
244

Chapter 5

Order-Finding and Factoring

The inverse quantum Fourier transform and the quantum Fourier transform are the

quantum circuits of implementing the Fourier transform and they can be applied to

solve a variety of interesting questions. In this chapter, we now introduce two of the

most interesting of those questions that are respectively the order-finding problem and

the factoring problem. Miller in 1976 proved that solving the order-finding problem is

equivalent to solve the factoring problem. For the RSA public-key cryptosystem,

People have currently installed more than 400,000,000 copies of its algorithms and it is

the primary cryptosystem used for security on the Internet and World Wide Web. The

security of the RSA public-key cryptosystem is dependent on that the problem of

factoring a big nature number into the production of two large prime numbers is

intractable on a classical computer.

Shor’s order-finding algorithm can solve the problems of order-finding and

factoring exponential faster than any conventional computer. By means of using Shor’s

algorithm to factor a big nature number with 1024 bits into the production of two prime

numbers with 512 bits each, Imre and Ferenc in [Imre and Ferenc 2005] indicate that

the execution time is approximately 0.01 second. This is to say that Shor’s algorithm

will make the RSA public-key cryptosystem obsolete once its reliable physical

implementation becomes available on the market. In this chapter, we first introduce a

little background in number theory. Next, we explain how the order-finding problem

implies the ability to factor as well. We also explain how shor’s algorithm solves the

order-finding problem. Next, we describe how to write quantum algorithms to

implement Shor’s algorithm for solving the simplest case in the problems of order-

finding and factoring.

5.1 Introduction to Fundamental of Number Theory

We denote the set Z of integers is {, −3, −2, −1, 0, 1, 2, 3, }. We may often

refer to the set of non-negative integers to be {0, 1, 2, 3, } and the set of positive

integers to be {1, 2, 3, }. This is to say that 0 (zero) is one element in the set of non-

negative integers and is not one element in the set of positive integers. We may

occasionally say natural numbers that mean positive integers and the set of natural

numbers is to {1, 2, 3, }.

245

More formally, given any positive integers w and n, we represent uniquely w in the

following form

w = q  n + r, (5.1)

where q is a non-negative integer that is the quotient (result) of dividing w by n and the

remainder r lies in the range 0 to (n − 1). If the value of the remainder r is equal to zero,

then we say that in this case n is a factor or a divisor of w. Otherwise, n is not a factor

of w. Notice that 1 and w are always factors of w. Modular arithmetic is simply ordinary

arithmetic in which we just pay attention to remainders. We make use of the notation

(mod N) to point out that we are working in modular arithmetic, with respect to the

positive integer N. For example, because 1, 3, 5, 7, 9 and 11 all have the same remainder

(1) when divided by 2, we write 1 = 3 = 5 = 7 = 9 = 11 (mod 2).

The greatest common divisor or factor of integers, c and d, is the largest integer

which is a divisor or a factor of both c and d. We write the number as gcd(c, d). For

instance, the greatest common divisor or factor of 14 and 10 is 2. An easy method of

obtaining this number is to enumerate the positive divisors of 14 (1, 2, 7, 14) and 10 (1,

2, 5, 10), and then pick out the largest common element in the two lists that is equal to

two (2). Integers, c and d, are said to be co-prime if their greatest common divisor is 1.

Because the greatest common divisor of 3 and 5 is 1, we say that 3 and 5 are co-prime.

A prime number is an integer greater than 1, which has only itself and 1 as factors. If a

number is an integer greater than 1 and it is not a prime number, then we call it as a

composite number. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, .

The most important single fact about the positive integers perhaps is that we may

represent uniquely them as a product of factors, which are prime numbers. Let b be any

integer greater than 1. Then b has a prime factorization of the following form

b = 𝑝1
𝑏1  𝑝2

𝑏2    𝑝𝑛
𝑏𝑛, (5.2)

where 𝑝1 , 𝑝2 , , 𝑝𝑛 are distinct prime numbers, and 𝑏1 , 𝑏2 , , 𝑏𝑛 are positive

integers. For small numbers, finding the prime factorization by trial and error is very

easy. For example, for a small number 10, its prime factorization is 10 = 21  51. Though

huge effort aimed at finding one method that can efficiently determine the prime

factorization of large numbers, there is no efficient method known in a digital computer

to complete the task.

246

5.2 Description to Euclid’s Algorithm

Euclid’s algorithm is a much more efficient method of computing the greatest

common divisor. Figure 5.1 is the flowchart of Euclid’s algorithm. We use an example

to explain how Euclid’s algorithm works out the greatest common divisor. The example

is to determine the greatest common divisor of two positive integers c = 15 and d = 12.

From the first execution of Statement S1 in Figure 5.1, it obtains the quotient q = 15 /

12 = 1. Next, from the first execution of Statement S2 in Figure 5.1, it gets the remainder

r = 15 (mod 12) = 3. Because the value of r is not equal to zero, on the first execution

of Statement S3 in Figure 5.1, it returns to a false. Therefore, next, from the first

execution of Statement S6 in Figure 5.1, it gains the new value of the dividend c = 12.

Similarly, from the first execution of Statement S7 in Figure 5.1, it acquires the new

value of the divisor d = 3.

Figure 5.1: The flowchart of Euclid’s algorithm.

Next, from the second execution of Statement S1 in Figure 5.1, it obtains the

quotient q = 12 / 3 = 4. From the second execution of Statement S2 in Figure 5.1, it gets

the remainder r = 12 (mod 3) = 0. Since the value of r is equal to zero, on the second

247

execution of Statement S3 in Figure 5.1, it returns to a true. Next, from the first

execution of Statement S4 in Figure 5.1, it gives that the answer is 3. This is to say that

the greatest common divisor of 15 and 12 is 3. Next, from the first execution of

Statement S5 in Figure 5.1, it terminates the execution of Euclid’s algorithm.

What resources does Euclid’s algorithm consume? We assume that two positive

integers, c and d, may be represented as bit strings of at most L bits each. This implies

that none of the quotient q and the remainder r can be more than L bits long. Therefore,

we may suppose that using L bit arithmetic does each computation. From Figure 5.1,

the divide-and-remainder operation is the heart of Euclid’s algorithm. At most using the

divide-and-remainder operation of O(L) times completes Euclid’s algorithm. Because

each divide-and-remainder operation requires O(L2) operations, the total cost of

Euclid’s algorithm is O(L3).

5.3 Illustration to Quadratic Congruence

We assume that N is a composite number with n bits. 1 and N are two trivial factors

of N itself. We also suppose that there is a function  that is {X|0  X  N} → {X2 (mod

N)}. The domain of the function  is {X|0  X  N} and its range is {X2 (mod N)}. If

there is an integer 0  X  N such that (X) = X2 = C (mod N), i.e., the congruence has

a solution, then C is said to be a quadratic congruence (mod N). Quadratic congruence

(mod N) is a NP-complete problem in [Manders and Adleman 1978]. If the value of C

is equal to one, then four integer solutions for X2 = 1 (mod N) are, respectively, b, N −

b, 1 and N − 1, where 1 < b < (N / 2) and (N / 2) < N − b < N − 1. 1 and N − 1 are trivial

solutions and b and N − b are non-trivial solutions. This is a special case of quadratic

congruence (mod N) and it is still a NP-complete problem. Lemma 5-1 is used to show

that we can determine a factor of N if we can find a non-trivial solution X   1 (mod

N) to the equation X2 = 1 (mod N).

Lemma 5-1: We assume that N is a composite number with n bits, and X is a non-trivial

solution to the equation X2 = 1 (mod N) in the range 0  X  N, that is, neither X = 1

(mod N) nor X = N − 1 = −1 (mod N). Then at least one of gcd(N, X − 1) and gcd(N, X

+ 1) is a non-trivial factor of N that can be determined using Euclid’s algorithm with

O(n3) operations.

Proof:

Because X2 = 1 (mod N), it must be that N divides X2 − 1 = (X + 1)  (X − 1). Since

248

X  1 and X  N − 1, it must be that N does not divide (X + 1) and does not divide (X −

1). This is to say that N must have a common factor with one or the other of (X + 1) and

(X − 1) and 1 < X < N − 1. Therefore, we obtain X − 1 < X + 1 < N. From the condition

X − 1 < X + 1 < N, we know that the common factor cannot be N itself. Applying

Euclid’s algorithm with O(n3) operations we may figure out gcd(N, X − 1) and gcd(N,

X + 1) and therefore gain a non-trivial factor of N. ◼

We consider one example in which N is equal to 15 and any given function  that

is {X|0  X  15} → {X2 (mod 15)}. The domain of the given function  is {X|0  X 

15} and its range is {X2 (mod 15)}. Sixteen outputs of (X) from the first input zero

through the last input fifteen are subsequently 0, 1, 4, 9, 1, 10, 6, 4, 4, 6, 10, 1, 9, 4, 1

and 0. Four inputs 1, 4, 11 and 14 to satisfy X2 = 1 (mod 15). Therefore, four integer

solutions for X2 = 1 (mod 15) are, respectively, 4, 11, 1 and 14. 1 and 14 are trivial

solutions. 4 and 11 are non-trivial solutions. Because 42 = 1 (mod 15) and 112 = 1 (mod

15), it must be that 15 divides 42 − 1 = (4 + 1)  (4 − 1) and 112 − 1 = (11 + 1)  (11 −

1). Hence, 15 must have a common factor with one or the other of (4 + 1) and (4 − 1)

and 15 must have a common factor with one or the other of (11 + 1) and (11 − 1). This

is to say that using Euclid’s algorithm we may figure out gcd(15, 5) = 5 and gcd(15, 3)

= 3 or gcd(15, 12) = 3 and gcd(15, 10) = 5. This means that 15 has a prime factorization

that is to 15 = 5  3.

5.4 Introduction to Continued Fractions

Between the continuum of real numbers and integers, there are many valuable

connections. The theory of continued fractions is one such beautiful connection. If c

and d are integers, then we call (c / d) as the rational fraction or rational number. A

finite simple continued fraction is denoted by a finite collection q[1], q[2], q[3], , q[i]

of positive integers,

(q[1], q[2], q[3], , q[i]) = 𝑞[1] +
1

𝑞[2]+
1

𝑞[3]+ ⋯ +
1
𝑞[𝑖]

. (5.3)

We denote the kth convergent (1  k  i) to this continued fraction to be

(q[1], q[2], q[3], , q[k]) = 𝑞[1] +
1

𝑞[2]+
1

𝑞[3]+ ⋯ +
1
𝑞[𝑘]

. (5.4)

Figure 5.2 is the flowchart of the continued fractional algorithm. We can use the

249

continued fractional algorithm to determine a finite collection q[1], q[2], q[3], , q[i]

of positive integers in (5.3) for representing continued fraction of a rational fraction, (c

/ d). Therefore, applying the right-hand side equivalence in (5.3) we can describe c / d

as

𝑐

𝑑
 = 𝑞[1] +

1

𝑞[2]+
1

𝑞[3]+ ⋯ +
1
𝑞[𝑖]

. (5.5)

Figure 5.2: The flowchart of the continued fractional algorithm.

We make use of one example to explain how the continued fractional algorithm in

Figure 5.2 determines the continued fractional representation of (c / d) if c = 31 and d

= 13 and the corresponding convergent. From the first execution of statement S0 through

statement S2, it obtains i = 1, q[1] = c / d = 31 / 13 = 2 and r = 31 / (mod 13) = 5. This

is to split (31 / 13) into its integer and fractional part and to invert its fractional part,

31

13
 = 2 +

5

13
 = 2 +

1
13

5

. (5.6)

250

Because the value of r is equal to 5, from the first execution of statement S3, it returns

to a false. Thus, next, from the first execution of statement S6 through statement S8, it

gets that the new value of the numerator c is equal to 13, the new value of the

denominator d is equal to 5 and the value of index variable i is equal to 2.

Next, from the second execution of statement S1 through statement S2, it obtains q[2]

= c / d = 13 / 5 = 2 and r = 13 / (mod 5) = 3. These steps − split then invert − are now

used to (13 / 5), giving

31

13
 = 2 +

1

2+
3

5

 = 2 +
1

2+
1
5
3

. (5.7)

Since the value of r is equal to 3, from the second execution of statement S3, it returns

to a false. Hence, next, from the second execution of statement S6 through statement S8,

it gets that the new value of the numerator c is equal to 5, the new value of the

denominator d is equal to 3 and the value of index variable i is equal to 3.

Next, from the third execution of statement S1 through statement S2, it gains q[3] =

c / d = 5 / 3 = 1 and r = 5 / (mod 3) = 2. These steps − split then invert − are now used

to (5 / 3), giving

31

13
 = 2 +

1

2+
1

1+
2
3

 = 2 +
1

2+
1

1+
1
3
2

. (5.8)

Because the value of r is equal to 2, from the third execution of statement S3, it returns

to a false. Hence, next, from the third execution of statement S6 through statement S8,

it obtains that the new value of the numerator c is equal to 3, the new value of the

denominator d is equal to 2 and the value of index variable i is equal to 4.

Next, from the fourth execution of statement S1 through statement S2, it acquires

q[4] = c / d = 3 / 2 = 1 and r = 3 / (mod 2) = 1. These steps − split then invert − are now

used to (3 / 2), giving

31

13
 = 2 +

1

2+
1

1+
1

1+
1
2

 = 2 +
1

2+
1

1+
1

1+
1
2
1

. (5.9)

251

Since the value of r is equal to 1, from the fourth execution of statement S3, it returns

to a false. Thus, next, from the fourth execution of statement S6 through statement S8,

it obtains that the new value of the numerator c is equal to 2, the new value of the

denominator d is equal to 1 and the value of index variable i is equal to 5.

Next, from the fifth execution of statement S1 through statement S2, it acquires q[5]

= c / d = 2 / 1 = 2 and r = 2 / (mod 1) = 0. Because the value of r is equal to zero, this

is to split (2 / 1) into its integer and fractional part and not to invert its fractional part.

This means that (2 / 1) = 2 +
0

1
 = 2. Therefore, these steps − split then no invert − are

now used to (2 / 1), giving

31

13
 = 2 +

1

2+
1

1+
1

1+
1

2+
0
1

 = 2 +
1

2+
1

1+
1

1+
1
2

. (5.10)

Because the value of r is equal to 0, from the fifth execution of statement S3, it returns

to a true. Therefore, next, from the first execution of statement S4, the answer is to the

continued fractional representation of (31 / 13)

31

13
 = (q[1] = 2, q[2] = 2, q[3] = 1, q[4] = 1, q[5] = 2) = 2 +

1

2+
1

1+
1

1+
1
2

. (5.11)

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (31 / 13), the first convergent

through the fifth convergent are subsequently (q[1]) = 2, (q[1], q[2]) = 2 +
1

2
 =

5

2
, (q[1],

q[2], q[3]) = 2 +
1

2+
1

1

 =
7

3
, (q[1], q[2], q[3], q[4]) = 2 +

1

2+
1

1+
1
1

 =
12

5
 and (q[1], q[2],

q[3], q[4], q[5]) = 2 +
1

2+
1

1+
1

1+
1
2

 =
31

13
.

What resources does the continued fractional algorithm in Figure 5.2 consume for

obtaining a continued fractional expansion to a rational number c / d > 1, where c and

d are integers of L bits? This is to say that how many values of q[k] for 1  k  i in (5.3)

252

must be determined from the continued fractional algorithm in Figure 5.2. From

statement S1 and statement S2 in the continued fractional algorithm of Figure 5.2, each

quotient q[k] for 1  k  i is at most L bits long, and the remainder r is at most L bits

long. Thus, we may assume that making use of L bit arithmetic does each computation.

From Figure 5.2, the divide-and-remainder operation is the heart of the continued

fractional algorithm. At most applying the divide-and-remainder operation of O(L)

times completes the continued fractional algorithm. Because each divide-and-

remainder operation requires O(L2) operations, the total cost of the continued fractional

algorithm is O(L3).

5.5 Order-finding and Factoring

We assume that N is a positive integer, the greatest common divisor of X and N is

one for 1  X  N and X is co-prime to N. The order of X modulo N is to the least

positive integer r such that Xr = 1 (mod N). The ordering-finding problem is to compute

r, given X and N. There is no efficient algorithm on a classical computer to solve the

ordering-finding problem and the problem of factoring numbers. However, solving the

problem of factoring numbers is equivalent to solve the ordering-finding problem. This

is to say that if there is one efficient algorithm to solve the ordering-finding problem on

a quantum computer, then it can solve the problem of factoring numbers quickly. We

use Lemma 5-2 to demonstrate that we can determine a factor of N if we can find the

order r of X modulo N to satisfy Xr = 1 (mod N) and to be even such that a non-trivial

solution 𝑋
𝑟

2   1 (mod N) to the equation Xr = (𝑋
𝑟

2)2 = 1 (mod N). Simultaneously,

we use Lemma 5-3 to show representation theorem for the greatest common divisor of

two integers c and d.

