

space, 𝐶2𝑛
). This is to say that each possible molecular solution

corresponds to an element in an orthonormal basis of a Hilbert

space (𝐶2𝑛
). For simultaneously encoding 2n possible

molecular solutions, we assume that a quantum register of n bits,

(⨂𝑝=𝑛
1 |𝑦𝑝⟩), is applied to initialize a system that has Q = 2n

states which are labeled as P0, P1, P2, , PQ − 1, where each state

Pk for 0  k  2n − 1 corresponds to the kth possible molecular

solution. We also assume that a quantum register with one

quantum bit, (|1⟩), is used to label the amplitude of the answer(s)

among the 2n states. For completing the purpose, we use one

Hadamard gate on the state |1⟩ and the new quantum state

vector is (
1

√2
 (|0⟩ − |1⟩)).

The initial states in (⨂𝑝=𝑛
1 |𝑦𝑝⟩) are set to (⨂𝑝=𝑛

1 |𝑦𝑝
0⟩) and

we assume that |𝜆0⟩ = (⨂𝑝=𝑛
1 |𝑦𝑝

0⟩). We also suppose that the

initial quantum state vector is (|𝜆0⟩). Using n Hadamard gates

to operate on the initial quantum state vector (|𝜆0⟩), the system

that has Q = 2n states which are labeled as P0, P1, P2, , PQ − 1

is

|𝜆5−1⟩ = (Hn) |𝜆0⟩ =
1

√2𝑛 (⊗𝑝=𝑛
1 (|𝑦𝑝

0⟩ + |𝑦𝑝
1⟩)) =

1

√2𝑛

(∑ |𝑦⟩2𝑛−1
𝑦=0). (5-1)

In the new state vector (|𝜆5−1⟩), state |yn
0 yn − 1

0  y2
0 y1

0>

with the amplitude (
1

√2𝑛) encodes the first element yn
0 yn − 1

0 

y2
0 y1

0 of molecular solution space that does not contain any

vertices. State |yn
0 yn − 1

0  y2
0 y1

1> with the amplitude (
1

√2𝑛)

encodes the second element yn
0 yn − 1

0  y2
0 y1

1 of molecular

solution space containing the first vertex v1. And so on, with

state |yn
1 yn − 1

1  y2
1 y1

1> with the amplitude (
1

√2𝑛) encoding the

last element yn
1 yn − 1

1  y2
1 y1

1 of molecular solution space

containing n vertices {vn vn − 1  v2 v1}.

D. Quantum Circuits and Mathematical Solutions for

Implementing Molecular Solutions for legal Independent Sets

among 2n Possible Choices

To solve an instance of the independent set problem for a

graph G with n vertices and m edges, in Figure 4-3, the

straightforward Boolean circuit generated in Steps (2a) through

(2d) in all m iterations in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) is used to recognize and to

label independent-sets among the 2n possible choices. The

straightforward Boolean circuit for labelling legal independent

sets among the 2n possible choices in Figure 4-3 is

(⋀𝑘=1
𝑚

(𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅)), (5-2)

where bits yi and yj respectively represent vertices vi and vj in

the kth edge, ek = (vi, vj), in G for 1  k  m. The Boolean

formula (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) consists of m NAND operations and m

AND operations. The operations NAND and AND are,

respectively, implemented by quantum circuits in Figures 5-1(a)

and 5-1(b). Therefore, we assume that the second quantum

register with m quantum bits, |lm lm − 1  l1>, for 1  k  m, stores

the result of evaluating the kth NAND gate with the form

(𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅) that corresponds to one NAND operation. The initial

state for each quantum bit in |lm lm − 1  l1> is prepared in state

|1>. The mth quantum bit lm in the second quantum register

stores the result of the evaluating computation for the last

NAND operation.

Fig. 5-1: (a) NAND operation of two Boolean variables, and (b)

AND operation of two Boolean variables.

Next, in order to evaluate the AND operation of the previous

clause (the (k − 1)th clause) and the current clause (the kth

clause), a third quantum register |om om − 1  o1 o0> is needed.

The first quantum bit |o0> in the third quantum register is

initially prepared in state |1>. Other m bits in the third quantum

register are initially in state |0>. The (m + 1)th quantum bit |om>

in the third quantum register stores the result of the evaluation

of the AND operation of the previous clause (the (m − 1)th

clause) and the last clause (the mth clause). This indicates that

the (m + 1)th quantum bit |om> in the third register stores the

result of the evaluating computation for all of the clauses. We

use Lemma 5-2 to show how the quantum circuit in Figure 5-2

implements the straightforward Boolean circuit in equation (5-

2) for recognizing legal independent-sets among 2n possible

choices.

Lemma 5-2: To solve the independent set problem for any

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 12

graph G = (V, E) with n vertices and m edges, the quantum

circuit, LIS, in Figure 5-2 with (2  m) CCNOT gates can

implement the straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅))

in equation (5-2) and is the best quantum circuit known for

labelling legal independent sets among 2n possible choices.

Proof:

To solve an instance of the independent set problem for a

graph G with n vertices and m edges, in Figure 4-3, the

straightforward Boolean circuit generated in Steps (2a) through

(2d) in all m iterations in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) is used to recognize and to

label independent sets among 2n possible choices. We use the

Boolean formula (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) in equation (5-2) to represent

the straightforward Boolean circuit for labelling legal

independent sets among 2n possible choices in Figure 4-3. We

show how to implement each instruction in the flowchart of

Figure 4-3 to complete the proof. In Figure 4-3, in statement S1,

the value of the loop index variable k is set to one (1). Next, in

statement S2 in Figure 4-3, the conditional judgement of the first

loop is executed. If the value of k is less than or equal to the

value of m, then the next executed instruction is statement S3 in

Figure 4-3. Otherwise, in statement S6 in Figure 4-3, an End

instruction is executed to terminate the task of recognizing legal

independent sets among 2n possible choices.

We assume that the kth edge ek is (vi, vj) and bits yi and yj are

used to respectively represent vertices vi and vj. Next, in

statement S3 in Figure 4-3, the choices that include one vertex

(vi or vj) or zero vertices are labeled and the choices that include

two vertices vi and vj are discarded. This is to say that the legal

independent sets satisfy the formula of the form (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅).

Hence, one CCNOT gate, (|lk
1  yi • yj>), with the target bit lk

1

and the two controlled bits yi and yj are used to implement a

NAND gate “lk  𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅ ” in statement S3 of Figure 4-3 and the

result of implementing (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅) is written into the target bit |lk

1>.

Next, in statement S4 in Figure 4-3, one CCNOT gate, (|ok
0 

lk • ok − 1>), with the target bit ok
0 and the two controlled bits lk

and ok − 1 are used to implement a logical and operation “ok 

lk  ok − 1” that is the kth AND gate in (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) in equation

(5-2). The result of implementing (lk  ok − 1) is written into the

target bit |ok
0>.

Next, in statement S5 in Figure 4-3, the value of the index

variable k in the first loop is incremented. Repeat to execute

statements S2 through S5 in Figure 4-3 until in S2 the conditional

judgement attains a false value. Based on Figure 4-3, the total

number of NAND gates is m. The total number of logical and

operation uses m AND gates. Therefore, the cost of the quantum

gate for recognizing the labelling of legal independent sets

among 2n possible choices is (2  m) CCNOT gates. As shown

in the proof of Lemma 4-3, there is a true dependence between

statements S3 and S4 in Figure 4-3. The true dependence

between S3 and S4 cannot be broken. Therefore, each statement

in Figure 4-3 must be executed in sequential mode. Based on

the statements above, the quantum circuit LIS in Figure 5-2 can

implement the straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅))

in equation (5-2).

Each bit in |lm
1 lm − 1

1  l1
1> in Figure 5-2 is an auxiliary

quantum bit and is used to store the result of evaluating each

clause of the form (𝑦𝑖 ⋀ 𝑦𝑗
̅̅ ̅̅ ̅̅ ̅̅). Hence, this step requires m NAND

operations through the relations (|lk
1  yi • yj>) with the target

bit lk
1 and the two control bits yi and yj where 1  i and j  n and

1  k  m. In Figure 5-2, each bit in |om
0 om − 1

0  o1
0 o0

1> is

also an auxiliary quantum bit, and it is used to store the result

of evaluating the (k − 1)th clause and the kth clause where 1 

k  m. This step requires m AND operations through the relation

(|ok
0  lk • ok − 1>) with the target bit ok

0 and the two control bits

lk and ok − 1 for 1  k  m. From the statements above, it is at

once inferred that the quantum circuit, LIS, in Figure 5-2 with

(2  m) CCNOT gates can implement the straightforward

Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) in equation (5-2) and is the best

quantum circuit known for labelling legal independent sets

among 2n possible choices. ▉

Fig. 5-2: The quantum circuit, LIS, used to label legal

independent sets among 2n possible choices.

E. Quantum Circuits and Mathematical Solutions of

Molecular Solutions to the Maximum-sized Independent Sets

The straightforward Boolean circuits in Figure 4-4 obtained

from Steps (4a) through (4b) at each iteration in the molecular

algorithm Solve-independent-set-problem(Y0, n, m) count the

number of vertices in each solution. The straightforward

Boolean circuits in Figure 4-4 for counting the number of

vertices in each legal independent sets are

(w1,1  om  y1) and (w1,0  om  𝑦1) and (5-3)

(wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n −

1 and 0  j  i. (5-4)

Auxiliary quantum bits |wi + 1, j> and |wi + 1, i+ 1>, where 0  i 

n − 1 and 0  j  i, are needed to execute these operations. For

0  i  n − 1 and 0  j  i, each quantum bit in |wi + 1, j> and |wi +

1, i+ 1> is initially prepared in state |0>. We assume that for 0  i

 n − 1 and 0  j  i, quantum bit |wi + 1, j+ 1> will record the

status of tube (set) Yj + 1 that has (j + 1) ones after the influence

of yi + 1 on the number of ones. We also suppose that for 0  i 

n − 1 and 0  j  i, quantum bit |wi + 1, j> is to record the status

of tube (set) Yj that has j ones after the influence of yi + 1 to the

number of ones. We use Lemma 5-3 to show how the quantum

circuits from Figures 5-3 through 5-4 implement the

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 13

straightforward Boolean circuit in equation (5-3) and equation

(5-4) for counting the number of vertices in each legal

independent-set.