Lemma 5-2: We suppose that N is a composite number with n bits, and the order r of

X modulo N satisfies Xr = 1 (mod N) and is even such that a non-trivial solution 𝑋
𝑟

2 

 1 (mod N) to the equation Xr = (𝑋
𝑟

2)2 = 1 (mod N) in the range 0  𝑋
𝑟

2  N. That is

that neither 𝑋
𝑟

2 = 1 (mod N) nor 𝑋
𝑟

2 = N − 1 = −1 (mod N). Then at least one of gcd(N,

𝑋
𝑟

2 − 1) and gcd(N, 𝑋
𝑟

2 + 1) is a non-trivial factor of N that can be determined using

Euclid’s algorithm with O(n3) operations.

253

Proof:

Since Xr = (𝑋
𝑟

2)2 = 1 (mod N), it must be that N divides (𝑋
𝑟

2)2 − 1 = (𝑋
𝑟

2 + 1) 

(𝑋
𝑟

2 − 1). Because 𝑋
𝑟

2  1 and 𝑋
𝑟

2  N − 1, it must be that N does not divide (𝑋
𝑟

2 + 1)

and does not divide (𝑋
𝑟

2 − 1). This means that N must have a common factor with one

or the other of (𝑋
𝑟

2 + 1) and (𝑋
𝑟

2 − 1) and 1 < 𝑋
𝑟

2 < N − 1. Thus, we get 𝑋
𝑟

2 − 1 < 𝑋
𝑟

2

+ 1 < N. From the condition 𝑋
𝑟

2 − 1 < 𝑋
𝑟

2 + 1 < N, we see that the common factor

cannot be N itself. Using Euclid’s algorithm with O(n3) operations we may compute

gcd(N, 𝑋
𝑟

2 − 1) and gcd(N, 𝑋
𝑟

2 + 1) and hence obtain a non-trivial factor of N. ◼

Lemma 5-3: The greatest common divisor of two integers c and d is the least positive

integer that can be written in the form c  u + d  v, where u and v are integers.

Proof:

Let t = c  u + d  v be the smallest positive integer written in this form. Let w is

the greatest common divisor of c and d. Therefore, w is a divisor to both c and d and it

is a divisor of t. This means that w  t. For completing the proof, we show t  w by

demonstrating that t is a divisor of both c and d. The proof is by contradiction. We

assume that t is not a divisor of c. Then c = q  t + r, where the remainder r is in the

range 1 to t − 1. Rearranging this equation c = q  t + r and using t = c  u + d  v, we

obtain r = c  (1 − q  u) + d  (−q  v) that is a positive integer that is a linear

combination of c and d. Because r is smaller than t, this contradicts the definition of t

as the smallest positive integer written in a linear combination of c and d. Therefore,

we infer that t must divide c. Similarly, by symmetry t must also be a divisor of d. This

means that t  w and w  t. Therefore, we complete the proof. ◼

Lemma 5-4: We assume that integer a divides both integer c and integer d. Then a

divides the greatest common divisor of both c and d.

Proof:

254

From Lemma 5-3, the greatest common divisor of c and d is c  u + d  v, where u

and v are integers. Because a divides both c and d, it must also divide c  u + d  v.

Therefore, we at once infer that a divides the greatest common divisor of both c and d.

◼

When does a number, c, have a multiplicative inverse in modular arithmetic? This

is to ask, given c and N, when does there exist a d such that c  d = 1 (mod N)? We

consider one example in which 3  4 = 1 (mod 11). This gives that the number 3 has a

multiplicative inverse 4 in arithmetic modulo 11. On the other hand, trial and error

explains that 3 has no multiplicative inverse modulo 6. Determining multiplicative

inverse in modular arithmetic is actually related to the greatest common divisor by the

notion co-primality: integer c and integer d are co-prime if their greatest common

divisor is 1 (one). For example, 3 and 11 are co-prime, because the positive divisors of

3 is 1 and 3 and the positive divisors of 11 is 1 and 11. We use Lemma 5-5 to

characterize the existence of multiplicative inverse in modular arithmetic applying co-

primality. Simultaneously, we use Lemma 5-6 to show that the order r of X modulo N

satisfies r  N.

Lemma 5-5: Let N be an integer that is greater than 1. An integer X has a multiplicative

inverse modulo N if and only if the greatest common divisor of X and N is 1.

Proof:

We use gcd(X, N) to represent the greatest common divisor of X and N. We assume

that X has a multiplicative inverse, which we define X−1, modulo N. Then X  X−1 = 1

(mod N). This gives that X  X−1 = u  N + 1 for some integer u, and hence X  X−1 +

(−u)  N = 1. From Lemma 5-3, we obtain gcd(X, N) = X  X−1 + (−u)  N = 1. Therefore,

we at once conclude that gcd(X, N) = 1.

Conversely, if gcd(X, N) = 1, then from Lemma 5-3 there must exist integer y and

integer z such that X  y + z  N = 1. After applying the modular operation to both sides

we obtain X  y (mod N) + z  N (mod N) = 1 (mod N). As z  N (mod N) = 0, we have

then that X  y (mod N) = 1 (mod N). This means that the remainder of X  y modulo N

is equal to one. Therefore, we obtain X  y = 1 (mod N). So, y = X−1 is the multiplicative

inverse of X. ◼

Lemma 5-6: Let N be an integer greater than 1 and 1  X  N. X and N are co-prime

and r is the least positive integer such that Xr = 1 (mod N). Then r  N.

255

Proof:

Consider a sequence of different order values for X: X0 (mod N), X1 (mod N), X2

(mod N), , XN−1 (mod N), XN (mod N). Under the modular operation there can only

be N unique values 0, 1, 2, , N − 1 for Xi (mod N) in the above sequence. If there are

more items in the above sequence than N, some Xi (mod N) will have the same value

when the modular operation is applied (there are N + 1 items in the above sequence).

For example, let N = 5 and X = 2. Then X1 = 2 (mod 5) and X5 = 2 (mod 5).

Hence, among the different items in the above sequence, there are two items that

are equivalent under the modular operation, Xn = Xm (mod N), where we can assume,

without loss of generality, that n > m and n, m  N. Since from Lemma 5-5 gcd(X, N)

= 1, we know that there exists a multiplicative inverse X−1 of X such that X  X−1 = 1

(mod N). Because the greatest common divisor of X and N is one, the greatest common

divisor of Xm and N is equal to one. From Lemma 5-5, gcd(Xm, N) = 1, we know that

there exists a multiplicative inverse X−m of Xm such that Xm  X−m = 1 (mod N). Next,

multiply both sides of the modular operation, Xn = Xm (mod N), by X−m to obtain Xn 

X−m = Xm  X−m (mod N) and Xn−m = Xm−m (mod N) = X0 (mod N) = 1 (mod N). From the

statements above we have that r = n − m. Furthermore, as n, m  N and n > m, it follows

that r = n − m  N. ◼

5.6 Compute the Order of 2 Modulo 15 and the Prime Factorization

for 15

We would like to find the prime factorization for N = 15. We need to search for the

nontrivial factor for N = 15. From Lemma 5-1 and Lemma 5-6, we select a number X

= 2 so that the greatest common divisor of X = 2 and N = 15 is 1 (one). This is to say

that X = 2 is co-prime to N = 15. From Lemma 5-6, the order r of 2 modulo 15 satisfies

r  15. Because the number of bit representing N = 15 is four bits long, we also only

need to use four bits that represent the value of r.

Determining the order r of 2 modulo 15 is equivalent to determine the period r of a

given oracular function Pf: {r1 r2 r3 r4   rd  {0, 1} for 1  d  4} → {2𝑟1𝑟2𝑟3𝑟4 (mod

15) |  rd  {0, 1} for 1  d  4}. The period r of Pf is to satisfy Pf(r1 r2 r3 r4) = Pf(r1 r2

r3 r4 + r) to any two inputs (r1 r2 r3 r4) and (r1 r2 r3 r4 + r). Sixteen outputs of Pf that

takes each input from r1
0 r2

0 r3
0 r4

0 through r1
1 r2

1 r3
1 r4

1 are subsequently 1, 2, 4, 8, 1,

2, 4, 8, 1, 2, 4, 8, 1, 2, 4 and 8. The frequency f of Pf is equal to the number of the period

256

per sixteen outputs and is equal to four. The period r of Pf is the reciprocal of the

frequency f of Pf. Thus, we obtain r =
1
𝑓

16

 =
16

𝑓
 =

16

4
 = 4 and r  f = 4  4 = 16.

On the other hand, we think of the input domain of Pf as the time domain and its

output as signals. Computing the order r of 2 modulo 15 is equivalent to determine the

period r and the frequency f of signals in the time domain (the input domain). Because

the output of each input from r1
0 r2

0 r3
0 r4

0 through r1
1 r2

1 r3
1 r4

1 is subsequently 1, 2, 4,

8, 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4 and 8, we take the sixteen input values as the corresponding

sixteen time units and the sixteen outputs as the sixteen samples of signals. Each sample

encodes an output of Pf. The output can take 1, 2, 4 or 8. The sixteen input values from

r1
0 r2

0 r3
0 r4

0 through r1
1 r2

1 r3
1 r4

1 corresponds to sixteen time units from zero through

fifteen.

We use Figure 5.3 to explain the reason of why computing the order r of 2 modulo

15 is equivalent to determine the period r and the frequency f of signals in the time

domain (the input domain). In Figure 5.3, the horizontal axis is to represent the time

domain in which it contains the input domain of Pf and the vertical axis is to represent

signals in which it consists of the sixteen outputs of Pf. For convenience of presentation,

we use variable k to represent the decimal value of each binary input and make use of

2k mod 15 to represent 2𝑟1𝑟2𝑟3𝑟4 (mod 15).

Figure 5.3: Sampling sixteen points from sixteen outputs of a given oracular function

that is Pf: {r1 r2 r3 r4   rd  {0, 1} for 1  d  4} → {2𝑟1𝑟2𝑟3𝑟4 (mod 15) |  rd  {0,

1} for 1  d  4}.

From Figure 5.3, hidden patterns and information stored in a given oracular function

257

Pf are that the signal rotates back to its first signal (output with 1) four times. Its signal

rotates back to its second signal (output with 2) four times. Its signal rotates back to its

third signal (output with 4) four times and its signal rotates back to its fourth signal

(output with 8) four times. This indicates that there are four periods of signals per

sixteen time units and the frequency f of signals is equal to four.

Because in Figure 5.3 the period r of signals is the reciprocal of the frequency f of

signals, the period r of signals is
1
4

16

 = 16 / 4 = 4. The period r = 4 of signals in Figure

5.3 satisfies Pf(r1
0 r2

1 r3
0 r4

0) = 2𝑟1
0𝑟2
1𝑟3
0𝑟4
0
 (mod 15) = 24 (mod 15) = 16 (mod 15) = 1

(mod 15), so the period r = 4 of signals in Pf is equivalent to the order r = 4 of 2 modulo

15. The cost to find the order r = 4 of 2 modulo 15 is to implement sixteen (24)

operations of modular exponentiation, 2𝑟1𝑟2𝑟3𝑟4 (mod 15). Since r = 4 is even and is

less than 15, from Lemma 5-2, we use Euclid’s algorithm to compute gcd(15, 2
4

2 + 1)

and gcd(15, 2
4

2 − 1). This is to say that two nontrivial factors for N = 15 are

respectively 5 and 3. Therefore, the prime factorization for N = 15 is N = 5  3.

Because (
1
4

16

 = 16 / 4) is a rational number and is an integer, we make use of the

continued fractional algorithm in Figure 5.2 to determine the continued fractional

representation of (c / d) if c = 16 and d = 4 and the corresponding convergent for

explaining how the continued fractional algorithm works out in real applications. From

the first execution of statement S0 through statement S2, it gets i = 1, q[1] = c / d = 16 /

4 = 4 and r = 16 (mod 4) = 0. This is to split (16 / 4) into its integer and fractional part

and not to invert its fractional part,

16

4
 = 4 +

0

4
 = 4. (5.12)

Because the value of r is equal to 0, from the first execution of statement S3, it returns

to a true. Thus, next, from the first execution of statement S4, the answer is to the

continued fractional representation of (16 / 4)

16

4
 = (q[1] = 4) = 4. (5.13)

258

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (16 / 4), the first convergent is

(q[1]) = 4 =
4

1
 that is the closest to (

1
4

16

 =
16

4
) and is actually equal to

16

4
. This means

that the first convergent (q[1]) = 4 =
4

1
 is equal to the period r =

𝑟

1
. Hence, we obtain

that the period r is equal to the numerator 4 of the first convergent. Because the

numerator r = 4 of the first convergent is less than N= 15, the numerator r = 4 is

equivalent to that the order r = 4 of 2 modulo 15 satisfies 24 = 1 (mod 15).

5.7 Determine the Order of 2 Modulo 21 and the Prime Factorization

for 21

We want to search for the prime factorization for N = 21. We need to find the

nontrivial factor for N = 21. From Lemma 5-1 and Lemma 5-6, we select a number X

= 2 so that the greatest common divisor of X = 2 and N = 21 is 1 (one). This indicates

that X = 2 is co-prime to N = 21. From Lemma 5-6, the order r of 2 modulo 21 satisfies

r  21. The number of bit representing N = 21 is five bits long, so we only need to make

use of five bits that encode the value of r.

Computing the order r of 2 modulo 21 is equivalent to figure out the period r of a

given oracular function Af: {r1 r2 r3 r4 r5   rd  {0, 1} for 1  d  5} → {2𝑟1𝑟2𝑟3𝑟4𝑟5

(mod 21) |  rd  {0, 1} for 1  d  5}. The period r of Af is to satisfy Af(r1 r2 r3 r4 r5)

= Af(r1 r2 r3 r4 r5 + r) to any two inputs (r1 r2 r3 r4 r5) and (r1 r2 r3 r4 r5 + r). Thirty-two

outputs of Af that takes each input from r1
0 r2

0 r3
0 r4

0 r5
0 through r1

1 r2
1 r3

1 r4
1 r5

1 are

subsequently 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1,

2, 4, 8, 16, 11, 1 and 2. The frequency f of Af is equal to the number of the period per

thirty-two outputs. The period r of Af is the reciprocal of the frequency f of Af. Hence,

we obtain r =
𝑟

1
 =

1
𝑓

32

 =
32

𝑓
 and r  f = 32  1 = 32.

On the other hand, we think of the input domain of Af as the time domain and its

output as signals. Figuring out the order r of 2 modulo 21 is equivalent to compute the

period r and the frequency f of signals in the time domain (the input domain). The output

of each input from r1
0 r2

0 r3
0 r4

0 r5
0 through r1

1 r2
1 r3

1 r4
1 r5

1 is subsequently 1, 2, 4, 8,

16, 11, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1, 2, 4, 8, 16, 11, 1 and 2.

Therefore, we take the thirty-two input values as the corresponding thirty-two time units

and the thirty-two outputs as the thirty-two samples of signals. Each sample encodes an

259

output of Af. The output can take 1, 2, 4, 8, 16 or 11. The thirty-two input values from

r1
0 r2

0 r3
0 r4

0 r5
0 through r1

1 r2
1 r3

1 r4
1 r5

1 corresponds to thirty-two time units from zero

through thirty-one.

We apply Figure 5.4 to explain the reason of why determining the order r of 2

modulo 21 is equivalent to determine the period r and the frequency f of signals in the

time domain (the input domain). In Figure 5.4, the horizontal axis is to represent the

time domain in which it contains the input domain of Af and the vertical axis is to

represent signals in which it consists of the thirty-two outputs of Af. For convenience of

presentation, we make use of variable k to represent the decimal value of each binary

input and use 2k mod 21 to represent 2𝑟1𝑟2𝑟3𝑟4𝑟5 (mod 21).

Figure 5.4: Sampling thirty-two points from thirty-two outputs of a given oracular

function that is Af: {r1 r2 r3 r4 r5   rd  {0, 1} for 1  d  5} → {2𝑟1𝑟2𝑟3𝑟4𝑟5 (mod 21)

|  rd  {0, 1} for 1  d  5}.

From Figure 5.4, hidden patterns and information stored in a given oracular function

Af are that the signal rotates back to its first signal (output with 1) six times. Its signal

rotates back to its second signal (output with 2) six times. Its signal rotates back to its

third signal (output with 4) five times and its signal rotates back to its fourth signal

(output with 8) five times. Its signal rotates back to its fifth signal (output with 16) five

times and its signal rotates back to its sixth signal (output with 11) five times. This is to

say that there are (5
2

6
) periods of signals per thirty-two time units and the frequency f

of signals is equal to (5
2

6
).

260

Since in Figure 5.4 the period r of signals is the reciprocal of the frequency f of

signals, the period r of signals is
1

5
2
6
32

 =
1
32
6
32

 =
32
32

6

 = 6 / 1 = 6. The period r = 6 of signals

in Figure 5.4 satisfies Af(r1
0 r2

0 r3
1 r4

1 r5
0) = 2𝑟1

0𝑟2
0𝑟3
1𝑟4
1𝑟5
0
 (mod 21) = 26 (mod 21) = 64

(mod 21) = 1 (mod 21), so the period r = 6 of signals in Af is equivalent to the order r

= 6 of 2 modulo 21. The cost to find the order r = 6 of 2 modulo 21 is to implement

thirty-two (25) operations of modular exponentiation, 2𝑟1𝑟2𝑟3𝑟4𝑟5 (mod 21). Because r

= 6 is even and is less than 21, from Lemma 5-2, we use Euclid’s algorithm to compute

gcd(21, 2
6

2 + 1) and gcd(21, 2
6

2 − 1). This implies that two nontrivial factors for N =

21 are respectively 3 and 7. Thus, the prime factorization for N = 21 is N = 3  7.

Because (
1

5
2
6
32

 =
1
32
6
32

 =
32
32

6

 = 6 / 1) is a rational number and is an integer, we apply

the continued fractional algorithm in Figure 5.2 to determine the continued fractional

representation of (c / d) if c = 6 and d = 1 and the corresponding convergent for

explaining how the continued fractional algorithm works out in real applications. From

the first execution of statement S0 through statement S2, it gets i = 1, q[1] = c / d = 6 / 1

= 6 and r = 6 (mod 1) = 0. This is to split (6 / 1) into its integer and fractional part and

not to invert its fractional part,

6

1
 = 6 +

0

1
 = 6. (5.14)

Because the value of r is equal to 0, from the first execution of statement S3, it returns

to a true. Hence, next, from the first execution of statement S4, the answer is to the

continued fractional representation of (6 / 1)

6

1
 = (q[1] = 6) = 6. (5.15)

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (6 / 1), the first convergent is

(q[1]) = 6 =
6

1
 that is the closest to (

1

5
2
6
32

 =
1
32
6
32

 =
32
32

6

 =
6

1
) and is actually equal to

6

1
.

This indicates that the first convergent (q[1]) = 6 =
6

1
 is equal to the period r =

𝑟

1
. Thus,

261

we obtain that the period r is equal to the numerator 6 of the first convergent. Since the

numerator r = 6 of the first convergent is less than N= 21, the numerator r = 6 is

equivalent to that the order r = 6 of 2 modulo 21 satisfies 26 = 1 (mod 21).

5.8 Calculate the Order of 2 Modulo 35 and the Prime Factorization

for 35

We would like to find the prime factorization for N = 35. We need to search for the

nontrivial factor for N = 35. From Lemma 5-1 and Lemma 5-6, we select a number X

= 2 so that the greatest common divisor of X = 2 and N = 35 is 1 (one). This implies

that X = 2 is co-prime to N = 35. Because from Lemma 5-6, the order r of 2 modulo 35

satisfies r  35. The number of bit representing N = 35 is six bits long, we only need to

use six bits that encode the value of r.

Calculating the order r of 2 modulo 35 is equivalent to compute the period r of a

given oracular function Bf: {r1 r2 r3 r4 r5 r6   rd  {0, 1} for 1  d  6} → {2𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6

(mod 35) |  rd  {0, 1} for 1  d  6}. The period r of Bf is to satisfy Bf(r1 r2 r3 r4 r5

r6) = Bf(r1 r2 r3 r4 r5 r6 + r) to any two inputs (r1 r2 r3 r4 r5 r6) and (r1 r2 r3 r4 r5 r6 + r).

The front twenty-four outputs of Bf that takes each input from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0

through r1
1 r2

1 r3
1 r4

1 r5
1 r6

1 are subsequently 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18, 1,

2, 4, 8, 16, 32, 29, 23, 11, 22, 9 and 18. The middle twenty-four outputs of Bf are

respectively 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18, 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9

and 18. The last sixteen outputs of Bf are subsequently 1, 2, 4, 8, 16, 32, 29, 23, 11, 22,

9, 18, 1, 2, 4 and 8. The frequency f of Bf is equal to the number of the period per sixty-

four outputs. The period r of Bf is the reciprocal of the frequency f of Bf. Therefore, we

obtain r =
𝑟

1
 =

1
𝑓

64

 =
64

𝑓
 and r  f = 64  1 = 64.

On the other hand, we think of the input domain of Bf as the time domain and its

output as signals. Determining the order r of 2 modulo 35 is equivalent to figure out the

period r and the frequency f of signals in the time domain (the input domain). The front

twenty-four outputs of each input from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0 through r1
1 r2

1 r3
1 r4

1 r5
1 r6

1

are subsequently 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18, 1, 2, 4, 8, 16, 32, 29, 23, 11, 22,

9 and 18. The middle twenty-four outputs are respectively 1, 2, 4, 8, 16, 32, 29, 23, 11,

22, 9, 18, 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9 and 18. The last sixteen outputs are

subsequently 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9, 18, 1, 2, 4 and 8. Hence, we take the

sixty-four input values as the corresponding sixty-four time units and the sixty-four

outputs as the sixty-four samples of signals. Each sample encodes an output of Bf. The

262

output can take 1, 2, 4, 8, 16, 32, 29, 23, 11, 22, 9 or 18. The sixty-four input values

from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0 through r1
1 r2

1 r3
1 r4

1 r5
1 r6

1 corresponds to sixty-four time

units from zero through sixty-three.

We apply Figure 5.5 to show the reason of why computing the order r of 2 modulo

35 is equivalent to determine the period r and the frequency f of signals in the time

domain (the input domain). In Figure 5.5, the horizontal axis is to represent the time

domain in which it consists of the input domain of Bf and the vertical axis is to represent

signals in which it includes the sixty-four outputs of Bf. For convenience of presentation,

we use variable k to represent the decimal value of each binary input and use 2k mod 35

to represent 2𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod 35).

Figure 5.5: Sampling sixty-four points from sixty-four outputs of a given oracular

function that is Bf: {r1 r2 r3 r4 r5 r6   rd  {0, 1} for 1  d  6} → {2𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod

35) |  rd  {0, 1} for 1  d  6}.

From Figure 5.5, hidden patterns and information stored in a given oracular function

Bf are that the signal rotates back to its first signal (output with 1) six times. Its signal

rotates back to its second signal (output with 2) six times. Its signal rotates back to its

third signal (output with 4) six times and its signal rotates back to its fourth signal

(output with 8) six times. Its signal rotates back to its fifth signal (output with 16) five

times and its signal rotates back to its sixth signal (output with 32) five times. Its signal

rotates back to its seventh signal (output with 29) five times and its signal rotates back

to its eighth signal (output with 23) five times. Its signal rotates back to its ninth signal

(output with 11) five times and its signal rotates back to its tenth signal (output with 22)

five times. Its signal rotates back to its eleventh signal (output with 9) five times and its

signal rotates back to its twelfth signal (output with 18) five times. This indicates that

there are (5
4

12
) periods of signals per sixty-four time units and the frequency f of signals

is equal to (5
4

12
).

263

Since in Figure 5.5 the period r of signals is the reciprocal of the frequency f of

signals, the period r of signals is
1

5
4
12
64

 =
1
64
12
64

 =
64
64

12

 = 12 / 1 = 12. The period r = 12 of

signals in Figure 5.5 satisfies Bf(r1
0 r2

0 r3
1 r4

1 r5
0 r6

0) = 2𝑟1
0𝑟2
0𝑟3
1𝑟4
1𝑟5
0𝑟6
0
 (mod 35) = 212

(mod 35) = 4096 (mod 35) = 1 (mod 35), so the period r = 12 of signals in Bf is

equivalent to the order r = 12 of 2 modulo 35. The cost to find the order r = 12 of 2

modulo 35 is to implement sixty-four (26) operations of modular exponentiation,

2𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod 35). Because r = 12 is even and is less than 35, from Lemma 5-2,

we use Euclid’s algorithm to compute gcd(35, 2
12

2 + 1) and gcd(35, 2
12

2 − 1). This

implies that two nontrivial factors for N = 35 are respectively 5 and 7. Thus, the prime

factorization for N = 35 is N = 5  7.

Because (
1

5
4
12
64

 =
1
64
12
64

 =
64
64

12

 = 12 / 1) is a rational number and is an integer, we make

use of the continued fractional algorithm in Figure 5.2 to determine the continued

fractional representation of (c / d) if c = 12 and d = 1 and the corresponding convergent

for explaining how the continued fractional algorithm works out in real applications.

From the first execution of statement S0 through statement S2, it gets i = 1, q[1] = c / d

= 12 / 1 = 12 and r = 12 (mod 1) = 0. This is to split (12 / 1) into its integer and fractional

part and not to invert its fractional part,

12

1
 = 12 +

0

1
 = 12. (5.16)

Since the value of r is equal to 0, from the first execution of statement S3, it returns to

a true. Thus, next, from the first execution of statement S4, the answer is to the continued

fractional representation of (12 / 1)

12

1
 = (q[1] = 12) = 12. (5.17)

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (12 / 1), the first convergent is

(q[1]) = 12 =
12

1
 that is the closest to (

1

5
4
12
64

 =
1
64
12
64

 =
64
64

12

 =
12

1
) and is actually equal to

12

1
. This is to say that the first convergent (q[1]) = 12 =

12

1
 is equal to the period r =

𝑟

1
.

264

Therefore, we obtain that the period r is equal to the numerator 12 of the first convergent.

The numerator r = 12 of the first convergent is less than N= 35, so the numerator r =

12 is equivalent to that the order r = 12 of 2 modulo 35 satisfies 212 = 1 (mod 35).

5.9 Determine the Order of 5 Modulo 33 and the Prime Factorization

for 33

We would like to search for the prime factorization for N = 33. We need to find the

nontrivial factor for N = 33. From Lemma 5-1 and Lemma 5-6, we select a number X

= 5 so that the greatest common divisor of X = 5 and N = 33 is 1 (one). This is to say

that X = 5 is co-prime to N = 33. Since from Lemma 5-6, the order r of 5 modulo 33

satisfies r  33. The number of bit representing N = 33 is six bits long, we only need to

use six bits that encode the value of r.

Computing the order r of 5 modulo 33 is equivalent to calculate the period r of a

given oracular function Cf: {r1 r2 r3 r4 r5 r6   rd  {0, 1} for 1  d  6} → {5𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6

(mod 33) |  rd  {0, 1} for 1  d  6}. The period r of Cf is to satisfy Cf(r1 r2 r3 r4 r5

r6) = Cf(r1 r2 r3 r4 r5 r6 + r) to any two inputs (r1 r2 r3 r4 r5 r6) and (r1 r2 r3 r4 r5 r6 + r).

The front twenty outputs of Cf that takes each input from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0 through

r1
1 r2

1 r3
1 r4

1 r5
1 r6

1 are subsequently 1, 5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25, 26, 31,

23, 16, 14, 4 and 20. The middle twenty outputs of Cf are respectively 1, 5, 25, 26, 31,

23, 16, 14, 4, 20, 1, 5, 25, 26, 31, 23, 16, 14, 4 and 20. The last twenty-four outputs of

Cf are subsequently 1, 5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25, 26, 31, 23, 16, 14, 4, 20,

1, 5, 25 and 26. The frequency f of Cf is equal to the number of the period per sixty-four

outputs. The period r of Cf is the reciprocal of the frequency f of Cf. Hence, we get r =

𝑟

1
 =

1
𝑓

64

 =
64

𝑓
 and r  f = 64  1 = 64.

On the other hand, we think of the input domain of Cf as the time domain and its

output as signals. Calculating the order r of 5 modulo 33 is equivalent to determine the

period r and the frequency f of signals in the time domain (the input domain). The front

twenty outputs of each input from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0 through r1
1 r2

1 r3
1 r4

1 r5
1 r6

1 are

subsequently 1, 5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25, 26, 31, 23, 16, 14, 4 and 20.

The middle twenty outputs are respectively 1, 5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25,

26, 31, 23, 16, 14, 4 and 20. The last twenty-four outputs are subsequently 1, 5, 25, 26,

31, 23, 16, 14, 4, 20, 1, 5, 25, 26, 31, 23, 16, 14, 4, 20, 1, 5, 25 and 26. Therefore, we

take the sixty-four input values as the corresponding sixty-four time units and the sixty-

four outputs as the sixty-four samples of signals. Each sample encodes an output of Cf.

265

The output can take 1, 5, 25, 26, 31, 23, 16, 14, 4 or 20. The sixty-four input values

from r1
0 r2

0 r3
0 r4

0 r5
0 r6

0 through r1
1 r2

1 r3
1 r4

1 r5
1 r6

1 corresponds to sixty-four time

units from zero through sixty-three.

We use Figure 5.6 to explain the reason of why figuring out the order r of 5 modulo

33 is equivalent to compute the period r and the frequency f of signals in the time

domain (the input domain). In Figure 5.6, the horizontal axis is to represent the time

domain that is the input domain of Cf. The vertical axis is to represent signals that

encode the sixty-four outputs of Cf. For convenience of presentation, we make use of

variable k to represent the decimal value of each binary input and apply 5k mod 33 to

represent 5𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod 33).

Figure 5.6: Sampling sixty-four points from sixty-four outputs of a given oracular

function that is Cf: {r1 r2 r3 r4 r5 r6   rd  {0, 1} for 1  d  6} → {5𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod

33) |  rd  {0, 1} for 1  d  6}.

From Figure 5.6, hidden patterns and information stored in a given oracular function

Cf are that the signal rotates back to its first signal (output with 1) seven times. Its signal

rotates back to its second signal (output with 5) seven times. Its signal rotates back to

its third signal (output with 25) seven times and its signal rotates back to its fourth signal

(output with 26) seven times. Its signal rotates back to its fifth signal (output with 31)

six times and its signal rotates back to its sixth signal (output with 23) six times. Its

signal rotates back to its seventh signal (output with 16) six times and its signal rotates

back to its eighth signal (output with 14) six times. Its signal rotates back to its ninth

signal (output with 4) six times and its signal rotates back to its tenth signal (output with

20) six times. This implies that there are (6
4

10
) periods of signals per sixty-four time

units and the frequency f of signals is equal to (6
4

10
).

Because in Figure 5.6 the period r of signals is the reciprocal of the frequency f of

266

signals, the period r of signals is
1

6
4
10
64

 =
1
64
10
64

 =
64
64

10

 = 10 / 1 = 10. The period r = 10 of

signals in Figure 5.6 satisfies Cf(r1
0 r2

0 r3
1 r4

0 r5
1 r6

0) = 5𝑟1
0𝑟2
0𝑟3
1𝑟4
0𝑟5
1𝑟6
0
 (mod 33) = 510

(mod 33) = 9765625 (mod 33) = 1 (mod 33), so the period r = 10 of signals in Cf is

equivalent to the order r = 10 of 5 modulo 33. The cost to find the order r = 10 of 5

modulo 33 is to implement sixty-four (26) operations of modular exponentiation,

5𝑟1𝑟2𝑟3𝑟4𝑟5𝑟6 (mod 33). Since r = 10 is even and is less than 33, from Lemma 5-2, we

use Euclid’s algorithm to compute gcd(33, 5
10

2 + 1) and gcd(33, 5
10

2 − 1). This

indicates that two nontrivial factors for N = 33 are respectively 3 and 11. Therefore, the

prime factorization for N = 33 is N = 3  11.