Lemma 5-3: The quantum circuit CFFV in Figure 5-3

implements the straightforward Boolean circuit (w1,1  om  y1)

and (w1,0  om  𝑦1) in equation (5-3). The quantum circuit

CMO in Figure 5-4 implements the straightforward Boolean

circuit (wi+1, j+1  yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1 

i  n − 1 and 0  j  i in equation (5.4).

Proof:

If a legal independent set has the first vertex v1, then it

satisfies the straightforward Boolean circuit (w1,1  om  y1) in

equation (5-3). Otherwise, it satisfies the straightforward

Boolean circuit (w1,0  om  𝑦1) in equation (5-3). After the

influence of y1 on the number of ones is determined, quantum

bit |w1, 1> that encodes bit w1,1 will record which legal

independent sets have only one value 1 and contain the first

vertex v1. Quantum bit |w1, 0> that encodes bit w1,0 will record

which legal independent sets have zero ones and do not contain

the first vertex v1. Therefore, one CCNOT gate (|w1, 1
0  om •

y1>) with the target bit |w1, 1
0 > and two control bits |om> and

|y1> implements (w1,1  om  y1) (the first condition of equation

(5-3)). One NOT gate operating on |y1> (|𝑦1̅̅ ̅>) and another

CCNOT gate (|w1, 0
0  om • 𝑦1̅̅ ̅>) with the target bit |w1, 0

0 > and

two control bits |om> and |𝑦1̅̅ ̅> implement (w1,0  om  𝑦1) (the

second condition of equation (5-3)). Next, another NOT gate

operating on |𝑦1̅̅ ̅> (|y1>) will restore |y1> in |yn  y1> to its

superposition state. This is to say that if the value of quantum

bit |w1, 1> is equal to one, then quantum bit |w1, 1
1> indicates

which legal independent sets have only one value 1 and contain

the first vertex v1. Similarly, if the value of quantum bit |w1, 0>

is equal to one, then quantum bit |w1, 0
1> indicates which legal

independent sets do not contain the first vertex v1 and have zero

ones. In light of the statements above, the quantum circuit

CFFV in Figure 5-3 implements the first and second conditions

of equation (5-3).

Fig. 5-3: Implementation of the first and the second conditions

of equation (5-3) using the quantum circuit CFFV.

Next, if a legal independent set contains the (i + 1)th vertex

vi + 1 and has j ones, then it satisfies the straightforward Boolean

circuit (wi+1, j+1  yi+1  wi, j) with 1  i  n − 1 and 0  j  i in

equation (5-4). If a legal independent set does not contain the (i

+ 1)th vertex vi + 1 and has j ones, then it satisfies the

straightforward Boolean circuit (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) with 1  i

 n − 1 and 0  j  i in equation (5.4). After the influence of yi +

1 on the number of ones is determined, quantum bit |wi + 1, j + 1>

that encodes bit wi + 1, j + 1 will record which legal independent

sets have (j + 1) ones and contain the (i + 1)th vertex vi + 1.

Quantum bit |wi + 1, j> encoding bit wi + 1, j will record which legal

independent sets have j ones and do not contain the (i + 1)th

vertex vi + 1.

Hence, one CCNOT gate (|wi + 1, j + 1
0  wi, j • yi + 1>) with the

target bit |wi + 1, j + 1
0 > and two control bits |wi, j > and |yi + 1>

implement (wi+1, j+1  yi+1  wi, j) for 1  i  n − 1 and 0  j  i

(the first condition of equation (5-4)). One NOT gate operating

on quantum bit |yi + 1> (|𝑦𝑖+1̅̅ ̅̅ ̅>) and another CCNOT gate (|wi +

1, j
0  wi, j • 𝑦𝑖+1̅̅ ̅̅ ̅>) with the target bit |wi + 1, j

 0 > and two control

bits |wi, j > and |𝑦𝑖+1̅̅ ̅̅ ̅> implement (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i

 n − 1 and 0  j  i (the second condition of equation (5-4)).

Next, using another NOT gate operating on quantum bit |𝑦𝑖+1̅̅ ̅̅ ̅>

(|yi + 1>) will restore |yi + 1> in |yn  y1> to its superposition state.

This implies that if the value of quantum bit |wi + 1, j + 1> is equal

to one, then quantum bit |wi + 1, j + 1
1> will indicate which legal

independent sets have (j + 1) ones and contain the (i + 1)th

vertex vi + 1. Similarly, if the value of quantum bit |wi + 1, j > is

equal to one, then quantum bit |wi + 1, j
 1> will indicate which

legal independent sets do not contain the (i + 1)th vertex vi + 1

and have j ones. According to the statements above, the

quantum circuit, CMO, in Figure 5-4 implements the first and

second conditions of equation (5-4).

Fig. 5-4: Implementation of the first and the second conditions

of (5-4) using the quantum circuit CMO.

Therefore, from the statements above can be inferred that

the quantum circuit CFFV in Figure 5-3 can implement the

straightforward Boolean circuit (w1,1  om  y1) and (w1,0  om

 𝑦1) in equation (5-3). Similarly, it is inferred that the

quantum circuit CMO in Figure 5-4 can implement the

straightforward Boolean circuit (wi+1, j+1  yi+1  wi, j) and (wi+1,

j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n − 1 and 0  j  i in equation (5.4).

▉

F. Quantum Circuits and Mathematical Solutions for

Reading Molecular Solutions for the Maximum-sized

Independent Sets

The 2n possible molecular solutions that are created by Steps

(0a) through (1d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m) are initialized in the

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 14

distribution: (
1

√2𝑛
1

√2𝑛
1

√2𝑛 
1

√2𝑛). This indicates that there is the

same amplitude in each of the 2n possible molecular solutions.

The previously proposed quantum circuits have labelled the

answer(s), but the amplitude or probability of finding the

answer(s) will decrease exponentially. Hence, based on [26],

the diffusion operator is applied to increase exponentially the

amplitude or probability of finding the answer(s), and is defined

by matrix G as follows: Gi, j = (2 / 2n) if i  j and Gi, i = (−1 + (2

/ 2n)). Algorithm 5-1 is used to measure the answer(s) that are

generated by Steps (5a) and (5b) in the molecular algorithm

Solve-independent-set-problem(Y0, n, m).

For convenience of presentation, we assume that |yb
1>, |lk

1>,

|ok
1>, |wi + 1, j

1> and |wi + 1, i + 1
1> for 1  b  n, 0  k  m, 0  i 

n − 1, and 0  j  i, subsequently, represent the fact that the

value of their corresponding quantum bits is 1. We further

assume that |yb
0>, |lk

0>, |ok
0>, |wi + 1, j

0> and |wi + 1, i + 1
0> for 1 

b  n, 0  k  m, 0  i  n − 1, and 0  j  i, subsequently,

represent tha fact that the value of their corresponding quantum

bits is 0. Furthermore, we have made use of the notation from

Algorithm 5-1 below in previous subsections. We use the first

parameter t in Algorithm 5-1 to represent the maximum size of

vertex sets among legal answers, and the execution of Step (1a)

in Algorithm 5-2 in the next subsection passes its value.

Algorithm 5-1 (t): Mathematical solutions obtained by

reading molecular solutions of the maximum-sized independent

sets for any graph G with m edges and n vertices.

(0) A unitary operator, Uinit = (H) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2)

(⊗𝑘=𝑚
1 I2  2) (I2  2) (⊗𝑘=𝑚

1 I2  2) (Hn), operates on an

initial quantum state vector, (|1>) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>)

(⊗𝑘=𝑚
1 |ok

0>) (|o0
1>) (⊗𝑘=𝑚

1 |lk
1>) (⊗𝑏=𝑛

1 |yb
0>), and the

2n possible choices of n bits (containing all possible

independent sets) are

|φ0,0> = (
1

√2
 (|0> − |1>))

1

√2𝑛 (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>)

(|o0
1>) (⊗𝑘=𝑚

1 |lk
1>) (⊗𝑏=𝑛

1 (|yb
0> + |yb

1>)).

(1) For labeling which among the 2n possible choices are

legal independent sets and which are not answers, a

quantum circuit in Figure 5-2, (I2  2) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2)

(LIS), is used to operate on the quantum state vector

|φ0,0>, and the following new quantum state vector is

obtained

|φ1,0> = (
1

√2
 (|0> − |1>))

1

√2𝑛 (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>)

(∑ (2𝑛−1
𝑦=0 ⊗𝑘=𝑚

1 |ok
0  lk • ok − 1>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1  yi • yj>)

(|y>)).

(2) For implementing (w1,1  om  y1) and (w1,0  om  𝑦1)

in equation (5-3), a quantum circuit in Figure 5-3, (I2 

2) (CFFV), is applied to the quantum state vector |φ1,0>,

and the following new quantum state vector is

|φ2,0> = (
1

√2
 (|0> − |1>))

1

√2𝑛 (⊗𝑖=𝑛
2 ⊗𝑗=𝑖

0 |wi, j
0>) (∑ (2𝑛−1

𝑦=0 |w1, 1
0

 om • y1>) (|w1, 0
0  om • 𝑦1̅̅ ̅>) (⊗𝑘=𝑚

1 |ok>) (|o0
1>)(⊗𝑘=𝑚

1 |lk>)

(|y>)).

(3) For i = 1 to n − 1

(4) For j = i down to 0

(4a) A quantum circuit in Figure 5-4, (I2  2) (CMO), is to

determine the number of vertices among the legal

independent sets and operates on the quantum state

vector (|φ
2+(∑ (𝜃1+1)𝑖−1

𝜃1=0)+(𝑖−𝑗),0
>). Since Step (4a) is

embedded in the only loop, after repeateadly executing

the quantum circuit in Figure 5-4, (I2  2) (CMO), the

resulting state vector for calculating the number of

vertices in each legal independent set is

|φ
2+

𝑛2+𝑛−2

2
,0

⟩ =(
1

√2
(|0>−|1>))

1

√2𝑛 (∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗⟩) 2𝑛−1
𝑦=0 (

⊗𝑘=𝑚
1 |ok>) (|o0

1>) (⊗𝑘=𝑚
1 |lk>) (|y>)).