Since (
1

6
4
10
64

 =
1
64
10
64

 =
64
64

10

 = 10 / 1) is a rational number and is an integer, we use the

continued fractional algorithm in Figure 5.2 to determine the continued fractional

representation of (c / d) if c = 10 and d = 1 and the corresponding convergent for

explaining how the continued fractional algorithm works out in real applications. From

the first execution of statement S0 through statement S2, it obtains i = 1, q[1] = c / d =

10 / 1 = 10 and r = 10 (mod 1) = 0. This is to split (10 / 1) into its integer and fractional

part and not to invert its fractional part,

10

1
 = 10 +

0

1
 = 10. (5.18)

Because the value of r is equal to 0, from the first execution of statement S3, it

returns to a true. Therefore, next, from the first execution of statement S4, the answer is

to the continued fractional representation of (10 / 1)

10

1
 = (q[1] = 10) = 10. (5.19)

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (10 / 1), the first convergent is

(q[1]) = 10 =
10

1
 that is the closest to (

1

6
4
10
64

 =
1
64
10
64

 =
64
64

10

 =
10

1
) and is actually equal to

10

1
. This means that the first convergent (q[1]) = 10 =

10

1
 is equal to the period r =

𝑟

1
.

Hence, we get that the period r is equal to the numerator 10 of the first convergent.

267

Because the numerator r = 10 of the first convergent is less than N= 33, the numerator

r = 10 is equivalent to that the order r = 10 of 5 modulo 33 satisfies 510 = 1 (mod 33).

5.10 The Possibility of Finding the Even Order of X Modulo N

We assume that the set Z = {, −3, −2, −1, 0, 1, 2, 3, } of integers and the set Y

= {0, 1, 2, 3, } of natural numbers. The notion d | a (read “d divides a”) means that a

= q  d for some integer q and a is a multiple of d and d is a divisor of a. For example,

15 is a multiple of 1, 3, 5, and 15 and 1, 3, 5, and 15 are the divisors of 15. Every integer

a is divisible by the trivial divisor 1 and a. Nontrivial divisor of integer a are also called

factors of a. For example, the factors (the nontrivial divisors) of 15 are 3 and 5.

An integer a > 1 whose only divisors are the trivial divisor a and 1 is said to be a

prime number (or, more simply, a prime). The first six prime, in order, are 2, 3, 5, 7, 11

and 13. An integer a > 1 that is not a prime is said to be a composite number (or, more

simply, a composite). For example, 15 is a composite because it has the factors 3 and 5.

The integer 1 is said to be a unit and is neither prime nor composite. Similarly, the

integer 0 and all negative integers are neither prime nor composite. From (5.1), for

given any positive integers w and N, there are unique integers q and r such that 0  r <

N and w = q  N + r. Integer q is the quotient (result) of dividing w by N. Integer r is

the remainder of dividing w by N and we write r = w (mod N). Given any integer N,

we can partition the integers into those that are multiples of N and those that are not

multiples of N. By classifying the multiples and the non-multiples of N in light of their

remainders when divided by N, we can obtain the refinement of this partition.

According to their remainders modulo N, the integer can be divided into N

equivalent classes. The equivalent class modulo N including an integer w is

 [w]N = {w + q  N : q  Z}. (5.20)

For example, [2]5 = {, 2, 7, 12, 17, }. If the remainder of w modulo N is the same

as that of a modulo N, then we can say that writing a  [w]N is the same as writing a =

w (mod N). The set of all such equivalent classes is

ZN = {[w]N : 0  w  N − 1} = {0, 1, 2, 3,  N − 1}. (5.21)

In (5.21), we use 0 to represent [0]N, we apply 1 to represent [1]N, we make use of 2 to

represent [2]N and so on with that we use apply N − 1 to represent [N − 1]N. We use its

268

least nonnegative element to represent each class.

Because the equivalent class of two integers uniquely determines the equivalent

class of their sum, product or difference, we can easily define addition, multiplication

and subtraction operations for ZN. This is to say that if c = c1 (mod N) and d = d1 (mod

N), then

c + d = c1 + d1 (mod N), c  d = c1  d1 (mod N) and c − d = c1 − d1 (mod N) (5.22)

Therefore, we denote addition, multiplication and subtraction modulo N, defined +N, N

and −N, as follows:

[c]N +N [d]N = [c + d]N, [c]N N [d]N = [c  d]N and [c]N −N [d]N = [c − d]N. (5.23)

Applying this definition of addition modulo N in (5.23), we define the additive group

modulo N as (ZN, +N). We use Lemma 5-7 to show that the system (ZN, +N) is a finite

abelian group.

Lemma 5-7: The system (ZN, +N) is a finite abelian group.

Proof:

For any two elements [c]N and [d]N in ZN, from (5.20) through (5.23), we obtain that

0  c  N − 1, 0  d  N − 1 and [c]N +N [d]N = [c + d]N . If 0  c + d  N − 1, then [c]N

+N [d]N = [c + d]N is an element in ZN. If N  c + d  2  N − 2, then [c]N +N [d]N = [c +

d]N = [c + d − N]N. Because 0  c + d − N  N − 2, it is one element in ZN. This means

that the system (ZN, +N) is closed.

For any three elements [c]N, [d]N and [e]N in ZN, from (5.23), we obtain ([c]N +N [d]N)

+N [e]N = ([c + d]N) +N [e]N = [(c + d) + e]N = [c + (d + e)]N = [c]N +N ([d + e]N) = [c]N

+N ([d]N) +N [e]N). This indicates that the system (ZN, +N) satisfies the associativity of

+N.

For any two elements [c]N and [d]N in ZN, from (5.23), we obtain [c]N +N [d]N = [c

+ d]N = [d + c]N = [d]N +N [c]N. This implies that the system (ZN, +N) satisfies the

commutativity of +N.

The identity element of the system (ZN, +N) is [0]N because for any element [c]N in

269

ZN, from (5.23), we have [c]N +N [0]N = [c + 0]N = [c]N = [0 + c]N = [0]N +N [c]N. The

additive inverse of any element [c]N in ZN is [N − c]N because [c]N +N [N − c]N = [c + N

− c]N = [N]N = [0]N. The number of elements in the system (ZN, +N) is N, so it is finite.

Therefore, from the statements above, we at once infer that the system (ZN, +N) is a

finite abelian group. ◼

The set ZN
* is the set of elements in ZN that are relatively prime to N and is

ZN
* = {[w]N  ZN : gcd(w, N) = 1}. (5.24)

Because [w]N = {w + q  N : q  Z} and gcd(w, N) = 1, we have gcd(w + q  N, N) = 1.

For example, Z15
* = {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}. Using the

definition of multiplication modulo N in (5.23), we denote the multiplicative group

modulo N as (ZN
*, N). We make use of Lemma 5-8 to demonstrate that the system (ZN

*,

N) is a finite abelian group.

Lemma 5-8: The system (ZN
*, N) is a finite abelian group.

Proof:

For any two elements [c]N and [d]N in ZN
*, from (5.20) through (5.23), we get that

0  c  N − 1, 0  d  N − 1, gcd(c, N) = 1, gcd(d, N) = 1 and [c]N N [d]N = [c  d]N.

Because gcd(c, N) = 1 and gcd(d, N) = 1, we have gcd(c  d, N) = 1. This means that

[c]N N [d]N = [c  d]N is an element in ZN
*. Therefore, the system (ZN

*, N) is closed.

For any three elements [c]N, [d]N and [e]N in ZN
*, from (5.23), we obtain ([c]N N

[d]N) N [e]N = ([c  d]N) N [e]N = [(c  d)  e]N = [c  (d  e)]N = [c]N N ([d + e]N) =

[c]N N ([d]N) N [e]N). This is to say that the system (ZN
*, N) satisfies the associativity

of N.

For any two elements [c]N and [d]N in ZN
*, from (5.23), we get [c]N N [d]N = [c 

d]N = [d  c]N = [d]N N [c]N. This indicates that the system (ZN
*, N) satisfies the

commutativity of N.

For any element [c]N in ZN
*, from (5.23), we have [c]N N [1]N = [c  1]N = [c]N = [1

 c]N = [1]N N [c]N. This indicates that the identity element of the system (ZN
*, N) is

[1]N.

270

Any element [c]N in ZN
* satisfies gcd(c, N) = 1. Therefore, from Lemma 5-5, there

exists a unique multiplicative inverse [c-1]N of [c]N, modulo N, such that [c]N N [c-1]N

= [c  c-1]N = [1]N = [c-1  c]N = [c-1]N N [c]N. The number of elements in the system

(ZN
*, N) is less than N, so it is finite. Hence, from the statements above, we at once

derive that the system (ZN
*, N) is a finite abelian group. ◼

The size of ZN
* is known as Euler’s phi function (N) satisfies the following

equation

 (N) = N  (∏ (1 −
1

𝑝
)𝑝|𝑁), (5.25)

where p runs over all the primes dividing n (including N itself, if N is a prime). For

example, because the prime divisors of 15 are 3 and 5, we obtain (15) = 15  (1 − (1 /

3))  (1 − (1 / 5)) = 15  (2 / 3)  (4 / 5) = 8. This is to say that the size of Z15
* is eight

(8) and Z15
* is equal to {[1]15, [2]15, [4]15, [7]15, [8]15, [11]15, [13]15, [14]15}. If p is a

prime, then p itself is the only prime divisor. Therefore, from (5.25), we obtain (p) =

p  (1 − (1 / p)) = p − 1. The only integers that are less than pa and are not co-prime to

pa are the multiples of p: p, 2  p, , (pa − 1 − 1)  p, from which we infer

 (pa) = (pa − 1) − (pa − 1 − 1) = pa − pa − 1 = pa − 1  (p − 1). (5.26)

Furthermore, if c and d are co-prime, then (c  d) satisfies the following equation

 (c  d) = (c)  (d). (5.27)

On the other hand, when N is a power of an odd prime p, N = pa. It turns out that ZN
* =

Zp
a* is a cyclic group, that is, there is an element h in Zp

a* which generates Zp
a* in the

sense that any other element y may be written y = hm (mod N) = hm (mod pa) for some

non-negative integer m. We use Lemma 5-9 and Lemma 5-10 to explain the possibility

of finding the even order that are not equal to N − 1 of X modulo N.

Lemma 5-9: We assume that p is an odd prime and 2b is the largest power of 2 dividing

(pa). Then with probability exactly one-half 2b divides the order modulo pa of a

randomly chosen element of Zp
a*.

Proof:

Because p is an odd prime, from (5.26) we obtain that (pa) = pa − 1  (p − 1) is even.

Because (pa) is even and 2b divides (pa), we obtain b  1. Since Zp
a* is a cyclic group,

271

there exists an element h in Zp
a* which generates Zp

a* in the sense that any other element

X may be written X = hm (mod pa) for some m in the range 1 through (pa) that is the

size of Zp
a*. Let r the order of hm modulo pa and consider two cases. The first case is

when m is odd. Since h is co-prime to (pa) and (pa) is the size of Zp
a*, (pa) is the least

value such that ℎ(𝑝
𝑎) = 1 (mod pa). Because (hm)r = hm  r = 1 (mod pa), we infer that

(pa) divides (m  r). Since m is odd, (pa) is even, 2b divides (pa) and (pa) divides

(m  r) and 2b divides (m  r), we infer that 2b divides r. The second case is when m is

even. Because h is co-prime to pa and m is even, we infer that hm / 2 modulo pa is co-

prime to pa. Therefore, we have (ℎ𝑚×∅(𝑝
𝑎)/2) = (ℎ(𝑝

𝑎))m / 2 = (1)m / 2 = 1 (mod pa).

Because r is the order of hm modulo pa that is the least value such that (hm)r = hm  r = 1

(mod pa), we infer that r divides ((pa) / 2) and r is less than 2b that is the largest power

of 2 dividing (pa). Thus, we infer that 2b does not divide r.

Because the value of m is in the range 1 through (pa) that is even and is the size of

Zp
a*, we may partition Zp

a* into two sets of equal size. The first set of equal size is those

that may be written hm (mod pa) with that m is odd, for which 2b divides r that is the

order of hm modulo pa. The second set of equal size is those that may be written hm (mod

pa) with that m is even, for which 2b does not divide r that is the order of hm modulo pa.

Therefore, with probability (1 / 2) the integer 2b divides the order r of a randomly

chosen element Zp
a*, and with probability (1 / 2) it does not. ◼

Lemma 5-10: We assume that N = 𝑝1
𝑎1    𝑝𝑚

𝑎𝑚 is the prime factorization of an

odd composite positive integer. Let X be chosen uniformly at random from ZN
* and let

r be the order of X modulo N. Then P(r is even and Xr / 2  − 1 (mod N))  1 − (1 / 2m).

Proof:

We show that P(r is odd or Xr / 2 = − 1 (mod N))  1 / 2m. According to the Chinese

remainder theorem, selecting X uniformly at random from ZN
* is equivalent to selecting

Xk independently and uniformly at random from 𝒁
𝑝𝑘
𝑎𝑘
∗ , and satisfying that X = Xk (mod

𝑝𝑘
𝑎𝑘) for 1  k  m. Let rk be the order of Xk modulo (𝑝𝑘

𝑎𝑘). Let 2𝑏𝑘 be the largest power

of 2 dividing rk and 2b is the largest power of 2 dividing r. Because X is co-prime to N

(𝑝1
𝑎1    𝑝𝑚

𝑎𝑚), (N) = (𝑝1
𝑎1    𝑝𝑚

𝑎𝑚) is the size of ZN
* that is the least value

such that 𝑋(𝑁) = 𝑋(𝑝1
𝑎1    𝑝𝑚

𝑎𝑚) = 1 (mod N). Since r is the order of X modulo N

that is the least value such that 𝑋𝑟 = 1 (mod N), we have r = (𝑝1
𝑎1    𝑝𝑚

𝑎𝑚) =

(𝑝1
𝑎1)    (𝑝𝑚

𝑎𝑚). Because Xk is co-prime to (𝑝𝑘
𝑎𝑘) for 1  k  m, (𝑝𝑘

𝑎𝑘) is the size

272

of 𝒁
𝑝
𝑘

𝑎𝑘
∗ that is the least value such that 𝑋𝑘

(𝑝
𝑘

𝑎𝑘)
 = 1 (mod (𝑝𝑘

𝑎𝑘)). Since rk is the order

of Xk modulo (𝑝𝑘
𝑎𝑘) that is the least value such that Xk

r = 1 (mod (𝑝𝑘
𝑎𝑘)), we have rk =

(𝑝𝑘
𝑎𝑘) for 1  k  m. Because r = (𝑝1

𝑎1)    (𝑝𝑚
𝑎𝑚) and rk = (𝑝𝑘

𝑎𝑘) for 1  k  m,

we infer that rk divides r for 1  k  m. We will show that to have r odd or Xr / 2 = − 1

(mod N) it is necessary that bk takes the same value for 1  k  m. The result then follows,

as from Lemma 5-9 the probability of this occurring is at most (1 / 2)  (1 / 2)   

(1 /2) = 1 / 2m.

We consider the first case is when r is odd. Because rk divides r for 1  k  m, we

infer rk is odd. Because 2𝑏𝑘 divides rk for 1  k  m, we obtain bk = 0 for 1  k  m.

The second case is when r is even and Xr / 2 = − 1 (mod N). This is to say that Xr / 2 = N

− 1 = 𝑝1
𝑎1    𝑝𝑚

𝑎𝑚 − 1. Therefore, we have Xr / 2 = N − 1 = 𝑝1
𝑎1    𝑝𝑚

𝑎𝑚 − 1

= − 1 (mod (𝑝𝑘
𝑎𝑘)). So we obtain that rk does not divide (r / 2). Because rk divides r for

1  k  m, we must have bk = b for 1  k  m. Since P(r is even and Xr / 2  − 1 (mod N))

+ P(r is odd or Xr / 2 = − 1 (mod N)) = 1 and P(r is odd or Xr / 2 = − 1 (mod N))  1 / 2m,

we have P(r is even and Xr / 2  − 1 (mod N))  1 − (1 / 2m). ◼

5.11 Public Key Cryptography and the RSA Cryptosystem

A consumer wants to buy something on the internet. He would like to transmit his

credit card number over the internet in such a way that only the company offering the

products that he is buying can receive the number. A cryptographic protocol or a

cryptosystem on the internet can achieve such private communication. Effective

cryptosystems make it easy for two parties who want to communicate each other, but

make it very difficult for the eavesdropper to eavesdrop on the content of the

conversation.