End For

End For

(5) A CNOT gate (
|0>−|1>

√2
  wn, t) with the target bit

|
|0>−|1>

√2
> and the control bit |wn, t> labels the legal

independent set(s) with the maximum number of

vertices in the quantum state vector (|φ
2+

𝑛2+𝑛−2

2
,0

>),

and the following new quantum state vector is

|φ
2+

𝑛2+𝑛−2

2
+1,0

> = (
1

√2
 (|0> − |1>))

1

√2𝑛 

(−1)𝑤𝑛,𝑡 (∑ (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |𝑤𝑖,𝑗 >) 2𝑛−1
𝑦=0 (⊗𝑘=𝑚

1 |ok>) (|o0
1>)

(⊗𝑘=𝑚
1 |lk>) (|y>)).

(6) Because quantum operations are reversible by nature,

reversing all the operations carried out by Steps (4a),

(2) and (1) can restore the auxiliary quantum bits to

their initial states.

(7) Apply the diffusion operator to the quantum state vector

 produced in Step (6).

(8) Repeatedly execute Step (1) to Step (7) at most O(√
2𝑛

𝑅
)

times, where the value of R is the number of solutions

and can be efficiently determined with the quantum

counting algorithm [28, 41].

(9) The answer is obtained with a probability of success of

at least (1 / 2) after a measurement is completed.

End Algorithm

Lemma 5-4: The output of Algorithm 5-1 is mathematical

solutions obtained by reading molecular solutions of the

maximum-sized independent sets for any graph G with m edges

and n vertices.

Proof:

Since there are 2n possible choices (including all possible

independent sets) to the independent set problem for any graph

G with m edges and n vertices, a quantum register of n bits

(⊗𝑏=𝑛
1 |yb>) can represent 2n choices with initial state vector

(⊗𝑏=𝑛
1 |yb

0>). The independent set problem for any graph G with

m edges and n vertices requires finding a maximum-sized

independent set in G, so those auxiliary quantum registers are

necessary. By executing Step (0), an initial state vector |> =

(|1>) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1>)

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 15

(⊗𝑏=𝑛
1 |yb

0>) starts the quantum computation of the independent

set problem. A unitary operator, Uinit = (H) (⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 I2  2)

(⊗𝑘=𝑚
1 I2  2) (I2  2) (⊗𝑘=𝑚

1 I2  2) (Hn), operates on the initial

state vector |>, and the resulting state vector becomes |φ0,0>

with 2n choices. This indicates that 2n possible molecular

choices generated by Steps (0a) through (1d) in the molecular

algorithm Solve-independent-set-problem(Y0, n, m) can be

implemented by Step (0) in Algorithm 5-1.

Next, Step (1) in Algorithm 5-1 acts as the unitary operator

LIS which is the quantum circuit in Figure 5-2. On the

execution of Step (1) in Algorithm 5-1, those choices among

the 2n possible are labeled that satisfy the straightforward

Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) in equation (5-2). After the

execution of Step (1) has been completed, the resulting state

vector |φ1,0> is obtained, containing those choices with |om
1>

that indicate them to be legal independent sets and those illegal

choices with |om
0> that do not satisfy the condition. Hence, the

straightforward Boolean circuit (⋀𝑘=1
𝑚 (𝑦𝑖 ⋀ 𝑦𝑗

̅̅ ̅̅ ̅̅ ̅̅)) in equation (5-

2) generated by Steps (2a) through (2d) in the molecular

algorithm Solve-independent-set-problem(Y0, n, m) can be

implemented by Step (1) in Algorithm 5-1.

Next, Step (2) in Algorithm 5-1 acts as the unitary operator

CFFV that corresponds to the quantum circuit in Figure 5-3.

On the execution of Step (2) in Algorithm 5-1, the number of

ones from the influence of the first vertex in each legal

independent set is computed. After the execution of Step (2),

the state vector |φ2,0> is obtained, which includes those legal

independent sets with |w1, 1
1> that have one ones and contain the

first vertex and those legal independent sets with |w1, 0
1> that

have zero ones and do not contain the first vertex. This implies

that the straightforward Boolean circuit (w1,1  om  y1) and

(w1,0  om  𝑦1) in equation (5-3) generated by Steps (4a) and

(4b) in the first iteration (0, 0) in Solve-independent-set-

problem(Y0, n, m) can be implemented by Step (2) in

Algorithm 5-1.

Next, Step (4a) is the only statement in the first loop in

Algorithm 5-1 and works as the unitary operator CMO which

corresponds to the quantum circuit in Figure 5-4. This step is to

determine the number of ones (the number of vertices) among

the legal independent sets. Step (3) and Step (4) consist each of

a two-level loop. When the value of the index variable i is equal

to one and the value of the index variable j is from one down to

zero, Step (4a) is executed repeatedly two times. Similarly,

when the value of the index variable i is equal to two and the

value of the index variable j is from two down to zero, Step (4a)

is executed repeatedly three times. Similarly, when the value of

the index variable i is equal to (n − 1) and the value of the index

variable j is from (n − 1) down to zero, Step (4a) is repeatedly

executed n times. This is to say that the total number of

executions of Step (4a) is (2 + 3 +  n) = (n2 + n − 2) / 2.

Because the state vector |φ2,0> is generated from Step (2) and

its index is 2 (two), after repeatedly executing Step (4a), we use

2 + ((n2 + n − 2) / 2) as the index of the resulting state and the

resulting state vector |φ
2+

𝑛2+𝑛−2

2
,0

> is obtained in which the

number of vertices in each legal independent set is calculated.

This indicates that the straightforward Boolean circuit (wi+1, j+1

 yi+1  wi, j) and (wi+1, j  𝑦𝑖+1̅̅ ̅̅ ̅  wi, j) for 1  i  n − 1 and 0

 j  i in equation (5-4) generated in Steps (4a) and (4b) in the

same iteration (i, j) in Solve-independent-set-problem(Y0, n,

m) can be implemented by Step (4a) in Algorithm 5-1.

Next, one CNOT gate, (
|0>−|1>

√2
  wn, t) with the target bit

|
|0>−|1>

√2
> and the control bit |wn, t >, in the execution of Step (5)

of Algorithm 5.1 labels the answer(s) with the phase (−1). The

resulting state vector |φ
2+

𝑛2+𝑛−2

2
+1,0

> consists of the part of the

answer with the phase (−1) and the other part with the phase

(+1). Because quantum operations are reversible by nature, the

execution of Step (6) will reverse all these operations completed

by Step (4a), Step (2) and Step (1) that can restore the auxiliary

quantum bits to their initial states. Next, on the execution of

Step (7) in Algorithm 5-1, the diffusion operator is applied to

complete the task of increasing the probability of success in

measuring the answer(s). In Step (8) in Algorithm 5-1, after

repeatedly executing Steps (1) through (7) O(√
2𝑛

𝑅
) times, a

maximum probability of success is generated. Next, by

executing Step (9) in Algorithm 5-1, a measurement is

obtained and the answer(s) is/are returned to Algorithm 5-2.

Because the result produced by each step in Algorithm 5-1 is a

unit vector in a finite-dimensional Hilbert space, therefore, we

at once infer that the output of Algorithm 5-1 is mathematical

solutions obtained by reading molecular solutions of the

maximum-sized independent sets to any graph G with m edges

and n vertices. 

G. Solving the Independent Set Problem on any Graph G

with m Edges and n Vertices

The following algorithm solves the independent-set problem

for any graph G with m edges and n vertices. We have used the

notations used in Algorithm 5-2 in the previous subsections.

Algorithm 5-2: Solving the independent set problem for any

Graph G with m edges and n vertices.

(1) For t = n to 1

(1a) Call Algorithm 5-1(t).

(1b) If the answer is obtained from the tth execution of Step

(1a) then

(1c) Terminate Algorithm 5-2.

End If

End For

End Algorithm

Lemma 5-5: Algorithm 5-2 obtains the maximum-sized

independent sets to the independent set problem in any graph G

with m edges and n vertices.

Proof:

In each execution of Step (1a) in Algorithm 5-2,

Algorithm 5-1 is called to complete two main tasks. The first

task is to calculate the number of vertices in each legal

independent set. This demonstrates that mathematical solutions

of molecular solutions for finding the maximum-sized

independent sets in the independent set problem for any graph

G with m edges and n vertices are a unit vector in the finite-

dimensional Hilbert space. The second task is to use the

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 16

diffusion operator that increases exponentially the probability

of success in measuring the answer(s) from molecular solutions

of the maximum-sized independent sets. By this we show that

mathematical solutions obtained by reading molecular solutions

of the maximum-sized independent sets for any graph G with m

edges and n vertices are still a unit vector in the finite-

dimensional Hilbert space. Next, in each execution of Step (1b)

in Algorithm 5-2, if from the tth execution of Step (1a) in

Algorithm 5-2 the answer(s) is(are) found, then the tth

execution of Step (1c) in Algorithm 5-2 will terminate

Algorithm 5-2. Otherwise, repeatedly execute Steps (1a)

through (1c) until the answer(s) to the independent set problem

for any graph G with m edges and n vertices is(are) found.

Hence, it is immediately derived that Algorithm 5-2 can be

used to obtain the answer(s) to the independent set problem for

any graph G with m edges and n vertices. ▉

H. Durr-Hoyer’s Algorithm and Ahuja-Kapoor’s Algorithm

and the Quantum Existence Testing not Solving the

Independent Set Problem for any Graph G with m Edges and n

Vertices

Many information processing and computing problems can

be traced back to the problem of finding an extremum of a

database or a cost function. The Durr−Hoyer algorithm [48]

finds the minimum value(s) satisfying any given condition in

an unsorted database or a cost function with 2n items.

Ahuja−Kapoor’s algorithm [49] finds the maximum value(s)

satisfying any given condition in an unsorted database or a cost

function with 2n items. In order to improve the performance of

the two algorithms, quantum existence testing which integrates

quantum counting and binary search [31] can be used to find

the minimum value(s) or the maximum values satisfying any

given condition in an unsorted database or a cost function with

2n items. The independent set problem for any graph G with m

edges and n vertices entails finding the maximum-sized

independent set with the maximum number of vertices in an

unsorted database or a cost function with 2n subsets of vertices.

We use the following lemma to show why Durr−Hoyer’s

algorithm, Ahuja−Kapoor’s algorithm and quantum existence

testing cannot solve the independent set problem for any graph

G with m edges and n vertices.

Lemma 5-6: Durr−Hoyer’s algorithm, Ahuja−Kapoor’s

algorithm and quantum existence testing cannot solve the

independent set problem for any graph G with m edges and n

vertices.

Proof:

In Durr−Hoyer’s algorithm, Ahuja−Kapoor’s algorithm and

in quantum existence testing algorithm, the solution space Y is

a set of 2n possible choices and Y is equal to {yn yn − 1  y2 y1

 yd  {0, 1} for 1  d  n}. This indicates that the length of

each element in Y is n bits and that each element represents one

of the 2n possible choices. For the sake of presentation, we

assume that yd
0 indicated that the value of yd is zero and yd

1

indicates that the value of yd is one. The first element yn
0 yn − 1

0

 y2
0 y1

0 encodes the decimal value 0 (zero). The second

element yn
0 yn − 1

0  y2
0 y1

1 encodes the decimal value 1 (one).

The third element yn
0 yn − 1

0  y2
1 y1

0 encodes the decimal value

2 (two). And so on, with the last element yn
1 yn − 1

1  y2
1 y1

1

encoding the decimal value 2n −1. Because the solution space

does not contain any subsets of vertices, these three algorithms

cannot find the maximum-sized independent set(s). Therefore,

from the statements above, we at once derive that Durr−Hoyer’s

algorithm, Ahuja−Kapoor’s algorithm and quantum existing

testing cannot solve the independent set problem for any graph

G with m edges and n vertices. ◼

VI. COMPLEXITY ASSESSMENT

In this section, we estimate the time complexity and the

spatial complexity of Algorithm 5-2 for solving the

independent set problem for any graph G with m edges and n

vertices. Subsequently, we demonstrate that Algorithm 5-2

provides a quadratic speedup for solving the independent set

problem for any graph G with m edges and n vertices, which is

the best speed-up known for the problem.

A. The Time and Space Complexity of Algorithm 5-2

Lemma 6-1: The best case time complexity for Algorithm

5-2 involves ((2n / 2  (2  n)) + (n + 1)) Hadamard gates, (2n /

2  (2  (n2 + n))) NOT gates, (2n / 2) CNOT gates, (2n / 2  (4 

m + (2  (n2 + n)))) CCNOT gates, (2n / 2) phase shift gates of n

quantum bits and a quantum measurement.

Proof:

In Algorithm 5-2, Step (1) is the main loop and the steps

embedded in this mail loop are executed in n iterations. Hence,

the first execution of Step (1a) invokes Algorithm 5-1. In Step

(0) of Algorithm 5-1, (n + 1) Hadamard gates are applied.

Next, in Step (1) of Algorithm 5-1, (2  m) CCNOT gates are

applied. Next, in Step (2) of Algorithm 5-1, two CCNOT gates

and two NOT gates are applied. Then, Step (4a) of Algorithm

5-1 is the only instruction in the first loop, and Step (4a) of

Algorithm 5-1 results in (n2 + n − 2) NOT gates and (n2 + n −

2) CCNOT gates. Next, in Step (5) of Algorithm 5-1, one

CNOT gate is applied. Then, Step (6) of Algorithm 5-1

restores the auxiliary quantum bits back to their original status.

Therefore, Step (6) of Algorithm 5-1 generates (n2 + n) NOT

gates and ((2  m) + (n2 + n)) CCNOT gates. This is to say that

Steps (1) through (6) complete the oracle work and label the

answer(s) with the phase (−1). It is very clear from Step (7) of

Algorithm 5-1 that one diffusion operator is executed. In Step

(8) of Algorithm 5-1, implementing (√2𝑛) oracle works and

(√2𝑛) diffusion operators is the worst case because the value of

R is equal to one and this case is the worst case. We suppose

that a phase shift gate UPSG of n quantum bits acts as follows:

UPSG: {
|𝑥 > → −|𝑥 >, 𝑥 ≠ 0

|0 > → |0 >
.

Since according to [28, 41] a single physical operation can

accomplish the controlled phase shift gate of n quantum bits

UPSG, it to a fundamental gate. From [28, 41] we have that the

decomposition of the diffusion operator, Hn UPSG Hn, can

implement each diffusion operator. Next, in Step (9) of

Algorithm 5-1, a measurement is carried out. Therefore, after

the first call of Algorithm 5-1, it is derived that ((2n / 2  (2  n))

+ (n + 1)) Hadamard gates, (2n / 2  (2  (n2 + n))) NOT gates,

(2n / 2) CNOT gates, (2n / 2  (4  m + (2  (n2 + n)))) CCNOT

gates, (2n / 2) phase shift gates of n quantum bits and a quantum

measurement are implemented.

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 17

After the first call of Algorithm 5-1 has been completed,

and then in the first execution of Step (1b) in Algorithm 5-2, if

the first execution of Step (1a) in Algorithm 5-2 returns the

answer, then Algorithm 5-2 is terminated in the first execution

of Step (1c) in Algorithm 5-2. Therefore, the best case of the

time complexity for Algorithm 5-2 involves ((2n / 2  (2  n)) +

(n + 1)) Hadamard gates, (2n / 2  (2  (n2 + n))) NOT gates,

(2n / 2) CNOT gates, (2n / 2  (4  m + (2  (n2 + n)))) CCNOT

gates, (2n / 2) phase shift gates of n quantum bits and a quantum

measurement. 

Lemma 6-2: The worst case time complexity for Algorithm

5-2 is (n  ((2n / 2  (2  n)) + (n + 1))) Hadamard gates, (n 

(2n / 2  (2  (n2 + n)))) NOT gates, (n  2n / 2) CNOT gates, (n

 (2n / 2  (4  m + (2  (n2 + n))))) CCNOT gates, (n  2n / 2)

phase shift gates of n quantum bits and (n) quantum

measurements.

Proof:

Based on Algorithm 5-2, for solving the independent set

problem for any graph G with m edges and n vertices, the worst

case is to find the answer after a measurement of the result

yielded from the nth execution of Step (1a) in Algorithm 5-2 is

completed. This is to say that Step (1a) and Step (1b) in

Algorithm 5-2 are executed n times and Step (1c) in Algorithm

5-2 is executed once. Therefore, the worst case time complexity

for Algorithm 5-2 is (n  ((2n / 2  (2  n)) + (n + 1)))

Hadamard gates, (n  (2n / 2  (2  (n2 + n)))) NOT gates, (n 

2n / 2) CNOT gates, (n  (2n / 2  (4  m + (2  (n2 + n)))))

CCNOT gates, (n  2n / 2) phase shift gates of n quantum bits

and (n) quantum measurements. 

Lemma 6-3: The worst and the best case spatial complexity

for solving the independent set problem for any graph G with m

edges and n vertices are the same: ((2  m + 2  n + 2) + ((n 

(n + 1)) / 2)) quantum bits.

Proof:

As for any graph G with m edges and n vertices there are 2n

possible choices (including all possible independent sets) for

solving the independent set problem, using a quantum register

with n quantum bits (⊗𝑏=𝑛
1 |yb

0>) encodes 2n choices. The

independent set problem for any graph G with m edges and n

vertices is to find a maximum-sized independent set of G. This

is possible by using the auxiliary quantum registers. The initial

states of those auxiliary quantum registers are (|1>)

(⊗𝑖=𝑛
1 ⊗𝑗=𝑖

0 |wi, j
0>) (⊗𝑘=𝑚

1 |ok
0>) (|o0

1>) (⊗𝑘=𝑚
1 |lk

1>). Based on

Algorithm 5-2 we have than the best case spatial complexity

for Algorithm 5-2 is to find the answer after implementing

Algorithm 5-1 once. Hence, the best case spatial complexity

for Algorithm 5-2 involves ((2  m + 2  n + 2) + ((n  (n + 1))

/ 2)) quantum bits. Since quantum bits can be reused, the worst

case is still ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) quantum

bits. Hence, it is at once inferred that the worst and the best case

spatial complexity for Algorithm 5-2 are the same, and they

both are equal to ((2  m + 2  n + 2) + ((n  (n + 1)) / 2))

quantum bits. 

B. Proof of a Quadratic Speedup for Solving the Independent

Set Problem for any Graph G with m Edges and n Vertices

Lemma 6-4: Algorithm 5-2 gives a quadratic speed-up for

solving the independent set problem for any graph G with m

edges and n vertices. This speedup is the best speed-up known

for the problem.

Proof:

Bennett et al. [8] have proved that a quadratic speed-up for

classical algorithms is the best speed-up known for solving any

NP-complete problem. From Lemma 6-2 we have that the

worst case of Algorithm 5-2 for solving the independent set

problem of any graph G with m edges and n vertices matches a

quadratic speed-up for classical algorithms. Hence, we

immediately derive that Algorithm 5-2 gives a quadratic speed-

up, which is the best speed-up known for solving the

independent set problem for any graph G with m edges and n

vertices. █

VII. MATHEMATICAL REPRESENTATION OF MOLECULAR

SOLUTIONS FOR INDEPENDENT SET PROBLEM FOR ANY

GRAPH WITH M EDGES AND N VERTICES

We use the following lemma to demonstrate that

mathematical solutions of molecular solutions for solving the

independent set problem for any graph G with m edges and n

vertices are a unit vector in the finite-dimensional Hilbert space.