A particularly important class of cryptosystems are the public key cryptosystems. In

a public key cryptosystem, Mary wants to send messages to her friends and to receive

messages sent by her friends. She must first generate two cryptographic keys. One is a

public key, P, and the other is a secret key, S. After Mary has generated her keys, she

announces or publishes the public key so that anybody can gain access to the public

key.

John is Mary’s good friend. He would like to send a private message to Mary.

Therefore, John first gets a copy of Mary’s public key P. Then, he encrypts the private

message he wants to send Mary, making use of Mary’s public key P to complete the

273

encryption. Because the public key and the encoded message is the only information

available to an eavesdropper, it will be impossible for the eavesdropper to recover the

message. However, Mary has the secret key S that is not available to an eavesdropper.

She uses the secret key S to decrypt the encrypted message and obtains the original

message. This transformation known as decryption is inverse to encryption, allowing

Mary to recover John’s private message.

The most widely used of public key cryptosystems is the RSA cryptosystem, named

RSA for the initials of its creators, Rivest, Shamir, and Adleman. The presumed security

of the RSA cryptosystem is based on the apparent difficulty of factoring on a digital

computer. Now Mary wishes to generate public and secret keys for use with the RSA

cryptosystem. She makes use of the following procedure to generate them:

(1) Choose two large prime numbers, p and q.

(2) Calculate the product N = p  q.

(3) Choose at random a small odd integer, e, which is relatively prime to (N) = (p − 1)

 (q − 1).

(4) Calculate d, the multiplicative inverse of e, modulo (N).

(5) The public key is the pair P = (e, N).

(6) The secret key is the pair S = (d, N).

Now John uses the public key (e, N) to encrypt a message M to send to Mary. We

assume that the message M has only log2
N bits, as longer messages may be encrypted

by means of breaking M up into blocks of at most log2
N bits and then encrypting the

blocks separately. The encryption procedure for a single block is to calculate:

 E(M) = Me (mod N). (5.28)

E(M) is the encrypted version of the message M, which John sends to Mary. Mary is

able to decrypt quickly the message applying her secret key S = (d, N), simply by raising

the encrypted message to the dth power:

 D(E(M)) = Me  d (mod N) = M (mod N). (5.29)

How can the RSA cryptosystem be broken? The answer is to that if we can efficiently

factor a big composite number N into the production of two big prime numbers p and

q. Then, we can extract p and q. This means that we can efficiently calculate (N) = (p

− 1)  (q − 1). Next, we can efficiently compute d, the multiplicative inverse of e,

274

modulo (N). Therefore, we can completely determine the secret key (d, N). So, if

factoring large numbers were easy then breaking the RSA cryptosystem would be easy.

5.12 Implementing the Controlled-Swap Gate of Three Quantum Bits

A (8  8) matrix CSWAP and its conjugate transpose 𝑪𝑺𝑾𝑨𝑷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are respectively

(

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1)

 and

(

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1)

. (5.30)

Because CSWAP  𝑪𝑺𝑾𝑨𝑷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is equal to a (8  8) identify matrix and 𝑪𝑺𝑾𝑨𝑷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

CSWAP is equal to a (8  8) identify matrix, matrix CSWAP and matrix 𝑪𝑺𝑾𝑨𝑷̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are

both a unitary matrix (a unitary operator). Matrix CSWAP is to matrix representation

of a CSWAP (controlled-SWAP) gate of three quantum bits. The left picture in Figure

5.7 is the first graphical circuit representation of a CSWAP gate with three quantum

bits. Quantum bit |C1> at the bottom in the left picture in Figure 5.7 is the controlled

bit, and quantum bit |S1> at the top and quantum bit |S2> at the middle in the left picture

in Figure 5.7 are both the target bits. The functionality of the CSWAP gate is to that if

the controlled bit |C1> is equal to |1>, then it exchanges the information contained in

the two target bits |S1> and |S2>. Otherwise, it does not exchange the information

contained in the two target bits |S1> and |S2>. The middle picture in Figure 5.7 is the

second graphical circuit representation of a CSWAP gate with three quantum bits. The

right picture in Figure 5.7 is to the graphical circuit representation of implementing the

CSWAP gate by means of using three CCNOT gates. In the right picture in Figure 5.7,

if the controlled bit |C1> is equal to |1>, then using three CNOT gates implements one

SWAP gate to exchange the information contained in the two target bits |S1> and |S2>.

Otherwise, it does not implement three CNOT gates to complete one SWAP gate and

to exchange the information contained in the two target bits |S1> and |S2>.

275

Figure 5.7: Circuit Representation of a CSWAP gate with three quantum bits.

5.12.1 Quantum Programs to Implement the Controlled-Swap Gate of

Three Quantum Bits

In IBM Q Experience, it does not provide one quantum instruction (operation) of

implementing the CCNOT gate (the Toffoli gate) with three quantum bits. We

decompose CCNOT gate into six CNOT gates and nine gates of one quantum bits that

are shown in Figure 5.8. In Figure 5.8, H is the Hadamard gate, T = [
1 0

0 𝑒√−1×
𝜋

4
] and

T+ = [
1 0

0 𝑒−1×√−1×
𝜋

4
]. In the backend simulator with thirty-two quantum bits, there is

no limit for connectivity of a CNOT gate among thirty-two quantum bits.

Figure 5.8: Decomposing CCNOT gate into six CNOT gates and nine gates of one bit.

In Listing 5.1, the program in the backend simulator with thirty-two quantum bits

in IBM’s quantum computer is the first example of the fifth chapter in which we

illustrate how to write a quantum program to implement a CSWAP gate with three

quantum bits. Figure 5.9 is the corresponding quantum circuit of the program in Listing

5.1. For the convenience of our presentation, there are four instructions in the same line

in Listing 5.1. We use “instruction number” or “line number” to indicate the order of

the execution to each instruction in Listing 5.1.

The statement “OPENQASM 2.0;” on instruction number one in the first line of

Listing 5.1 is to point out that the program is written with version 2.0 of Open QASM.

Next, the statement “include "qelib1.inc";” on instruction number two in the first line

of Listing 5.1 is to continue parsing the file “qelib1.inc” as if the contents of the file

were pasted at the location of the include statement, where the file “qelib1.inc” is

Quantum Experience (QE) Standard Header and the path is specified relative to the

current working directory.

276

Next, the statement “qreg q[3];” on instruction number three in the first line of

Listing 5.1 is to declare that in the program there are three quantum bits. In the left top

of Figure 5.9, three quantum bits are subsequently q[0], q[1] and q[2]. The initial value

of each quantum bit is set to |0>. We use three quantum bits q[0], q[1] and q[2] to

subsequently encode the first target bit |S1>, the second target bit |S2> and the controlled

bit |C1>.

1. OPENQASM 2.0; 2. include "qelib1.inc"; 3. qreg q[3]; 4. creg c[3];

5. x q[0]; 6. x q[2];

// Implement the first CCNOT gate in the right picture of Figure 5.7 with two

// controlled bits q[2] and q[0] and target bit q[1].

7. barrier q[0], q[1], q[2]; 8. h q[1]; 9. cx q[0],q[1]; 10. tdg q[1];

11. cx q[2],q[1]; 12. t q[1]; 13. cx q[0],q[1]; 14. tdg q[1];

15. cx q[2],q[1]; 16. t q[0]; 17. t q[1]; 18. h q[1];

19. cx q[2],q[0]; 20 tdg q[0]; 21 t q[2]; 22. cx q[2],q[0];

// Implement the second CCNOT gate in the right picture of Figure 5.7 with two

// controlled bits q[2] and q[1] and target bit q[0].

23. barrier q[0], q[1], q[2]; 24 h q[0]; 25. cx q[1],q[0]; 26. tdg q[0];

27. cx q[2],q[0]; 28. t q[0]; 29. cx q[1],q[0]; 30. tdg q[0];

31. cx q[2],q[0]; 32. t q[1]; 33. t q[0]; 34. h q[0];

35. cx q[2],q[1]; 36. tdg q[1]; 37. t q[2]; 38. cx q[2],q[1];

// Implement the third CCNOT gate in the right picture of Figure 5.7 with two

// controlled bits q[2] and q[0] and target bit q[1].

39. barrier q[0], q[1], q[2]; 40. h q[1]; 41. cx q[0],q[1]; 42. tdg q[1];

43. cx q[2],q[1]; 44. t q[1]; 45. cx q[0],q[1]; 46. tdg q[1];

47. cx q[2],q[1]; 48. t q[0]; 49. t q[1]; 50. h q[1];

51. cx q[2],q[0]; 52. tdg q[0]; 53. t q[2]; 54. cx q[2],q[0];

55. measure q[0] -> c[0];

56. measure q[1] -> c[1];

57. measure q[2] -> c[2];

Listing 5.1: The program of implementing a CSWAP gate of three quantum bits.

277

For the convenience of our explanation, q[k]0 for 0  k  2 is to represent the value

0 of q[k] and q[k]1 for 0  k  2 is to represent the value 1 of q[k]. Similarly, for the

convenience of our explanation, an initial state vector of implementing a CSWAP gate

is as follows:

|0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>.

Then, the statement “creg c[3];” on instruction number four in the first line of Listing

5.1 is to declare that there are three classical bits in the program. In the left bottom of

Figure 5.9, three classical bits are respectively c[0], c[1] and c[2]. The initial value of

each classical bit is set to 0. Classical bit c[2] is the most significant bit and classical

bit c[0] is the least significant bit.

Figure 5.9: The corresponding quantum circuit of the program in Listing 5.1.

Next, the two statements “x q[0];” and “x q[2];” on line number five through line

number six in the second line of Listing 5.1 implement two NOT gates to quantum bit

q[0] and quantum bit q[2] in the first time slot of the quantum circuit in Figure 5.9.

They both actually complete (
0 1
1 0

)  (
1
0
) = (

0
1
) = |1>. This indicates that

converting q[0] from one state |0> to another state |1> and converting q[2] from one

state |0> to another state |1> are completed. Since in the first time slot of the quantum

circuit in Figure 5.9 there is no quantum gate to act on quantum bit q[1], its state |0> is

not changed. Therefore, we have the following new state vector

|1> = |q[2]1> |q[1]0> |q[0]1>.

 In the state vector |1> = |q[2]1> |q[1]0> |q[0]1>, quantum bit |q[2]1> is the input

state |1> of the controlled bit |C1> in the CSWAP gate in Figure 5.7. Quantum bit |q[1]0>

is the input state |0> of the target bit |S2> in the CSWAP gate in Figure 5.7. Quantum

bit |q[0]1> is the input state |1> of the target bit |S1> in the CSWAP gate in Figure 5.7.

Next, the statement “barrier q[0], q[1], q[2];” on line number seven in the sixth line of

Listing 5.1 implements one barrier instruction to prevent optimization from reordering

gates across its source line in the second time slot of the quantum circuit in Figure 5.9.

Next, from instruction number eight through instruction number twenty-two in Listing

278

5.1, the fifteen statements are “h q[1];” “cx q[0],q[1];”, “tdg q[1];”, “cx q[2], q[1];”, “t

q[1];”, “cx q[0],q[1];”, “tdg q[1];”, “cx q[2],q[1];”, “t q[0];”, “t q[1];”, “h q[1];”, “cx

q[2],q[0];”, “tdg q[0];”, “t q[2];” and “cx q[2],q[0];”. They take the state vector |1> =

|q[2]1> |q[1]0> |q[0]1> as their input and implement the first CCNOT gate with two

controlled bits q[2] and q[0] and one target bit q[1] from the third time slot through the

fifteen time slot of Figure 5.9. Because the two controlled bits q[2] and q[0] are both

state |1>, the state |0> of the target bit q[1] is converted into state |1>. Therefore, we

have the following new state vector

|15> = |q[2]1> |q[1]1> |q[0]1>.

Next, the statement “barrier q[0], q[1], q[2];” on instruction number twenty-three

in Listing 5.1 implements one barrier instruction to prevent optimization from

reordering gates across its source line in the sixteenth time slot of the quantum circuit

in Figure 5.9. Next, from instruction number twenty-four through instruction number

thirty-eight in Listing 5.1, the fifteen statements are “h q[0];”, “cx q[1],q[0];”, “tdg

q[0];”, “cx q[2],q[0];”, “t q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, “t q[1];”,

“t q[0];”, “h q[0];”, “cx q[2],q[1];”, “tdg q[1];”, “t q[2];” and “cx q[2],q[1];”. They take

the state vector |15> = |q[2]1> |q[1]1> |q[0]1> as their input and implement the second

CCNOT gate with two controlled bits q[2] and q[1] and one target bit q[0] from the

seventeenth time slot through the twenty-eighth time slot of Figure 5.9. Since the two

controlled bits q[2] and q[1] are both state |1>, the state |1> of the target bit q[0] is

converted into state |0>. Thus, we obtain the following new state vector

|28> = |q[2]1> |q[1]1> |q[0]0>.

Next, the statement “barrier q[0], q[1], q[2];” on instruction number thirty-nine in

Listing 5.1 implements one barrier instruction to prevent optimization from reordering

gates across its source line in the thirty-ninth time slot of the quantum circuit in Figure

5.9. Next, from instruction number forty through instruction number fifty-four in Listing

5.1, the fifteen statements are “h q[1];”, “cx q[0],q[1];”, “tdg q[1];”, “cx q[2],q[1];”, “t

q[1];”, “cx q[0],q[1];”, “tdg q[1];”, “cx q[2],q[1];”, “t q[0];”, “t q[1];”, “h q[1];”, “cx

q[2],q[0];”, “tdg q[0];”, “t q[2];” and “cx q[2],q[0];”. They take the state vector |28>

= |q[2]1> |q[1]1> |q[0]0> as their input and implement the third CCNOT gate with two

controlled bits q[2] and q[0] and one target bit q[1] from the thirtieth time slot through

the forty-second time slot of Figure 5.9. Because the first controlled bit q[2] is state |1>

and the second controlled bit q[0] is state |0>, the state |1> of the target bit q[1] is not

changed. Hence, we get the following new state vector

279

|42> = |q[2]1> |q[1]1> |q[0]0>.

Next, the three statements “measure q[0] -> c[0];”, “measure q[1] -> c[1];” and

“measure q[2] -> c[2];” from instruction number fifty-five through instruction number

in Listing 5.1 is to measure the first quantum bit q[0], the second quantum bit q[1] and

the third quantum bit q[2]. They record the measurement outcome by overwriting the

first classical bit c[0], the second classical bit c[1] and the third classical bit c[2]. In the

backend simulator with thirty-two quantum bits in IBM’s quantum computers, we use

the command “run” to execute the program in Listing 5.1. The measured result appears

in Figure 5.10. From Figure 5.10, we obtain the answer 110 (c[2] = 1 = q[2] = |1>, c[1]

= 1 = q[1] = |1> and c[0] = 0 = q[0] = |0>) with the probability 100%. Because the input

state of the target bit |S1> is state |1>, the input state of the target bit |S2> is state |0> and

the input state of the controlled bit |C1> is |1> in the CSWAP gate in Figure 5.7, the

information contained in the two target bits |S1> and |S2> are exchanged. Therefore, we

have the final state of the target bit |S1> encoded by |q[0]0> is state |0> and the final

state of the target bit |S2> encoded by |q[1]1> is state |1> with the probability 100%.

Figure 5.10: After the measurement to the program in Listing 5.1 is completed, we

obtain the answer 110 with the probability 100%.

5.13 Shor’s Order-Finding Algorithm

For positive integers X and N with that the value of X is less than the value of N and

the greatest common factor for them is one, the order (the period) of X modulo N is to

the least positive integer r such that Xr = 1 (mod N). The order-finding problem is to

compute the order for some given X and N. On a digital computer, no algorithm known

solves the problem with the number of the bit of specifying N that is L to be greater

than or equal to log2(N), by means of using resources polynomial in the O(L) bits

needed to specify the problem. In this section, we explain how Shor’s order-finding

280

algorithm is an efficient quantum algorithm to order finding.