Lemma 7-1: Mathematical solutions of molecular solutions

for solving the independent set problem for any graph G with m

edges and n vertices are a unit vector in the finite-dimensional

Hilbert space.

Proof:

In Steps (0a) through (1d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m), 2n possible choices

(independent sets) encoded by 2n DNA sequences are produced,

and encoded by n Hadamard gates operating on n initial

quantum bits in Step (0) in Algorithm 5-1. This is to say that

mathematical solutions for the 2n possible choices (independent

sets) encoded by the 2n DNA sequences are a vector unit in the

finite-dimensional Hilbert space. Next, on each execution of

Steps (2a) through (2d) in the molecular algorithm Solve-

independent-set-problem(Y0, n, m), legal choices (legal

independent sets) and illegal choices (illegal independent sets)

among the 2n possible choices encoded by the 2n DNA

sequences are decided. The same task can be completed by

using the unitary operators from Step (1) in Algorithm 5-1.

This indicates that mathematical solutions for legal choices and

illegal choices among 2n possible choices encoded by 2n DNA

sequences are still a unit vector in the finite-dimensional Hilbert

space.

Next, on each execution of Steps (4a) through (4b) in the

molecular algorithm Solve-independent-set-problem(Y0, n,

m), the legal choices among the 2n choices encoded by the 2n

DNA sequences are classified according to the number of

vertices. The same task can be completed using the unitary

operators from Step (2) and Step (4a) in Algorithm 5-1. This

implies that the mathematical solutions of those legal choices

classified among the 2n choices encoded by the 2n DNA

sequences are still a unit vector in the finite-dimensional Hilbert

space. Next, on each execution of Steps (5a) and (5b) in the

molecular algorithm Solve-independent-set-problem(Y0, n,

m), the maximum-sized independent sets encoded by the DNA

sequences with the maximum number of vertices are read, and

they are also read by carrying out a measurement after their

amplitude has been exponentially amplified. This is to say that

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 18

the mathematical solutions for the maximum-sized independent

sets encoded by the DNA sequences with the maximum number

of vertices are still a unit vector in the finite-dimensional

Hilbert space. Hence, from the statements above, we right away

derive that mathematical solutions of molecular solutions for

solving the independent set problem for any graph G with m

edges and n vertices are a unit vector in the finite-dimensional

Hilbert space. 

VIII. PROOF THAT REDUCTION AMONG NP-COMPLETE

PROBLEMS IS USELESS AND THAT EACH NP-COMPLETE

PROBLEM THAT HAS ITS OWN BEST ALGORITHM

We assume a collection C = {c1, c2, ..., cm} of clauses on a

finite set U of variables, {u1, u2, …, un}, such that |cx| is equal

to 3 for 1  x  m, where |cx| is the number of variables in the

xth clause. The 3-satisfiability problem (3-SAT) is to find

whether there is a truth assignment for U that satisfies all of the

clauses in C. The simple structure for the 3-SAT problem makes

it one of the most widely used problems for other NP-complete

results [7]. The Cook–Levin theorem, also known as Cook’s

theorem [50], states that the 3-satisfiability problem (3-SAT),

which is one of the Boolean satisfiability problems, is NP-

complete. That is, it is in NP, and any problem in NP can be

reduced in polynomial time by a deterministic Turing machine

that is a digital computer to the 3-satisfiability problem (3-SAT).

An important consequence of this theorem is that if there exists

a deterministic polynomial time algorithm for solving 3-

satisfiability problem (3-SAT), then every NP problem can be

solved by a deterministic polynomial time algorithm. We use

Lemma 8-1 to show that reduction among NP-complete

problems is useless and that each NP-complete problem has its

own, best quantum algorithm. Lemma 8-2 shows then that the

proposed quantum-molecular algorithm with a quadratic speed-

up for solving the independent set problem in a graph G with n

vertices and m edges is not the best or optimal quantum

algorithm.

Lemma 8-1: Reduction among NP-complete problems is

useless, and each NP-complete problem has its own, best

quantum algorithm.

Proof:

We suppose that U is {u1, u2, …, un} and C is {c1, c2, ..., cm}.

U and C are any instance for the 3-SAT problem. [7] use a

polynomial time algorithm to transform the 3-SAT problem

with m clauses and n Boolean variables into the independent set

problem for a graph G with (3  n) vertices and ((3  m) + w)

edges. w is the number of the pair (ui, 𝑢𝑖̅) in which ui and 𝑢𝑖̅

appear in different clauses and the value of w is less than the

value of m. This indicates that if Algorithm 5-2 and Algorithm

5-1 are applied to solve the reduced 3-SAT problem, then the

time complexity of the best case is O(2(3  n) / 2). This implies that

for solving the reduced 3-SAT problem Algorithm 5-2 and

Algorithm 5-1 cannot give a quadratic speed-up and the

process of reduction among NP-complete problems not only

cannot speed up the performance of quantum algorithms but, to

the contrary, slows it down. Therefore, from the statements

above we at once infer that reduction among NP-complete

problems is useless and that each NP-complete problem has its

own best quantum algorithm. ◼

Lemma 8-2: The proposed quantum-molecular algorithm

with a quadratic speed-up for solving the independent set

problem in a graph G with n vertices and m edges is not the best

or optimal quantum algorithm.

Proof:

From Lemma 6-1 through Lemma 6-4 it follows that the

lower and the upper bound of the time complexity for the

proposed quantum-molecular algorithm for solving the

independent set problem in a graph G with n vertices and m

edges are, respectively, (2𝑛×
1

2) queries and (2𝑛×
1

2) queries

with ((2  m + 2  n + 2) + ((n  (n + 1)) / 2)) quantum bits. The

proposed quantum-molecular algorithm satisfies the important

result in [8] which says that a quadratic speed-up for solving

any NP-complete problem is a tight lower bound. However,

from the poof of Lemma 8-1 it follows that a polynomial time

algorithm can transform the 3-SAT problem with m clauses and

n Boolean variables into the independent set problem for a

graph G with (3  n) vertices and ((3  m) + w) edges. This is

to say that a reduction among NP-complete problems makes the

size of the input of the reduced problem become larger than that

of the original problem. This is the reason why the proposed

quantum-molecular algorithm for solving the reduced problem

cannot give any speed-up. It appears to be the case that the

important result of [8] violates an important consequence of

Cook’s theorem [50]. Therefore, from the statements above, we

at once infer that the proposed quantum-molecular algorithm

with a quadratic speed-up for solving the independent set

problem in a graph G with n vertices and m edges is not the best

or optimal quantum algorithm. ◼

IX. PROOF OF A QUANTUM LOWER BOUND OF Ω(√
𝟐𝒏

𝟐
)

QUERIES FOR SOLVING THE ELEMENT DISTINCTNESS

PROBLEM WITH AN INPUT OF N BITS

From [33] we have that the element distinctness problem

with an input of n bits is to determine whether the given 2n real

numbers are distinct or not. A quantum lower bound of solving

it is (2𝑛×
2

3) queries for a quantum walk algorithm [33]. The

formal definition of the problem is as follows: given a function

H : {a| 0  a  2n − 1} → {b| 0  b  2m − 1}, the r-element

distinctness problem is to find r-distinct elements a1, a2, ..., ar

∈{a| 0  a  2n − 1} such that H(a1) = H(a2) = ... = H(ar).

Childs and Eisenberg in [51] extend the r-element distinctness

problem to a much more general problem, namely the problem

of finding a subset of size r that satisfies any given property.

Childs and Eisenberg in [51] assume that there is a black-box

function OF: D → R, where the domain D is a finite set and the

range R is also a finite set. They further assume that the domain

D is equal to {X1, X2, , XN} and that |D| represents the size of

the domain D and that this size is equal to N, which is the

problem size. They also assume a set (D  R)r = {((X1, OF(X1)),

, (Xr, OF(Xr))) | Xk  D and OF(Xk)  R} and that there is a

property P  (D  R)r. The more formal definition of the r-

subset finding problem is to find some r-subset {X1, X2, , Xr}

⊂ D such that ((X1, OF(X1)), , (Xr, OF(Xr))) ∈ P, or reject if

none exists. We use the following lemma to show that a new

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 19

quantum lower bound for solving it is (√
2𝑛

2
) queries.

Lemma 9-1: For solving the element distinctness problem

with an input of n bits, the proposed quantum-molecular

algorithm improves a quantum lower bound (2𝑛×
2

3) queries

with a quantum walk algorithm to (√
2𝑛

2
) queries.

Proof:

We assume that G = (V, E) is a graph where V is the set of

vertices in G and E is the set of edges in G. We also suppose

that V is {v1, …, vn} and E is {(va, vb)| va and vb are, respectively,

elements in V}. An independent set of graph G with n vertices

and m edges is a subset V1  V of vertices such that for all va, vb

 V1, the edge (va, vb) is not in E [7, 9]. The independent set

problem for graph G with n vertices and m edges is to find a

maximum-sized independent set in G. For graph G with n

vertices and m edges, the number of subsets of the set of n

vertices is 2n. We suppose that there is a black-box function, OF:

D → R that computes which subsets of vertices are the

independent sets with the maximum number of vertices. We

also suppose that the domain D is equal to {yn yn − 1  y2 y1 

yd  {0, 1} for 1  d  n}.

We assume that r binary numbers of n bits in length, X1, X2,

, Xr, are all elements in D. We also suppose that a set (D 

R)r = {((X1, OF(X1)), , (Xr, OF(Xr))) | Xk  D and OF(Xk) 

R}. We assume that there is a property P  (D  R)r. We also

suppose that each binary number of n bits, Xk, for 1  k  r

encodes a subset of vertices in which a black-box function, OF,

can determine a maximum-sized independent set. This is to say

that ((X1, OF(X1)), , (Xr, OF(Xr))) is the answer of the

independent set problem for graph G with n vertices and m

edges, and {X1, X2, , Xr} ⊂ D such that ((X1, OF(X1)), , (Xr,

OF(Xr))) ∈ P. Therefore, the independent set problem of graph

G with n vertices and m edges is a type of the element

distinctness problem and is a type of the r-subset finding

problem.

From Lemma 6-1 through Lemma 6-2, for solving the

independent set problem for graph G with n vertices and m

edges, a quantum lower bound is (√
2𝑛

𝑟
) queries and a quantum

upper bound is O(√
2𝑛

𝑟
) queries. When the value of r is equal to

two, the quantum lower bound is (2𝑛×
2

3) queries with a

quantum walk algorithm [30]. However, the proposed quantum-

molecular algorithm for the value of r equal to two gives a

quantum lower bound of (√
2𝑛

2
) queries and a quantum upper

bound of O(√
2𝑛

2
) queries. Therefore, we at once infer that for

solving the element distinctness problem with an input of n bits,

the proposed quantum-molecular algorithm enhances a

quantum lower bound of (2𝑛×
2

3) queries with a quantum walk

algorithm to (√
2𝑛

2
) queries. ◼

X. EXPERIMENTAL RESULTS OF FINDING THE

MAXIMUM-SIZED INDEPNDENT SETS IN A GRAPH

WITH TWO VERTICES AND ONE EDGE

In Fig. 10-1, graph G1 consists of two vertices and an edge.

All of the independent sets in G1 are {v1}, {v2} and {}, which is

an empty set. The maximum-sized independent sets for G1 are

{v1} and {v2}. We use the quantum circuit in Figure 10-2 and

the quantum circuit in Figure 10-3 to respectively find the

answer {v1} and the answer {v2}. To that end, we use the

backend ibmqx4 with five quantum bits in IBM's quantum

computers to test our theory.

Fig. 10-1: The graph G1 for our problem.

Fig. 10-2: The quantum circuit for finding the answer {v1}.

Fig. 10-3: The quantum circuit for finding the answer {v2}.

In IBM’s graphical interface of ibmqx4, the available gates

are CNOT, which is the only gate with two quantum bits, and

other gates that act on single quantum bits. In the backend

ibmqx4 with five quantum bits, there are only six pairs of

CNOT gates. We decompose CCNOT gate into six CNOT

gates and gates of one quantum bit that appear in Figure 10-4

[30]. In Figure 10-4, H is the Hadamard gate, T = [
1 0

0 𝑒√−1×
𝜋

4
]

and T+ = [
1 0

0 𝑒−1×√−1×
𝜋

4
]. In the backend ibmqx4, we use

quantum bits q[3], q[4], q[2], q[1] and q[0] to respectively

implement quantum bits |𝑦1
0⟩, |𝑦2

0⟩, |𝑜1
1⟩, |𝑤1,1

 0⟩ and |1⟩ in

Figure 10-2. Similarly we also use quantum bits q[3], q[4], q[2],

q[1] and q[0] to respectively implement quantum bits |𝑦1
0⟩,

|𝑦2
0⟩, |𝑜1

1⟩, |𝑤2,1
 0⟩ and |1⟩ in Figure 10-3. Because in the

backend ibmqx4 a CNOT gate cannot be applied to quantum

bits q[3] and q[1], the second and the third CCNOT gates in

Figure 10-2 and in Figure 10-3 cannot be implemented by the

backend ibmqx4. Therefore, we use the quantum circuit in

Figure 10-5 and the quantum circuit in Figure 10-6 to

respectively find the answer {v1} and the answer {v2}.

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 20

Fig. 10-4: Decomposing CCNOT gate into six CNOT gates and

gates of one quantum bit.

Fig. 10-5: The quantum circuit for finding the answer {v1}

adapted for execution on the backend ibmqx4.

Fig. 10-6: The quantum circuit for finding the answer {v2}

adapted for execution on the backend ibmqx4.

We write two programs in open quantum assembly language

version 2.0 for the backend ibmqx4 to implement the two

quantum circuits in Figures 10-5 and 10-6. In the first program,

we use the four statements - “OPENQASM 2.0;”, “include

"qelib1.inc";”, “qreg q[5];” and “creg c[5];” - to declare five

quantum bits with the initial state |0> and five classic bits with

the initial value 0. Next, we use the two statements “x q[2];”

and “x q[0];” to set q[2] and q[0] to the state |1>. Then, the three

statements “h q[3];”, “h q[4];”, “h q[0];” are used to complete

the three Hadamard gates in the first time slot in Fig. 10-5. Next,

the fifteen statements - “h q[2];”, “cx q[4],q[2];”, ”tdg q[2];”,

“cx q[3],q[2];”, “t q[2];”, “cx q[4],q[2];”, “tdg q[2];”, “cx

q[3],q[2];”, “t q[4];”, “t q[2];”, “cx q[3],q[4];”, “h q[2];”, “t

q[3];”, “tdg q[4];” and “cx q[3],q[4];” – are used to complete

the first CCNOT gate in the second time slot of Figure 10-5.

Then, the two statements “cx q[3],q[2];” and “x q[2];”

implement a CNOT gate and a NOT gate for labelling the

answer from the third time slot through the fourth time slot in

Figure 10-5.

Next, in the first program, the statement “cx q[2],q[0];” is

used to label the target state with its amplitude by (－1) in the

fifth time slot in Figure 10-5. After that, seventeen statements

are used to complete the reversal operations from the sixth time

slot through the eighth time slot in Figure 10-5. The seventeen

statements are “x q[2];”, “cx q[3],q[2];”, “cx q[3],q[4];”, “tdg

q[4];”, “t q[3];”, “h q[2];”, “cx q[3],q[4];”, “t q[2];”, “t q[4];”,

“cx q[3],q[2];”, “tdg q[2];”, “cx q[4],q[2];”, “t q[2];”, “cx

q[3],q[2];”, “tdg q[2];”, “cx q[4],q[2];” and “h q[2];”.

Next, the eleven statements “h q[3];”, “h q[4];”, “x q[3];”,

“x q[4];”, “h q[4];”, “cx q[3],q[4];”, “h q[4];”, “x q[4];”, “x

q[3];”, “h q[4];” and “h q[3];” are used to complete the

amplification of the amplitude of the answer(s) from the ninth

time slot through the fifteenth time slot in Figure 10-5. And

finally, the two statements “measure q[3] -> c[3];” and

“measure q[4] -> c[4];” compete the measurement of the

answer(s) from the sixteenth time slot in Figure 10-5. Similarly,

in the second program, the following statements are used to find

the answer {v2}: “OPENQASM 2.0; include "qelib1.inc"; qreg

q[5]; creg c[5]; x q[2]; x q[0]; h q[3]; h q[4]; h q[0]; h q[2]; cx

q[4],q[2]; tdg q[2]; cx q[3],q[2]; t q[2]; cx q[4],q[2]; tdg q[2];

cx q[3],q[2]; t q[4]; t q[2]; cx q[3],q[4]; h q[2]; t q[3]; tdg q[4];

cx q[3],q[4]; cx q[4],q[2]; x q[2]; cx q[2],q[0]; x q[2]; cx

q[4],q[2]; cx q[3],q[4]; tdg q[4]; t q[3]; h q[2]; cx q[3],q[4]; t

q[2]; t q[4]; cx q[3],q[2]; tdg q[2]; cx q[4],q[2]; t q[2]; cx

q[3],q[2]; tdg q[2]; cx q[4],q[2]; h q[2]; h q[4]; x q[3]; x q[4]; h

q[4]; cx q[3],q[4]; h q[4]; x q[4]; x q[3]; h q[4]; h q[3]; measure

q[3] -> c[3]; measure q[4] -> c[4];”.

Figures 10-7 and 10-8, respectively, show the corresponding

circuits of the two programs. In Figure 10-7 on the backend

ibmqx4, we use quantum bits q[3], q[4], q[2], q[1] and q[0] to

respectively implement quantum bits |𝑦1
0⟩, |𝑦2

0⟩, |𝑜1
1⟩, |𝑤1,1

 0⟩

and |1⟩ in Figure 10-5. Similarly, in Figure 10-8 on the backend

ibmqx4, we also use quantum bits q[3], q[4], q[2], q[1] and q[0]

to respectively implement quantum bits |𝑦1
0⟩, |𝑦2

0⟩, |𝑜1
1⟩, |𝑤2,1

 0⟩

and |1⟩ in Figure 10-6.

Fig. 10-7: The corresponding circuits of the first program to

find the answer {v1}.

Fig. 10-8: The corresponding circuits of the second program to

find the answer {v2}.

We use the command “simulate” to execute the two circuits

in Figure 10-7 and Figure 10-8 on the target device, which is

the backend Simulator. Figure 10-9 and Figure 10-10,

respectively, show the two measured results. In Figure 10-9, we

obtain the state 01000 with the probability 1.000. Because the

value of q[4] is 0 and the value of q[3] is 1, we obtain the first

answer {v1} with the probability 1.000. Similarly, in Figure 10-

10, we obtain the state 10000 with the probability 1.000. The

value of q[4] is 1 and the value of q[3] is 0, so we obtain the

second answer {v2} with the probability 1.000.

Fig. 10-9: The measured result of finding the answer {v1} on

the backend Simulator.

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 21

Fig. 10-10: The measured result of finding the answer {v2} on

the backend Simulator.

We use the command “Run” to execute the two circuits in

Figures 10-7 and 10-8 on real processors of the backend

ibmqx4. Figure 10-11 and Figure 10-12, respectively, show the

two measured results. In Figure 10-11, we obtain the state

01000 with the probability 0.541 or the state 00000 with the

probability 0.154 or the state 10000 with the probability 0.112

or the state 11000 with the probability 0.217. This result is

caused by the noise in real processors of the backend ibmqx4.

Because for the state 01000 with the probability 0.541 the value

of q[4] is 0 and the value of q[3] is 1, we obtain the first answer

{v1} with the probability 0.541. Similarly, in Figure 10-12, we

obtain the state 10000 with the probability 0.258 or the state

00000 with the probability 0.163 or the state 01000 with the

probability 0.244 or the state 11000 with the probability 0.359.

Similarly, this result is caused by the noise in real processors

of the backend ibmqx4. Although the state 11000 has the higher

probability 0.359, it encodes the set {v2, v1} which is not an

independent-set. Therefore, we do not select it as the answer.