Quantum circuit to Shor’s order-finding algorithm is schematically depicted in

Figure 5.11. The first quantum register of n quantum bits is (⊗𝑘=1
𝑛 |𝑝𝑘

0 >) and the initial

state of each quantum bit is the |0> state. Quantum bit |p1
0> is the most significant bit

Figure 5.11: Quantum circuit of implementing Shor’s order-finding algorithm.

and quantum bit |pn
0> is the least significant bit. Because the order of X modulo N is

less than or equal to N, n is greater than or equal to log2(N). Its decimal value is equal

to p1  2n − 1 + p2  2n − 2 + p3  2n − 3 +  + pn  2n − n. The second quantum register of

L quantum bits is ((⊗𝑦=1
𝐿−1 |𝑤𝑦

0 >)  (|wL
1>)). The initial state of each quantum bit in

the front (L − 1) quantum bits is the |0> state. The initial state of the least significant

quantum bit (|wL
1>) is the |1> state. Quantum bit |w1

0> is the most significant bit and

quantum bit |wL
1> is the least significant bit. Its decimal value is equal to w1  2L − 1 +

w2  2L − 2 + w3  2L− 3 +  + pL  2L − L. From Figure 5.11, the initial state vector is

|0> = (⊗𝑘=1
𝑛 |𝑝𝑘

0 >)  ((⊗𝑦=1
𝐿−1 |𝑤𝑦

0 >)  (|wL
1>)). (5.31)

From Figure 5.11, the initial state vector |0> in (5.31) is followed by n Hadamard gates

on the first (upper) quantum register. This gives that the new state vector is

281

|1> =
1

√2𝑛
 ((⊗𝑘=1

𝑛 |𝑝𝑘
0 > +|𝑝𝑘

1 >)  ((⊗𝑦=1
𝐿−1 |𝑤𝑦

0 >)  (|wL
1>)))

 =
1

√2𝑛
 (∑ |𝑃⟩2𝑛−1

𝑃=0  ((⊗𝑦=1
𝐿−1 |𝑤𝑦

0 >)  (|wL
1>))). (5.32)

Next, from Figure 5.11, the new state vector |1> in (5.32) is followed by a quantum

gate |XP mod N> = |𝑋𝑝1×2
𝑛−1 + 𝑝2×2

𝑛−2 + ⋯ + 𝑝𝑛×2
𝑛−𝑛

 mod N> operating on both

quantum registers. This gives that the new state vector is

|2> =
1

√2𝑛
 (∑ |𝑃⟩2𝑛−1

𝑃=0 |XP mod N>). (5.33)

Because the order of X modulo N is r, terms of |2> in (5.33) can be regrouped as r

equivalent classes according to the computational basis states with the same remainder

of |XP mod N>. The first equivalent class is {r  y + 0 | 0  y  (2n − 0) / r }, where

(2n − 0) / r is to obtain the greatest integer that is less than or equal to ((2n − 0) / r).

The second equivalent class is {r  y + 1 | 0  y  (2n − 1) / r }. The third equivalent

class is {r  y + 2 | 0  y  (2n − 2) / r }. The fourth equivalent class is {r  y + 3 | 0

 y  (2n − 3) / r }. The rth equivalent class is {r  y + (r − 1) | 0  y  (2n − (r − 1))

/ r }. Not all the equivalent classes have the same number of elements. However, if r

divides 2n, then the number of elements in each equivalent class is the same. We assume

that for 0  P  (r − 1), YP = (2n − P) / r. In light of the statements above, we rewrite

the new state vector |2> in (5.33) as follows

|2> = ∑ (
1

√2𝑛
∑ |𝑟 × 𝑦 + 𝑃⟩
𝑌𝑃
𝑦=0)𝑟−1

𝑃=0 |XP mod N>. (5.34)

For the convenience of our presentation, we assume that |2P> = (
1

√2𝑛
∑ |𝑟 × 𝑦 +
𝑌𝑃
𝑦=0

𝑃⟩) for 0  P  (r − 1).

As in Figure 5.11, the last step before measurement is to complete the inverse

quantum Fourier transform (an IQFT) on the first (upper) quantum register. The

superposition principle allows the unitary operator to act one by one on each |2P>.

Therefore, we obtain the following new state vector

|3> =
1

√2𝑛
 ∑ ∑

1

√2𝑛
𝑌𝑃
𝑦=0 𝑟−1

𝑃=0 ∑ 𝑒−√−1×
2×𝜋

2𝑛
×𝑖×(𝑦×𝑟+𝑃)2𝑛−1

𝑖=0 |i> |XP mod N>.

282

 = ∑ ∑ ∑
𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×(𝑦×𝑟+𝑃)

2𝑛
𝑌𝑃
𝑦=0

𝑟−1
𝑃=0 2𝑛−1

𝑖=0 |i> |XP mod N>. (5.35)

For the convenience of our presentation, we assume that iP = (∑
𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×(𝑦×𝑟+𝑃)

2𝑛
𝑌𝑃
𝑦=0)

for 0  P  (r − 1) and 0  i  (2n − 1). Coefficients iP and |iP|2 subsequently represent

the amplitude and the probability of measuring |i> |XP mod N> at the output of the

circuit in Figure 5.11. The probability amplitudes may cancel each other while

increasing the probability of measuring a suitable state.

For the convenience of our presentation, we assume that P(i) represents the

probability of measuring |i> |XP mod N> at the output of the circuit in Figure 5.11. Basic

probability theory guarantees that

P(i) = ∑ |𝑟−1
𝑃=0 𝜑𝑖𝑃|

2 = ∑ |∑
𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×(𝑦×𝑟+𝑃)

2𝑛
|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0

 = ∑ |𝑒−√−1×
2×𝜋

2𝑛
×𝑖×𝑃|2 × |∑

(𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×𝑟
)𝑦

2𝑛
|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0 (5.36)

Since basic probability theory ensures that |𝑒−√−1×
2×𝜋

2𝑛
×𝑖×𝑃|2 = (𝑒−√−1×

2×𝜋

2𝑛
×𝑖×𝑃

) 

(𝑒√−1×
2×𝜋

2𝑛
×𝑖×𝑃

) = 1, we can rewrite P(i) in (5.36) as follows

P(i) = ∑ 1 × |∑
(𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×𝑟
)𝑦

2𝑛
|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0

 = ∑ |
1

2𝑛
∑ (𝑒−√−1×

2×𝜋

2𝑛
×𝑖×𝑟)𝑦|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0

 =
1

22×𝑛
  (∑ |∑ (𝑒−√−1×

2×𝜋

2𝑛
×𝑖×𝑟)𝑦|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0). (5.37)

For realizing a sum of geometrical sequence, we discuss the ideal case and the practice

case. If the argument of the absolute value operator is 𝑒−√−1×
2×𝜋

2𝑛
×𝑖×𝑟

 = 1, then (i  r /

2n) is an integer and we can rewrite P(i) in (5.37) as follows

P(i) =
1

22×𝑛
  (∑ |∑ 1𝑦|2

𝑌𝑃
𝑦=0

𝑟−1
𝑃=0).

283

=
1

22×𝑛
  (∑ (𝑌𝑃

𝑟−1
𝑃=0 + 1)2). (5.38)

We call (5.38) as the ideal case. If the argument of the absolute value operator is

𝑒−√−1×
2×𝜋

2𝑛
×𝑖×𝑟

  1, then (i  r / 2n) is not an integer and we can rewrite P(i) in (5.37)

as follows

P(i) =
1

22×𝑛
  (∑ |𝑟−1

𝑃=0
1−𝑒

−√−1×
2×𝜋
2𝑛

×𝑖×𝑟×(1+𝑌𝑃)

1−𝑒
−√−1×

2×𝜋
2𝑛

×𝑖×𝑟
|2). (5.39)

We call (5.39) as the practice case. Because |1 − 𝑒√−1×𝜃|2 = 4  sin2( / 2) and sin(−

/ 2) = −sin( / 2) and sin2(− / 2) = sin(− / 2)  sin(− / 2) = (−sin( / 2))  (−sin( /

2)) = sin2( / 2), we can rewrite P(i) in (5.39) as follows

P(i) =
1

22×𝑛
  (∑

4×sin2(
−2×𝜋×𝑖×𝑟×(𝑌𝑃+1)

2𝑛
×
1

2
)

4×sin2(
−2×𝜋×𝑖×𝑟

2𝑛
×
1

2
)

𝑟−1
𝑃=0)

 =
1

22×𝑛
  (∑

sin2(
𝜋×𝑖×𝑟×(𝑌𝑃+1)

2𝑛
)

sin2(
𝜋×𝑖×𝑟

2𝑛
)

𝑟−1
𝑃=0). (5.40)

5.14 Quantum Circuits of Factoring 15

We want to complete the prime factorization for N = 15. We need to find the

nontrivial factor for N = 15. From Lemma 5-1 and Lemma 5-6, we select a number X

= 2 so that the greatest common divisor of X = 2 and N = 15 is 1 (one). This indicates

that X = 2 is co-prime to N = 15. From Lemma 5-6, the order r of 2 modulo 15 satisfies

r  15. Since the number of bit representing N = 15 is four bits long, we also only need

to make use of four bits that represent the value of r. If the value of r is an even, then

the first nontrivial factor for N = 15 is equal to gcd(2r / 2 + 1, N) and the second nontrivial

factor for N = 15 is equal to gcd(2r / 2 − 1, N).

Computing the order r of 2 modulo 15 is equivalent to calculate the period r of a

given oracular function Of: {p1 p2 p3 p4   pd  {0, 1} for 1  d  4} → {2𝑝1𝑝2𝑝3𝑝4

(mod 15) |  pd  {0, 1} for 1  d  4}. An input variable p1 p2 p3 p4 is four bits long.

Bit p1 is the most significant bit and bit p4 is the least significant bit. The corresponding

decimal value is equal to p1  24 − 1 + p2  24 − 2 + p3  24 − 3 + p4  24 − 4 = P. The period

r of Of is to satisfy Of(p1 p2 p3 p4) = Of(p1 p2 p3 p4 + r) to any two inputs (p1 p2 p3 p4)

and (p1 p2 p3 p4 + r).

284

For implementing the operation of modular exponentiation, 2𝑝1𝑝2𝑝3𝑝4 (mod 15),

we assume that an auxiliary variable w1 w2 w3 w4 is four bits long. Bit w1 is the most

significant bit and bit w4 is the least significant bit. The corresponding decimal value is

equal to w1  24 − 1 + w2  24 − 2 + w3  24 − 3 + w4  24 − 4 = W. The initial value of each

bit in the front three bits is zero (0). The initial value of the least significant bit w4 is

one (1).

5.14.1 Flowchart of Computing the Order r of X Modulo N

Figure 5.12 is to flowchart of computing the order r of X modulo N. In Figure 5.12,

in statement S1, it sets the value of an auxiliary variable W to be one. It sets the value

of X to be two and sets the value of N to be fifteen. Because the number of bits to

represent N is four, it sets the value of an auxiliary variable n to be four. It sets the index

285

Figure 5.12: Flowchart of computing the order r of X modulo N.

variable j of the first loop to one. Next, in statement S2, it executes the conditional

judgement of the first loop. If the value of j is less than 2n, then next executed instruction

is statement S3. Otherwise, in statement S8, it sets the value of the order r to zero. This

is to say that we cannot find the order r of X modulo N. Next, in statement S9, it executes

an End instruction to terminate the task that is to find the order r of X modulo N.

In statement S3, it completes one multiplication instruction and one modular

instruction and stores the result into an auxiliary variable W. On the jth execution of

statement S3, it actually completes Xj (mod N) and stores the result into an auxiliary

variable W. Because the range of the value to the index variable j is from one through

2n − 1, it actually at most completes X1 (mod N) through 𝑋2
𝑛−1 (mod N). As X0 (mod

N) = 1 (mod N), in statement S1 it sets an auxiliary variable W to one that is to complete

X0 (mod N).

Next, in statement S4, it executes the conditional judgement to decide whether the

value of W is equal to one. If the value of W is equal to one, then next executed

instruction is statement S5. In statement S5, it sets the value of the order r to be the value

of j. This indicates that we have found the order r of X modulo N. Next, in statement S6,

it executes an End instruction to terminate the task that is to find the order r of X modulo

N.

However, if the value of W in statement S4 is not equal to one, then next executed

instruction is statement S7. Next, in statement S7, it increases the value of the index

variable j. Repeat to execute statement S2 through statement S7 until in statement S2, the

conditional judgement becomes a false value or in statement S6, it executes an End

instruction to terminate the task. From Figure 5.12, the total number of multiplication

instruction and modular instruction is at most (2n − 1) multiplication instructions and

(2n − 1) modular instructions. This is to say that the cost of finding the order r of X

modulo N is at most to complete (2n − 1) multiplication instructions and (2n − 1)

modular instructions.

5.14.2 Implementing Modular Exponentiation XP (mod N)

In Figure 5.12, in sequent model, it computes each modular exponentiation XP (mod

N) to 0  P  2n − 1. However, in Figure 5.11, in parallel model, it simultaneously

computes each modular exponentiation XP (mod N) to 0  P  2n − 1. In Figure 5.11, it

286

uses a quantum gate |XP mod N> = |𝑋𝑝1×2
𝑛−1 + 𝑝2×2

𝑛−2 + ⋯ + 𝑝𝑛×2
𝑛−𝑛

 mod N> operating

on both quantum registers. The method for figuring out the modular exponentiation XP

(mod N) has two stages. The first stage makes use of modular multiplication to compute

X2 (mod N), by squaring X (mod N). Next, it computes X4 (mod N) by squaring X2 (mod

N). Then, it computes X8 (mod N) by squaring X4 (mod N). In this way, it continues to

compute 𝑋2
𝑘
 (mod N) for all k up to (n − 1). We make use of n = O(L), so a total of (n

− 1) = O(L) squaring operations is completed at a cost of O(L2) each (this cost assumes

that the circuit used to do the squaring operation implements a kind of multiplication).

Therefore, a total cost of the first stage is O(L3).

The second stage of the method is to complete the following observation

XP (mod N) = 𝑋𝑝1×2
𝑛−1 + 𝑝2×2

𝑛−2 + ⋯ + 𝑝𝑛×2
𝑛−𝑛

 (mod N)

= (𝑋𝑝1×2
𝑛−1

 (mod N)) N (𝑋𝑝2×2
𝑛−2

 (mod N)) N  N (𝑋𝑝𝑛×2
𝑛−𝑛

 (mod N)). (5.41)

Completing (n − 1) = O(L) modular multiplications with a cost O(L2) each, we see that

using O(L3) gates can compute this product in (5.41). This is sufficiently efficient for

finding the order r of X modulo N. Of course, methods that are more efficient are

possible if there are the circuits of the better multiplication.

5.14.3 Computing the Order r of (X = 2) Modulo (N = 15)

The order of (X = 2) modulo (N = 15) is to the least positive integer r such that 2r

= 1 (mod 15). Because r  (N = 15) and the number of bits representing (N = 15) is four

bits long, the number of bits representing r is four bits long. Therefore, an input variable

p1 p2 p3 p4 is four bits long. Bit p1 is the most significant bit and bit p4 is the least

significant bit. The corresponding decimal value is equal to p1  24 − 1 + p2  24 − 2 + p3

 24 − 3 + p4  24 − 4 = P. This is to say that the range of the value to P is from zero

through fifteen. If P is to the least positive integer such that 2P = 1 (mod 15), then the

value of r is equal to the value of P. We use pd
0 to represent the value of pd to be zero

for 1  d  4 and apply pd
1 to represent the value of pd to be one for 1  d  4.

Because the remainder for 2P (mod 15) to 0  P  15 is from zero through fourteen,

we assume that an auxiliary variable w1 w2 w3 w4 is four bits long and we use it to store

the result of computing 2P (mod 15) to 0  P  15. We use wd
0 to represent the value of

wd to be zero for 1  d  4 and apply wd
1 to represent the value of wd to be one for 1 

d  4. Bit w1 is the most significant bit and bit w4 is the least significant bit. The

corresponding decimal value is equal to w1  24 − 1 + w2  24 − 2 + w3  24 − 3 + w4  24 −

287

4 = W. The initial value of each bit in the front three bits is zero. The initial value of the

least significant bit w4 is one. This is to say that W = w1
0  24 − 1 + w2

0  24 − 2 + w3
0 

24 − 3 + w4
1  24 − 4 = 1.