For the state 10000 with the probability 0.258, the value of q[4]

is 1 and the value of q[3] is 0, so we obtain the second answer

{v2} with the probability 0.258.

Fig. 10-11: The measured result of finding the answer {v1} on

real processors of the backend ibmqx4.

Fig. 10-12: The measured result of finding the answer {v2} on

real processors of the backend ibmqx4.

XI. EXPERIMENTAL RESULTS OF FINDING THE

MAXIMUM-SIZED INDEPENDENT SETS IN A GRAPH

WITH THREE VERTICES AND TWO EDGES

In Figure 10-13, graph G2 consists of three vertices and two

edges. The independent sets in G2 are {v2, v3}, {v1}, {v2}, {v3}

and {}, which is an empty set. The maximum-sized independent

set for G2 is {v2, v3}. We write the third program in open

quantum assembly language version 2.0 to find the maximum-

sized independent set {v2, v3} of graph G2. Figure 10-14 is the

corresponding quantum circuit.

Fig. 10-13: Graph G2 with three vertices and two edges.

Fig. 10-14: The corresponding quantum circuit of the third

program to find the answer {v2, v3}.

The third program labels the amplitude of the answer(s) by

(－1) and amplifies the amplitude of the answer(s) twice. It

specifies the four statements “OPENQASM 2.0; include

"qelib1.inc"; qreg q[9]; creg c[3];” to declare nine quantum bits

with the initial state |0> and three classical bits with the initial

value 0. Quantum bit q[2] encodes vertex v3, quantum bit q[1]

encodes vertex v2 and quantum bit q[0] encodes vertex v1. Next,

we use the seven statements “h q[0]; h q[1]; h q[2]; x q[8]; h

q[8]; x q[3]; x q[4];” to generate all possible solutions and to set

the initial state of these auxiliary quantum bits.

Then, we use the eleven statements “ccx q[0], q[1], q[3]; ccx

q[0],q[2],q[4]; ccx q[3],q[4],q[5]; ccx q[1],q[5],q[6]; ccx

q[2],q[6],q[7]; cx q[7],q[8]; ccx q[2],q[6],q[7]; ccx

q[1],q[5],q[6]; ccx q[3],q[4],q[5]; ccx q[0],q[2],q[4]; ccx

q[0],q[1],q[3];” to label the amplitude of the answer(s) by (－

1). Next, we use the statements “h q[0]; h q[1]; h q[2]; x q[0]; x

q[1]; x q[2]; x q[3]; x q[4]; ccx q[0],q[1],q[3]; ccx q[3],q[2],q[4];

cz q[4],q[8]; ccx q[3],q[2],q[4]; ccx q[0],q[1],q[3]; x q[0]; x

q[1]; x q[2]; x q[3]; x q[4]; h q[0]; h q[1]; h q[2];” to execute

the amplification of the amplitude of the answer(s).

Next, we use the eleven statements “ccx q[0], q[1], q[3]; ccx

q[0],q[2],q[4]; ccx q[3],q[4],q[5]; ccx q[1],q[5],q[6]; ccx

q[2],q[6],q[7]; cx q[7],q[8]; ccx q[2],q[6],q[7]; ccx

q[1],q[5],q[6]; ccx q[3],q[4],q[5]; ccx q[0],q[2],q[4]; ccx

q[0],q[1],q[3];” to label the amplitude of the answer(s) by (－

1). Then, we use the statements “h q[0]; h q[1]; h q[2]; x q[0];

x q[1]; x q[2]; x q[3]; x q[4]; ccx q[0],q[1],q[3]; ccx

q[3],q[2],q[4]; cz q[4],q[8]; ccx q[3],q[2],q[4]; ccx

q[0],q[1],q[3]; x q[0]; x q[1]; x q[2]; x q[3]; x q[4]; h q[0]; h

q[1]; h q[2];” to execute the amplification of the amplitude of

the answer(s). And finally, we use the three statements

“measure q[0] -> c[0]; measure q[1] -> c[1]; measure q[2] ->

c[2];” to complete the measurement of the answer(s).

We use the command “simulate” to execute the quantum

circuit in Figure 10-14 on the target device, which is the

backend Simulator. Figure 10-15 shows the measured results

for the third program. In Figure 10-15, we obtain the state 110

with the highest probability 0.55. Because the value of q[2] is

1, the value of q[1] is 1 and the value of q[0] is 0, we obtain the

answer {v2, v3} with the probability 0.55.

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 22

Fig. 10-15: The measured result of finding the answer {v2, v3}

on the backend Simulator.

XII. CONCLUSION

Many information processing and computing problems can

be traced back to finding an extremum of a database or a cost

function. Durr−Hoyer’s algorithm and Ahuja−Kapoor’s

algorithm, which are rather useful extensions of the quantum

search algorithm, are designed to find the minimum/maximum

point of an unsorted database or a cost function. It is indicated

in [31] that many famous quantum algorithms for finding the

minimum/maximum point of an unsorted database or a cost

function provide the extreme value efficiently in terms of the

expected value; thus, no reasonable upper bound for the number

of required elementary steps can be given. For improving the

performance of Durr−Hoyer’s and Ahuja−Kapoor’s algorithm,

quantum existence testing which integrates quantum counting

and binary search [31] is proposed. The independent set

problem for any graph G with m edges and n vertices is to find

the maximum-sized independent set with the maximum number

of vertices in an unsorted database or a cost function with 2n

subsets of vertices. However, in Lemma 5-6, we show that

Durr−Hoyer’s algorithm, Ahuja−Kapoor’s algorithm and

quantum existing testing cannot solve the independent set

problem for any graph G with m edges and n vertices.

Lemma 4-1 to Lemma 4-2 show that the independent set

problem for any graph G with n vertices and m edges can be

solved by the molecular algorithm Solve-independent-set-

problem(Y0, n, m) with O(n2 + m) biological operations, O(2n)

DNA strands, O(n) tubes and the longest DNA strand, O(n).

Lemma 5-1 to Lemma 5-5 show that the same problem can be

solved with a quadratic speed-up by Algorithm 5-2 and

Algorithm 5-1 which implement the straightforward Boolean

circuits generated from the molecular algorithm Solve-

independent-set-problem(Y0, n, m). In Lemma 6-1 to Lemma

6-4, we show that Algorithm 5-2 and Algorithm 5-1 give a

quadratic speed-up which is the best speed-up known for

dealing with the independent set problem for any graph G with

n vertices and m edges. For solving the same problem, the time

complexity of the worst-case for the best classical algorithm

known [52] is still O(2n). To the best of our knowledge, this is

an alternative approach to the currently available best method

for solving the same problem.

Furthermore, in Lemma 7-1, we demonstrate that

mathematical solutions of molecular solutions for solving the

same problem are a unit vector in the finite-dimensional Hilbert

space. In Lemma 8-1, we show that the process of a reduction

among NP-complete problems not only cannot speed up the

performance of quantum algorithms but, to the contrary, slows

it down. Therefore, reduction among NP-complete problems is

useless and each NP-complete problem has its own best

quantum algorithm. This means that using standard reductions

followed by the proposed quantum-molecular algorithm does

not necessarily lead to the best quantum algorithm for a

problem in NP. Furthermore, in Lemma 8-2, we show that the

proposed quantum-molecular algorithm with a quadratic speed-

up for solving the independent set problem in a graph G with n

vertices and m edges is not the best or optimal quantum

algorithm. In Lemma 9-1, we demonstrate that for solving the

element distinctness problem with an input of n bits, the

proposed quantum-molecular algorithm improves the quantum

lower bound of (2𝑛×
2

3) queries with a quantum walk algorithm

to (√
2𝑛

2
) queries.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation

of the Republic of China under MOST 105-2221-E-151-040-.

The authors would like to thank Dr. Amos, who is the author of

the fourth reference [45], for providing valuable information on

Subsection B entitled “Introduction and Implementation of

Biological Molecular Operations” in Section IV. The authors

also would like to thank Dr. Qi Yu, Professor Peng, Professor

Feng and Professor Li for their valuable comments on reducing

the quantum circuit that computes the number of vertices in

each legal independent set.

REFERENCES

[1] Feynman, R.P. In Miniaturization. In Gilbert, D.H. ed., Reinhold Publishing

Corporation, New York, pp. 282-296, 1961.

[2] L. Adleman, “Molecular Computation of Solutions to Combinatorial
Problems”. Science, vol. 266, pp. 1021-1024, 1994.

[3] Feynman, R. Simulating Physics with Computers. International Journal of

Theoretical Physics, 21(6/7), pp. 467-488, 1982.

[4] Turing, A.M. On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-

42(1), pp. 230-265, 1937.

[5] Benioff, P. Quantum Mechanical Models of Turing Machines That

Dissipate No Energy. Physical Review Letter, 48, pp. 1581-1585, 1982.

[6] Deutsch, D. Quantum Theory, the Church-Turing Principle and the

Universal Quantum Computer. Proceedings of the Royal Society of London. A.

Mathematical and Physical Sciences, 400, pp. 97-117, 1985.

[7] Garey, M.R. and Johnson, D.S. Computer and intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman Company, New York, 1979.

[8] Bennett, C.H., Bernstein, E., Brassard, G. and Vazirani, U.V. Strengths and

Weakness of Quantum Computing. SIAM Journal on Computing, 26(5), pp.

1510-1523, 1997.

[9] Karp, R. On the Computational Complexity of Combinatorial Problems.

Networks, 5, pp. 45-68, 1975.

[10] Boneh, D., Dunworth, C. and Lipton, R.J. Breaking DES Using a

Molecular Computer. In Proceedings of the 1st DIMACS Workshop on DNA

Based Computers, (Princeton University), American Mathematical Society. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

Volume 27, pp. 37-66, 1996.

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 23

[11] Adleman, L.M., Rothemund, P.W., Roweis, S. and Winfree, E. On
Applying Molecular Computation to the Data Encryption Standard. In The

2nd annual workshop on DNA Computing, (Princeton University), American

Mathematical Society. In DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pp. 31-44, 1999.

[12] Chang, W.-L., Ho, M. and Guo, M. Fast Parallel Molecular Algorithms for
DNA-based Computation: Factoring Integers. IEEE Transactions on

Nanobioscience, 4(2), pp. 149-163, 2005.

[13] Chang, W.-L. Fast Parallel DNA-based Algorithms for Molecular
Computation: Quadratic Congruence and Factoring Integers. IEEE

Transactions on Nanobioscience, Volume 11, No. 1, pp. 62-69, 2012.

[14] Lipton, R. DNA Solution of Hard Computational Problems. Science, 268,

pp. 542-545, 1995.

[15] Adleman, L. M. On Constructing a Molecular Computer. In Lipton, R.

and Baum, E. eds. DNA Based Computers, American Mathematical Society. In
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,

pp. 1-21, 1996.

[16] Yeh, C.-W., Chu, C.-P. and Wu, K.-R. Molecular Solutions to the Binary

Integer Programming Problem based on DNA computation. Biosystems, 83(1),

pp. 56-66, 2006.

[17] Ho, M. Fast Parallel Molecular Solutions for DNA-based Supercomputing:

the Subset-product Problem. BioSystems, 80(3), pp. 233–250, 2005.

[18] Henkel, C.V., Bäck, T., Kok, J.N., Rozenberg, G. and Spaink, H.P. DNA

Computing of Solutions to Knapsack Problems. Biosystems, 88(1-2), pp. 156-

162, 2007.

[19] Chang, W.-L. Fast Parallel DNA-based Algorithms for Molecular

Computation: the Set-Partition Problem. IEEE Transactions on

Nanobioscience, Volume 6, No. 1, pp. 346-353, 2007.

[20] Yeh, C. and Chu, C. Molecular verification of rule-based systems based

on DNA computation. IEEE Transactions on Knowledge and Data
Engineering, 20(7), pp. 965-975, 2008.

[21] Chang, W.-L. and Vasilakos, A.V. DNA Algorithms of Implementing
Biomolecular Databases on a Biological Computer. IEEE Transactions on

Nanobioscience, Volume 14, No. 1, pp. 104-111, 2015.

[22] Chang, W.-L., Vasilakos, A.V. and Ho, M. S.-H. The DNA-Based
Algorithms of Implementing Arithmetical Operations of Complex Vectors on a

Biological Computer. IEEE Transactions on Nanobioscience, Volume 14, No.

8, pp. 1-8, 2015.

[23] Woods D., Doty D., Myhrvold C., Hui J., Zhou F., Yin P. and Winfree E.

Diverse and Robust Molecular Algorithms Using Reprogrammable DNA self-

assembly. Nature, volume 567, pages 366-372, March 21, 2019.

[24] Ren, X. M., Wang, X. M., Wang, Z. C. and Wu, T. H. Parallel DNA

Algorithms of Generalized Traveling Salesman Problem-Based Bioinspired

Computing Model. International Journal of Computational intelligence

Systems, Volume 14 Issue 1, pp. 228-237, 2021.

[25] Xu, J. et al. A DNA Computing Model for the Graph Vertex Coloring

Problem Based on a Probe Graph. Engineering, vol. 4, no. 1, 2018, pp. 61–77.

[26] Wang, Z. C. et al. A Novel Bio-Heuristic Computing Algorithm to Solve

the Capacitated Vehicle Routing Problem Based on Adleman-Lipton Model.

BioSystems, vol. 184, 2019, p. 103997.

[27] Deutsch, D. and Jozsa, R. Rapid Solutions of Problems by Quantum

Computation. Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, 439, pp. 553-558, 1992.

[28] Shor, P.W. Algorithm for Quantum Computation: Discrete Logarithm and

Factoring Algorithm. In Proceedings of the 35th Annual IEEE Symposium on

Foundation of Computer Science, (Santa Fe, NM, USA), pp. 124-134, 1994.

[29] Grover, L. K. A Fast Quantum Mechanical Algorithm for Database Search.

In Proceedings of the twenty-eighth annual ACM symposium on Theory of

computing, (Philadelphia, PA, USA), ACM, pp. 212-219, 1996.

[30] Nielsen, M.A. and Chuang, I.L. Quantum Computation and Quantum

Information. Cambridge University Press, New York, NY, 2000.

[31] Imre, S. and Balazs, F. Quantum Computation and Communications: An

Engineering Approach. John Wiley & Sons Ltd., UK, 2007.

[32] Lipton R. J. and Regan K. W. Quantum Algorithms via Linear Algebra: a

Primer. The MIT Press, 2014, ISBN 978-0-262-02839-4, 2014.

[33] Aaronson, S. and Shi, Y. Quantum Lower Bounds for the Collision and the
Element Distinctness Problems. Journal of the ACM, 51: pp. 595-605, 2004.

[34] Huo, W.Y. and Long, G.L. Entanglement and Squeezing in Solid-State

Circuits. New Journal of Physics, 10, pp. 1-11, 2008.

[35] Yang, W.-L., Wei, H., Chen, C.-Y. and Feng, M. Implementation of a
many-qubit Grover search with Trapped Ultracold Ions. Journal of the Optical

Society of America B, 25(10), pp. 1720-1727, 2008.

[36] Long, G.L. and Xiao, L. Experimental Realization of a Fetching Algorithm
in a 7-qubit NMR Liouville Space Computer. Journal of Chemical Physics, 119,

pp. 8473-8481, 2003.

[37] Boneh, D. and Lipton, R.J. Quantum Cryptanalysis of Hidden Linear
Functions. In CRYPTO '95, Lecture Notes in Computer Science, Springer-

Verlag, pp. 424-437, 1995.

[38] Lukac, M. and Perkowski, M. Evolutionary Approach to Quantum
Symbolic Logic Synthesis. In the 2008 IEEE Congress on Evolutionary

Computation within 2008 IEEE World Congress on Computational Intelligence,

(Hong Kong, China), IEEE, pp. 3374-3380, 2008.

[39] Moylett, D. J., et al. Quantum Speedup of the Traveling-Salesman Problem

for Bounded-Degree Graphs. Physical Review A, vol. 95, no. 3, 2017, p. 32323.

[40] Chang, W.-L., et al. Quantum Speedup in Solving the Maximal-Clique

Problem. Physical Review A, vol. 97, no. 3, 2018, p. 32344.

[41] Pelofske, E., et al. Solving Large Minimum Vertex Cover Problems on a

Quantum Annealer. Proceedings of the 16th ACM International Conference on

Computing Frontiers, 2019, pp. 76–84.

[42] Arute F., Arya K., Babbush R., Bacon D., Bardin J. C., Barends R., Biswas

R., Boixo S., Fernando G., Brandao S. L., Buell D. A., Burkett B., Chen Y.,
Chen Z., Chiaro B., Collins R., Courtney W., Dunsworth A., Farhi E., Foxen

B., Fowler A., Gidney C., Giustina M., Graff R., Guerin K., Habegger S.,

Harrigan M. P., Hartmann M. J., Ho A., Hoffmann M., Huang T., Humble T.
S., Isakov S. V., Jeffrey E., Jiang Z., Kafri D., Kechedzhi K., Kelly J., Klimov

P. V., Knysh S., Korotkov A., Kostritsa F., Landhuis D., Lindmark M., Lucero

E., Lyakh D., Mandrà S., McClean J. R., McEwen M., Megrant A., Mi X,
Michielsen K., Mohseni M., Mutus J., Naaman O., Neeley M., Neill C., Niu M.

Y., Ostby E., Petukhov A., Platt J. C., Quintana C., Rieffe E. G., Roushan P.,

Rubin N. C., Sank D., Satzinger K. J., Smelyanskiy V., Sung K. J., Trevithick
M. D., Vainsencher A., Villalonga B., White T., Yao Z. J., Yeh P., Zalcman A.,

Neven H. and Martinis J. M. Quantum Supremacy Using a Programmable

Superconducting Processor. Nature, volume 574, pages 505-510, 23 October

2019.

[43] Silva V. Practical Quantum Computing for Developers: Programming

Quantum Rigs in the Cloud using Python, Quantum Assembly Language and
IBM Q Experience. Apress, December 13, 2018, ISBN-10: 1484242173 and

ISBN-13: 978-1484242179, 2018.

[44] Johnston, E. R., Harrigan N. and Gimeno-Segovia M. Programming
Quantum Computers: Essential Algorithms and Code Samples. O’Reilly Media,

Inc., ISBN-13: 978-1492039686, ISBN-10: 1492039683, 2019.

[45] Amos, M. Theoretical and Experimental DNA Computation. Springer,

ISBN-13: 978-3540657736, ISBN-10: 3540657738, April 2006.

[46] Chang, W.-L. and Vasilakos, A.V. Molecular Computing: Towards a
Novel Computing Architecture for Complex Problem Solving, Springer, ISBN-

13: 978-3319051215, ISBN-10: 3319051210, June 2014,

[47] Boyer, M., Brassard, G., Hoeyer, P. and Tapp, A. Tight bounds on quantum

searching. Fortsch. Physical, 46, pp. 493-506, 1998.

[48] Durr C. and Hoyer P. A Quantum Algorithm for Finding the Minimum.

arXiv: quant-ph/9607014, 1996

[49] Ahuja A. and Kapoor S. A Quantum Algorithm for finding the Maximum.
arXiv: quant-ph/9911082, 1999.

[50] Cook, S. The Complexity of Theorem Proving Procedures. Proceedings of
the Third Annual ACM Symposium on Theory of Computing, pp. 151–158,

Weng-Long Chang et al.: Quantum Speedup and Mathematical Solutions of Biomolecular Solutions for the Independent Set Problem on IBM… 24

1971.

[51] Childs A. M. and Eisenberg J. M. Quantum algorithms for subset finding.

Journal of Quantum Information & Computation, Volume 5 Issue 7, pp. 593-
604, 2005.

[52] Xiao M. and Nagamochi, H. Exact algorithms for maximum independent
set. Information and Computation, Volume 255, pp. 126–146, 2017.