Computing the order r of 2 modulo 15 is equivalent to calculate the period r of a

given oracular function Of: {p1 p2 p3 p4   pd  {0, 1} for 1  d  4} → {2𝑝1𝑝2𝑝3𝑝4

(mod 15) |  pd  {0, 1} for 1  d  4}. The period r of Of is to satisfy Of(p1 p2 p3 p4) =

Of(p1 p2 p3 p4 + r) to any two inputs (p1 p2 p3 p4) and (p1 p2 p3 p4 + r). The first stage of

computing Of(p1 p2 p3 p4) = 2𝑝1𝑝2𝑝3𝑝4 (mod 15) is to use modular multiplication to

compute 22 (mod 15), by squaring 2 (mod 15). We get the following result

22 (mod 15) = (2 (mod 15))2 = (2 (mod 15)) 15 (2 (mod 15)) = 4 (mod 15) = 4. (5.42)

Next, it computes 24 (mod 15) by squaring 22 (mod 15) and we get the following result

24 (mod 15) = (22 (mod 15))2 = (22 (mod 15)) 15 (2
2 (mod 15)) = 42 (mod 15) = 1. (5.43)

Then, it computes 28 (mod 15) by squaring 24 (mod 15) and we get the following result

28 (mod 15) = (24 (mod 15))2 = (24 (mod 15)) 15 (2
4 (mod 15)) = 12 (mod 15) = 1. (5.44)

Next, the second stage of computing Of(p1 p2 p3 p4) = 2𝑝1𝑝2𝑝3𝑝4 (mod 15) is to

complete the following observation

2P (mod 15) = 2𝑝1×2
3 + 𝑝2×2

2 + 𝑝3×2
1 + 𝑝4×2

0
 (mod 15) = (2𝑝1×2

3
 (mod 15)) 15 (2𝑝2×2

2

(mod 15)) 15 (2𝑝3×2
1
 (mod 15)) 15 (2𝑝4×2

0
 (mod 15)). (5.45)

If the value of bit p1 is equal to one (1), then (2𝑝1
1×23 (mod 15)) = (28 (mod 15)) = 1.

Otherwise, (2𝑝1
0×23 (mod 15)) = (20 (mod 15)) = 1. This is to say that (2𝑝1×2

3
 (mod

15)) = 1. Next, if the value of bit p2 is equal to one (1), then (2𝑝2
1×22 (mod 15)) = (24

(mod 15)) = 1. Otherwise, (2𝑝2
0×22 (mod 15)) = (20 (mod 15)) = 1. This indicates that

(2𝑝2×2
2
 (mod 15)) = 1. Therefore, we can rewrite the equation in (5.45) as follows

2P (mod 15) = (2𝑝3×2
1
 (mod 15)) 15 (2𝑝4×2

0
 (mod 15)). (5.46)

According to the equation in (5.46), sixteen outputs of Of that takes each input from

p1
0 p2

0 p3
0 p4

0 through p1
1p2

1 p3
1 p4

1 are subsequently 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8, 1,

2, 4 and 8. The binary values to one (1), two (2), four (4) and eight (8) are subsequently

288

w1
0w2

0 w3
0 w4

1, w1
0w2

0 w3
1 w4

0, w1
0w2

1 w3
0 w4

0 and w1
1w2

0 w3
0 w4

0. The frequency f of

Of is equal to the number of the period per sixteen outputs. This gives that r  f = 16.

Hidden patterns and information stored in a given oracular function Of are to that its

output rotates back to its starting value (1) four times. This implies that the number of

the period per sixteen outputs is four and the frequency f of Of is equal to four. The

period r of Of is the reciprocal of the frequency f of Of. Thus, we obtain r =
1
𝑓

16

 =
16

𝑓
 =

16

4
 = 4 and r  f = 4  4 = 16. Therefore, the order r of (X = 2) modulo (N = 15) is equal

to four.

5.14.4 Reduction of Implementing Modular Exponentiation 2P (mod

15)

In (5.46), the oracular function is Of(p1 p2 p3 p4) = 2𝑝1𝑝2𝑝3𝑝4 (mod 15) = (2𝑝3×2
1

(mod 15)) 15 (2𝑝4×2
0
 (mod 15)). If the value of bit p3 is equal to one (1), then (2𝑝3

1×21

(mod 15)) = (22 (mod 15)) = 4. Otherwise, (2𝑝3
0×21 (mod 15)) = (20 (mod 15)) = 1.

This is to say that if the value of bit p3 is equal to one (1), then the instruction “(2𝑝3
1×21

(mod 15)) = (22 (mod 15)) = 4” can be implemented by means of multiply any auxiliary

variable w1
0w2

0 w3
0 w4

1 by 22. Otherwise, the instruction “(2𝑝3
0×21 (mod 15)) = (20

(mod 15)) = 1” are not implemented.

Similarly, if the value of bit p4 is equal to one (1), then (2𝑝4
1×20 (mod 15)) = (21

(mod 15)) = 2. Otherwise, (2𝑝4
0×20 (mod 15)) = (20 (mod 15)) = 1. This indicates that

if the value of bit p4 is equal to one (1), then the instruction “(2𝑝4
1×20 (mod 15)) = (21

(mod 15)) = 2” can be implemented by means of multiply the auxiliary variable w1
0w2

0

w3
0 w4

1 by 21. Otherwise, the instruction “(2𝑝4
0×20 (mod 15)) = (20 (mod 15)) = 1” are

not executed.

Of course, using a simple bit shift can achieve multiplication by 2 (or indeed any

power of 2) on any binary auxiliary variable. Computing 2P requires P multiplications

by 2 on any binary auxiliary variable. Completing left bit shift of P times can implement

P multiplications by 2 on any binary auxiliary variable. This implies that computing 2P

requires completing left bit shift of P times on any binary auxiliary variable.

For example, in our example we use bits p3 and p4 as the controlled bits. If the value

of the controlled bit p4 is equal to one (1), then we use left bit shift of one time on the

binary auxiliary variable w1
0w2

0 w3
0 w4

1 to implement the instruction “(2𝑝4
1×20 (mod

289

15)) = (21 (mod 15)) = 2”. Left bit shift of one time is to that it exchanges each bit wk

for 1  k  4 with the next highest weighted position. On the execution of the first time,

it exchanges bit w1
0 with bit w2

0 and the result is w2
0w1

0 w3
0 w4

1. Next, on the execution

of the second time, it exchanges bit w1
0 with bit w3

0 and the result is w2
0w3

0 w1
0 w4

1.

Next, on the execution of the third time, it exchanges bit w1
0 with bit w4

1 and the result

is w2
0w3

0 w4
1 w1

0.

The corresponding decimal value of w2
0w3

0 w4
1 w1

0 is two (2). This means that it

implement the instruction “(2𝑝4
1×20 (mod 15)) = (21 (mod 15)) = 2”. We can use three

CSWAP gates to implement them. Similarly, if the value of the controlled bit p3 is equal

to one (1), then we complete a shift by two bits to implement the instruction “(2𝑝3
1×21

(mod 15)) = (22 (mod 15)) = 4”. A shift by two bits is to that it exchanges the bit at the

weighted position (23) with another bit at the weighted position (21) and exchanges at

the weighted position (22) with another bit at the weighted position (20). We can make

use of two CSWAP gates to implement them. This reduction makes us not to implement

multiplication circuits and modular circuits.

5.14.5 Initialize Quantum Registers of Quantum Circuits to Find the

Order r of (X = 2) Modulo (N = 15)

We use the quantum circuit in Figure 5.13 to find the order r of (X = 2) modulo (N

=15). The first (upper) quantum register has four quantum bits. Bit |p1> is the most

significant bit and bit |p4> is the least significant bit. The corresponding decimal value

is equal to p1  24 − 1 + p2  24 − 2 + p3  24 − 3 + p4  24 − 4 = P. The initial state of each

290

Figure 5.13: Quantum circuits of finding the order r of (X = 2) modulo (N =15).

quantum bit |pd> for 1  d  4 is set to state |0>. The second (lower) quantum register

has four quantum bits. Bit |w1> is the most significant bit and bit |w4> is the least

significant bit. The corresponding decimal value is equal to w1  24 − 1 + w2  24 − 2 + w3

 24 − 3 + w4  24 − 4 = W. The initial state of the front three quantum bits |wd> for 1  d

 3 is set to state |0>. The initial state of the least significant quantum bits |wd> for 1 

d  3 is set to state |1>.

In Listing 5.2, the program is in the backend that is simulator of Open QASM with

thirty-two quantum bits in IBM’s quantum computer. The program is to find the order

r of (X = 2) modulo (N =15). Figure 5.14 is the corresponding quantum circuit of the

program in Listing 5.2 and is to implement the quantum circuit of finding the order r of

(X = 2) modulo (N =15) in Figure 5.13.

Figure 5.14: Implementing quantum circuits of finding the order r of (X = 2) modulo

(N =15) in Figure 5.13.

The statement “OPENQASM 2.0;” on line one of Listing 5.2 is to indicate that the

program is written with version 2.0 of Open QASM. Then, the statement “include

"qelib1.inc";” on line two of Listing 5.2 is to continue parsing the file “qelib1.inc” as if

the contents of the file were pasted at the location of the include statement, where the

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is

specified relative to the current working directory.

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[8];

4. creg c[4];

5. x q[7];

Listing 5.2: The program of finding the order r of (X = 2) modulo (N =15).

291

Next, the statement “qreg q[8];” on line three of Listing 5.2 is to declare that in the

program there are eight quantum bits. In the left top of Figure 5.14, eight quantum bits

are subsequently q[0], q[1], q[2], q[3], q[4], q[5], q[6] and q[7]. The initial value of

each quantum bit is set to state |0>. We use four quantum bits q[0], q[1], q[2] and q[3]

to respectively encode four quantum bits |p1>, |p2>, |p3> and |p4> in Figure 5.13. We

apply four quantum bits q[4], q[5], q[6] and q[7] to respectively encode four quantum

bits |w1>, |w2>, |w3> and |w4> in Figure 5.13.

For the convenience of our explanation, q[k]0 for 0  k  7 is to represent the value

0 of q[k] and q[k]1 for 0  k  7 is to represent the value 1 of q[k]. Next, the statement

“creg c[4];” on line four of Listing 5.2 is to declare that there are four classical bits in

the program. In the left bottom of Figure 5.14, four classical bits are subsequently c[0],

c[1], c[2] and c[3]. The initial value of each classical bit is set to zero (0). For the

convenience of our explanation, c[k]0 for 0  k  3 is to represent the value 0 of c[k]

and c[k]1 for 0  k  3 is to represent the value 1 of c[k]. The corresponding decimal

value of the four initial classical bits c[3]0 c[2]0 c[1]0 c[0]0 is 23  c[3]0 + 22  c[2]0 +

21  c[1]0 + 20  c[0]0. This indicates that classical bit c[3]0 is the most significant bit

and classical bit c[0]0 is the least significant bit. Next, the statement “x q[7];” on line

five of Listing 5.2 is to convert the state |0> of quantum bit |q[7]> into the state |1>. For

the convenience of our explanation, an initial state vector of finding the order r of (X =

2) modulo (N =15) is

|0> = |q[0]0> |q[1]0> |q[2]0> |q[3]0> |q[4]0> |q[5]0> |q[6]0> |q[7]1>. (5.47)

5.14.6 Quantum Superposition to Compute 2P (mod 15)

In the initial state vector |0> in (5.47), quantum bits |q[0]0> |q[1]0> |q[2]0> |q[3]0>

encode four quantum bits |p1
0>, |p2

0>, |p3
0> and |p4

0> of the first register in Figure 5.13

and are the precision register. We use the precision register to represent the values of P

that we shall pass to modular exponentiation 2P (mod 15). We shall make use of

quantum superposition to evaluate modular exponentiation 2P (mod 15) for multiple

values of P in parallel, so we use four statements “h q[0];”, “h q[1];”, “h q[2];” and “h

q[3];” from line six through line nine in Listing 5.2 to place the precision register into

Listing 5.2 continued…

6. h q[0];

7. h q[1];

292

8. h q[2];

9. h q[3];

a superposition of all possible values. Therefore, we have the following new state vector

|1> = (
1

√2
 (|q[0]0> + |q[0]1>)) (

1

√2
 (|q[1]0> + |q[1]1>)) (

1

√2
 (|q[2]0> + |q[2]1>))

(
1

√2
 (|q[3]0> + |q[3]1>)) (|q[4]0> |q[5]0> |q[6]0> |q[7]1>)

=
1

√24
 (∑ |𝑃⟩24−1

𝑃=0) (|q[4]0> |q[5]0> |q[6]0> |q[7]1>). (5.48)

This way makes each state (|P> |q[4]0> |q[5]0> |q[6]0> |q[7]1>) in the new state vector

(|1>) in (5.48) to be ready to be treated as a separate input to a parallel computation.

5.14.7 Implementing Conditional Multiply-by-2 for Computing 2P

(mod 15)

In the initial state vector |0> in (5.47), quantum bits |q[4]0> |q[5]0> |q[6]0> |q[7]1>

encode four quantum bits |w1
0>, |w2

0>, |w3
0> and |w4

1> of the second register in Figure

5.13 and are the auxiliary register. We now would like to complete modular

exponentiation 2P (mod 15) = (2𝑝3×2
1
 (mod 15)) 15 (2𝑝4×2

0
 (mod 15)) in (5.46) on

the superposition of inputs we have within the precision register, and we shall apply the

auxiliary register to hold and to store the results. We use three CSWAP gates to

implement the instruction (2𝑝4×2
0
 (mod 15)) that is conditional multiply-by-2. Three

statements “ccx q[3],q[4],q[5];”, “ccx q[3],q[5],q[4];” and “ccx q[3],q[4],q[5];” from

line ten through line twelve in Listing 5.2 are three CCNOT gates to implement the first

CSWAP gate in Figure 5.13. In the first CSWAP gate, quantum bit q[3] is its controlled

bit and quantum bits q[4] and q[5] are its target bits. In the CCNOT instruction, the first

operand and the second operand are its two controlled bits and the third operand is its

target bit.

Listing 5.2 continued…

//Implement the first CSWAP gate.

10. ccx q[3],q[4],q[5];

11. ccx q[3],q[5],q[4];

12. ccx q[3],q[4],q[5];

293

//Implement the second CSWAP gate.

13. ccx q[3],q[5],q[6];

14. ccx q[3],q[6],q[5];

15. ccx q[3],q[5],q[6];

//Implement the third CSWAP gate.

16. ccx q[3],q[6],q[7];

17. ccx q[3],q[7],q[6];

18. ccx q[3],q[6],q[7];

The three CCNOT gates exchange the quantum bit at the weighted position (23) of

the work register with the quantum bit at the weighted position (22) of the work register.

This means that the new state vector is

|2> =
1

√24
 (|q[0]0> + |q[0]1>) (|q[1]0> + |q[1]1>) (|q[2]0> + |q[2]1>) (|q[3]0> |q[4]0>

|q[5]0> |q[6]0> |q[7]1> + |q[3]1> |q[5]0> |q[4]0> |q[6]0> |q[7]1>). (5.49)

Next, in the second CSWAP gate in Figure 5.13, quantum bit q[3] is its controlled

bit and quantum bits q[5] and q[6] are its target bits. Three CCNOT gates “ccx

q[3],q[5],q[6];”, “ccx q[3],q[6],q[5];” and “ccx q[3],q[5],q[6];” from line thirteen

through line fifteen in Listing 5.2 are to implement the second CSWAP gate in Figure

5.13. This indicates that the new state vector is

|3> =
1

√24
 (|q[0]0> + |q[0]1>) (|q[1]0> + |q[1]1>) (|q[2]0> + |q[2]1>) (|q[3]0> |q[4]0>

|q[5]0> |q[6]0> |q[7]1> + |q[3]1> |q[5]0> |q[6]0> |q[4]0> |q[7]1>). (5.50)

Then, in the third CSWAP gate in Figure 5.13, quantum bit q[3] is its controlled bit

and quantum bits q[6] and q[7] are its target bits. Three CCNOT gates “ccx

q[3],q[6],q[7];”, “ccx q[3],q[7],q[6];” and “ccx q[3],q[6],q[7];” from line sixteen

through line eighteen in Listing 5.2 are to implement the third CSWAP gate in Figure

5.13. This implies that the new state vector is

|4> =
1

√24
 (|q[0]0> + |q[0]1>) (|q[1]0> + |q[1]1>) (|q[2]0> + |q[2]1>) (|q[3]0> |q[4]0>

|q[5]0> |q[6]0> |q[7]1> + |q[3]1> |q[5]0> |q[6]0> |q[7]1> |q[4]0>). (5.51)

294

In the new state vector |4> in (5.51), if the least significant quantum bit q[3] in the

precision register is the |1> state, then the value of its work register is two (2). Otherwise,

the value of its work register is not changed and is still one (1).

5.14.8 Implementing Conditional Multiply-by-4 for Computing 2P

(mod 15)

Because the work register in the new state vector |4> in (5.51) holds and stores the

result of computing (2𝑝4×2
0
 (mod 15)), next we want to complete the instruction

(2𝑝3×2
1
 (mod 15)). If the value of quantum bit |q[2]> that encodes quantum bit |p3> in

the precision register is one (1), then that indicates to complete the instruction (2𝑝3×2
1

(mod 15)) to require another two multiplications by two (2) on the work register. We

use two CSWAP gates to implement the instruction (2𝑝3×2
1
 (mod 15)) that is

conditional multiply-by-4. In Figure 5.13, the fourth CSWAP gate is to exchange the

quantum bit at the weighted position (23) of the work register with another quantum bit

at the weighted position (21) of the work register if the value of the quantum bit at the

weighted position (21) of the precision register is state |1>. Next, in Figure 5.13, the

fifth CSWAP gate is to exchange the quantum bit at the weighted position (22) of the

work register with another quantum bit at the weighted position (20) of the work register

if the value of the quantum bit at the weighted position (21) of the precision register is

state |1>.

Three statements “ccx q[2],q[4],q[6];”, “ccx q[2],q[6],q[4];” and “ccx

q[2],q[4],q[6];” from line nineteen through line twenty-one in Listing 5.2 are three

CCNOT gates to implement the fourth CSWAP gate in Figure 5.13. In the fourth

CSWAP gate, quantum bit q[2] is its controlled bit and quantum bits q[4] and q[6] are

its target bits. In the CCNOT instruction, the first operand and the second operand are

its two controlled bits and the third operand is its target bit.

Listing 5.2 continued…

//Implement the fourth CSWAP gate.

19. ccx q[2],q[4],q[6];

20. ccx q[2],q[6],q[4];

21. ccx q[2],q[4],q[6];

//Implement the fifth CSWAP gate.

295

22. ccx q[2],q[5],q[7];

23. ccx q[2],q[7],q[5];

24. ccx q[2],q[5],q[7];

The three CCNOT gates exchange the quantum bit at the weighted position (23) of

the work register with the quantum bit at the weighted position (21) of the work register.

This means that the new state vector is

|5> =
1

√24
 (|q[0]0> + |q[0]1>) (|q[1]0> + |q[1]1>) (|q[2]0> |q[3]0> |q[4]0> |q[5]0> |q[6]0>

|q[7]1> + |q[2]0> |q[3]1> |q[5]0> |q[6]0> |q[7]1> |q[4]0> + (|q[2]1> |q[3]0> |q[6]0> |q[5]0>

|q[4]0> |q[7]1> + |q[2]1> |q[3]1> |q[7]1> |q[6]0> |q[5]0> |q[4]0>). (5.52)

Next, in the fifth CSWAP gate in Figure 5.13, quantum bit q[2] is its controlled bit

and quantum bits q[5] and q[7] are its target bits. Three CCNOT gates “ccx

q[2],q[5],q[7];”, “ccx q[2],q[7],q[5];” and “ccx q[2],q[5],q[7];” from line twenty-two

through line twenty-four in Listing 5.2 are to implement the fifth CSWAP gate in Figure

5.13. This means that the new state vector is

|6> =
1

√24
 (|q[0]0> + |q[0]1>) (|q[1]0> + |q[1]1>) (|q[2]0> |q[3]0> |q[4]0> |q[5]0> |q[6]0>

|q[7]1> + |q[2]0> |q[3]1> |q[5]0> |q[6]0> |q[7]1> |q[4]0> + (|q[2]1> |q[3]0> |q[6]0> |q[7]1>

|q[4]0> |q[5]0> + |q[2]1> |q[3]1> |q[7]1> |q[4]0> |q[5]0> |q[6]0>). (5.53)

In the new state vector |6> in (5.53), it shows how we have now managed to compute

2P (mod 15) = (2𝑝3×2
1
 (mod 15)) 15 (2𝑝4×2

0
 (mod 15)) in (5.46) on every value of P

from the precision register in superposition.

5.14.9 Implementing Inverse Quantum Fourier Transform of Four

Quantum Bits

In Figure 5.13, by completing an inverse quantum Fourier transform on the

precision register, it effectively transform the precision register state into a

superposition of the periodic signal’s component frequencies. Twelve statements from

Listing 5.2 continued…

// Implement an inverse quantum Fourier transform.

296

25. h q[0];

26. cu1(-2*pi*1/4) q[1],q[0];

27. cu1(-2*pi*1/8) q[2],q[0];

28. cu1(-2*pi*1/16) q[3],q[0];

29. h q[1];

30. cu1(-2*pi*1/4) q[2],q[1];

31. cu1(-2*pi*1/8) q[3],q[1];

32. h q[2];

33. cu1(-2*pi*1/4) q[3],q[2];

34. h q[3];

35. swap q[0],q[3];

36. swap q[1],q[2];

line twenty-five through line thirty-six in Listing 5.2 implement an inverse quantum

Fourier transform on the precision register. They take the new state vector |6> in (5.53)

as their input state vector. They produce the following new state vector

|7> = (
1

√22
 (|q[0]0> |q[1]0> |q[2]0> |q[3]0>) +

1

√22
 (|q[0]0> |q[1]1> |q[2]0> |q[3]0>)

 +
1

√22
 (|q[0]1> |q[1]0> |q[2]0> |q[3]0>) +

1

√22
 (|q[0]1> |q[1]1> |q[2]0> |q[3]0>))

 (|q[4]0> |q[5]0> |q[6]0> |q[7]1> + |q[5]0> |q[6]0> |q[7]1> |q[4]0> + |q[6]0> |q[7]1>

 |q[4]0> |q[5]0> + |q[7]1> |q[4]0> |q[5]0> |q[6]0>). (5.54)

5.14.10 Read the Quantum Result

Finally, four statements “measure q[0] -> c[3];”, “measure q[1] -> c[2];”, “measure

q[2] -> c[1];” and “measure q[3] -> c[0];” from line thirty-seven through line forty in

Listing 5.2 implement the measurement on the precision register in Figure 5.13. They

measure four quantum bits q[0], q[1], q[2] and q[3] of the precision register. They

record the measurement outcome by overwriting four classical bits c[3], c[2], c[1] and

c[0].

Listing 5.2 continued…

297

// Implement one measurement on the precision register

37. measure q[0] -> c[3];

38. measure q[1] -> c[2];

39. measure q[2] -> c[1];

40. measure q[3] -> c[0];

In the backend simulator with thirty-two quantum bits in IBM’s quantum computers,

we use the command “run” to execute the program in Listing 5.2. Figure 5.15 shows

the measured result. From Figure 5.15, we obtain that a computational basis state 0000

(c[3] = 0 = q[0] = |0>, c[2] = 0 = q[1] = |0>, c[1] = 0 = q[2] = |0> and c[0] = 0 = q[3] =

|0>) has the probability 24.512% (0.24512). On the other hand, we get that a

computational basis state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 =

q[2] = |0> and c[0] = 0 = q[3] = |0>) has the probability 23.145% (0.23145).

Alternatively, we gain that a computational basis state 1000 (c[3] = 1 = q[0] = |1>, c[2]

= 0 = q[1] = |0>, c[1] = 0 = q[2] = |0> and c[0] = 0 = q[3] = |0>) has the probability

27.148% (0.27148). On the other hand, we obtain that a computational basis state 1100

(c[3] = 1 = q[0] = |1>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> and c[0] = 0 = q[3] =

|0>) has the probability 25.195% (0.25195).

Figure 5.15: A computational basis state 0000 has the probability 24.512% (0.24512),

a computational basis state 0100 has the probability 23.145% (0.23145), a

computational basis state 1000 has the probability 27.148% (0.27148) and a

computational basis state 1100 has the probability 25.195% (0.25195).

We select the computational basis state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1]

= |1>, c[1] = 0 = q[2] = |0> and c[0] = 0 = q[3] = |0>) with the probability 23.145%

(0.23145) as the measured result. Because the decimal value of the computational basis

state 1000 is four (4) and (24 / 4) is a rational number, we use the continued fractional

algorithm in Figure 5.2 to determine the continued fractional representation of (c / d) if

c = 24 = 16 and d = 4 and the corresponding convergent. From the first execution of

298

statement S0 through statement S2, it gets i = 1, q[1] = c / d = 16 / 4 = 4 and r = 16 (mod

4) = 0. This is to split (16 / 4) into its integer and fractional part and not to invert its

fractional part,

16

4
 = 4 +

0

4
 = 4. (5.55)

Since the value of r is equal to 0, from the first execution of statement S3, it returns to

a true. Thus, next, from the first execution of statement S4, the answer is to the continued

fractional representation of (16 / 4)

16

4
 = (q[1] = 4) = 4. (5.56)

Next, from the first execution of Statement S5, it terminates the execution of the

continued fractional algorithm. For a rational number (16 / 4), the first convergent is

(q[1]) = 4 =
4

1
 and is the closest one to (

16

4
) with numerator less than 15. Therefore, we

check 24 (mod 15) which equals one (1) and we find the order r to be four (4). Because

the order r is even, from Lemma 5-2, we use Euclid’s algorithm to compute gcd(15,

2
4

2 + 1) and gcd(15, 2
4

2 − 1). This implies that two nontrivial factors for N = 15 are

respectively 5 and 3. Therefore, the prime factorization for N = 15 is N = 5  3.

5.15 Assessment to Complexity of Shor’s Order-Finding Algorithm

In Figure 5.11, the precision register (the first register or the upper register) with n

quantum bits represents the order r of X modulo N. Because the value of r is less than

or equal to the value of N, the value of n is the smallest integer greater than or equal to

log2
N and we can write it as n =  log2

N. In Figure 5.11, the work register (the second

register or the lower register) with L quantum bits is to store the result of computing XP

(mod N) for 0  p  2n − 1. Because the result of computing XP (mod N) for 0  p  2n

− 1 is less than the value of N, the value of L is the smallest integer greater than or equal

to log2
N and we can write it as L =  log2

N. The value of X is less than the value of N,

so we can use L bits to represent the value of X and the value of N.

In Figure 5.11, in parallel model, it simultaneously computes each modular

exponentiation XP (mod N) to 0  P  2n − 1. In Figure 5.11, it applies a quantum gate

299

|XP mod N> = |𝑋𝑝1×2
𝑛−1 + 𝑝2×2

𝑛−2 + ⋯ + 𝑝𝑛×2
𝑛−𝑛

 mod N> operating on the precision

register and the work register. The method to calculate the modular exponentiation XP

(mod N) contains two stages. The first stage uses modular multiplication to compute X2

(mod N), by squaring X (mod N). Then, it figures out X4 (mod N) by squaring X2 (mod

N). Then, it calculates X8 (mod N) by squaring X4 (mod N). In this way, it continues to

figure out 𝑋2
𝑘
 (mod N) for all k up to (n − 1).

Since n =  log2
N and L =  log2

N, we apply n = O(L). Therefore, in the first stage

it completes a total of (n − 1) = O(L) squaring operations. A squaring operation consists

of a multiplication instruction and a modular instruction. Multiplicand and multiplier

in the multiplication instruction are both X and they are L bits long. Product in the

multiplication instruction is (2  L) bits long and it is dividend in the modular

instruction. Divisor in the modular instruction is N and it is n = O(L) bits long. The

number of the auxiliary carry bit in the multiplication instruction is (2  L + 1) bits and

the number of the auxiliary borrow bit in the modular instruction is (2  L + 1) bits.

Because the cost of the circuit to implement one multiplication instruction is O(L2)

digital logic gates and the cost of the circuit to implement one modular instruction is

O(L2) digital logic gates, the cost of the quantum circuit to implement one squaring

operation is O(L2) quantum gates. Therefore, the cost to complete (n − 1) = O(L)

squaring operations is O(L3) quantum gates and a total cost of implementing the first

stage is O(L3) quantum gates.

Next, the second stage of the method is to complete XP (mod N) = (𝑋𝑝1×2
𝑛−1

 (mod

N)) N (𝑋𝑝2×2
𝑛−2

 (mod N)) N  N (𝑋𝑝𝑛×2
𝑛−𝑛

 (mod N)). It implements (n − 1) = O(L)

modular multiplications. Each modular multiplication consists of a multiplication

instruction and a modular instruction. Multiplicand and multiplier in the multiplication

instruction are L bits long. Product in the multiplication instruction is (2  L) bits long

and it is dividend in the modular instruction. Divisor in the modular instruction is N and

it is n = O(L) bits long. The number of the auxiliary carry bit in the multiplication

instruction is (2  L + 1) bits and the number of the auxiliary borrow bit in the modular

instruction is (2  L + 1) bits.

Since the cost of the circuit to implement one multiplication instruction is O(L2)

digital logic gates and the cost of the circuit to implement one modular instruction is

O(L2) digital logic gates, the cost of the quantum circuit to implement one modular

multiplication is O(L2) quantum gates. Hence, the cost to complete (n − 1) = O(L)

modular multiplication is O(L3) quantum gates and a total cost of implementing the

300

second stage is O(L3) quantum gates. This means that the cost of the quantum circuit to

implement |XP mod N> = |𝑋𝑝1×2
𝑛−1 + 𝑝2×2

𝑛−2 + ⋯ + 𝑝𝑛×2
𝑛−𝑛

 mod N> operating on the

precision register and the work register is O(L3) quantum gates.

Next, in Figure 5.11, it completes one inverse quantum Fourier transform. The cost

of implementing one inverse quantum Fourier transform is O(L2) quantum gates.

Finally, in Figure 5.11, it completes a measurement on the precision register. Thus, in

Shor’s order-finding algorithm, the cost to compute the order r of X modulo N is O(L)

quantum bits and O(L3) quantum gates.

5.16 Summary

In this chapter, we gave an introduction of fundamental number theory. Next, we

described Euclid’s algorithm. We also introduced quadratic congruence. We then

illustrated continued fractions. We also introduced the two problems of order finding

and factoring. Next, we described how to compute the order of 2 modulo 15 and the

prime factorization for 15. We also illustrated how to calculate the order of 2 modulo

21 and the prime factorization for 21. Next, we introduced how to calculate the order

of 2 modulo 35 and the prime factorization for 35. We also introduced how to figure

out the order of 5 modulo 33 and the prime factorization for 33. We then described the

possibility of finding the even order of X modulo N. We also illustrated public key

cryptography and the RSA cryptosystem. Next, we introduced how to implement

the controlled-swap gate of three quantum bits. We also described Shor’s order-finding

algorithm. We then illustrated how to design quantum circuits of factoring 15. We also

gave assessment of complexity of Shor’s order-finding algorithm.

5.17 Bibliographical Notes

In this chapter for more details about an introduction of fundamental and advanced

knowledge of number theory, the recommended books are [Hardy and Wright 1979;

Nielsen and Chuang 2000; Imre and Balazs 2005; Lipton and Regan 2014; Silva 2018;

Johnston et al 2019]. For a more detailed description to Shor’s order-finding algorithm,

the recommended article and books are [Shor 1994; Nielsen and Chuang 2000; Imre

and Balazs 2005; Lipton and Regan 2014; Silva 2018; Johnston et al 2019]. A good

introduction to the instructions of Open QASM is the famous article in [Cross et al

2017].

5.18 Exercises

301

5.1 Let c and d be integer, and let r be the remainder when c is divided by d. Then

provided r  0, please prove the equation gcd(c, d) = gcd(d, r).

5.2 (Chinese remainder theorem) we assume that y1, , yn are positive integers such

that any pair yi and yj (i  j) are co-prime. Then the system of equations

z = c1 (mod y1)

z = c2 (mod y2)



z = cn (mod yn)

has a solution. Moreover, any two solutions to this system of equations are equal

modulo Y = y1 y2  yn. Please prove Chinese remainder theorem.

5.3 We assume that p and k are integers and p is a prime in the range 1 to p − 1. Then

prime p divides (
𝑝
𝑘
). Please prove it.

5.4 (Fermat’s little theorem) we assume that p is a prime, and a is an integer. Then ap

= a (mod p). If integer a is not divisible by prime p then ap − 1 = 1 (mod p). Please

prove them.

5.5 The Euler function (n) is defined to be the number of positive integers which are

less than n and are co-prime to n. We assume that a is co-prime to n. Then a(n) = 1

(mod n).

5.6 If (i / 2n) is a rational fraction and z and r are positive integers that satisfy |(z / r) −

(i / 2n)|  (1 / (2  r2)), then (z / r) is a convergent of the continued fraction of (i /

2n).

5.7 Prove that |1 − 𝑒√−1×𝜃|2 = 4  sin2( / 2).

