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Chapter 1 

Introduction to Quantum Bits and Quantum Gates on IBM’s 

Quantum Computer 

 

Today from the viewpoint of computing characteristic, “Computer Science” in fact 

consists of traditional digital computers [Turing 1937, von Neumann 1956], bio-

molecular computers [Adleman 1994] and quantum computers [Deutsch 1985]. Today 

we can build traditional digital computers from integrated circuits that include 

thousands of millions of individual transistors. We call all of these traditional digital 

computers as classical. To traditional digital computers, quantum supremacy is the 

watershed moment where a quantum computer completes one computation that would 

be intractable on a classical supercomputer and is imminent [Aaronson and Chen 2017, 

Coles et al 2018]. 

 

Because IBM’s quantum computers have become available as a cloud service to the 

public, the need of training a cohort of quantum programmers who have been 

developing classic computer programs for most of their career has arisen. With quantum 

assembly language and Python on IBM’s quantum computers [Cross et al 2017, IBM 

Q 2016], we plan to study quantum algorithms that consists of some beautiful ideas 

that everyone interested in computation should know. Our goal is to explain quantum 

algorithms with vectors and matrices in linear algebra that is accessible to almost 

everyone. In this introductory chapter, we describe quantum bits and quantum gates 

operating quantum bits, and we explain how to use quantum assembly language and 

Python on IBM’s quantum computers to implement them to solve any given a problem. 

 

1.1 Quantum Bits 

 

A classical bit has a state that either 0 or 1. A quantum bit (or a qubit for short) also 

has a state. Two possible states for a quantum bit are the states |0> and |1>. Notation 

like ‘| >’ is called the Dirac notation. The states |0> and |1> for a quantum bit correspond 

to the states 0 and 1 for a classical bit and are known as ‘computational basis state 

vectors’ of the two-dimensional Hilbert space. The computational basis state vector 

0  of a quantum bit is represented as a (2  1) column vector (
1
0
)  and the 

computational basis state vector 1  of a quantum bit is also represented as a (2  1) 
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column vector (
0
1
). They form an orthonormal basis for the two-dimensional Hilbert 

space. 

 

The main difference between bits and quantum bits is that a quantum bit can be in 

a state other than |0> or |1>. A quantum bit has two ‘computational basis state vectors’ 

0  and 1  of the two-dimensional Hilbert space. Its arbitrary state |> is nothing 

else than a linearly weighted combination of the following computational basis state 

vectors, often called superposition: 

 

                    |> = l0 |0> + l1 |1> = l0 (
1
0
) + l1 (

0
1
) = (

𝑙0
𝑙1
).       (1.1) 

 

The weighted factors l0 and l1 that are complex numbers are the so-called probability 

amplitudes. Thus they must satisfy | l0 |
2 + | l1 |

2 = 1. Put another way, the state of a 

quantum bit is a unit vector in the two-dimensional Hilbert space. 

 

All the time, classical computers do examination of a bit to decide whether it is in 

the state 0 or 1 when they retrieve the content of the memory. However, quantum 

computers cannot check a quantum bit to decide its quantum state, that is, the values of 

l0 and l1. Instead, when after a quantum bit is measured from quantum computers, either 

the result 0 with the probability |l0|
2 or the result 1 with the probability |l1|

2 is obtained. 

This is to say that reading quantum bits is to measure, and the readout is in classical 

bits. 

 

1.1.1 Multiple Quantum Bits 

 

In a system of two classical bit, there are four possible states 00, 01, 10, and 11. 

Similarly, a system of two quantum bits has four states |00>, |01>, |10> and |11> that 

correspond to the classical four states 00, 01, 10, and 11 and are known as 

“computational basis state vectors” of the four-dimensional Hilbert space. The 

computational basis state vector |00> of two quantum bits is represented as a (4  1) 

column vector (

1
0
0
0

), the computational basis state vector |01> of two quantum bits is 
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represented as a (4  1) column vector (

0
1
0
0

), the computational basis state vector |10> 

of two quantum bits is represented as a (4  1) column vector (

0
0
1
0

)  and The 

computational basis state vector |11> of two quantum bits is represented as a (4  1) 

column vector (

0
0
0
1

). They form an orthonormal basis for the four-dimensional Hilbert 

space. The arbitrary state of two quantum bits is nothing else than a linearly weighted 

combination of the following computational basis state vectors, often called 

superposition: 

 

|> = l0 |00> + l1 |01> + l2 |10> + l3 |11> = l0 (

1
0
0
0

) + l1 (

0
1
0
0

) + l2 (

0
0
1
0

) + l3 (

0
0
0
1

) = 

(

𝑙0
𝑙1
𝑙2
𝑙3

).                                                             (1.2) 

 

The weighted factors l0, l1, l2 and l3 that are complex numbers are the so-called 

probability amplitudes. Therefore they must satisfy | l0 |
2 + | l1 |

2 + | l2 |
2 + | l3 |

2 = Σk ∈ 

{0,1}
2 | lk |

2 = 1, where the notation “{0, 1}2” means “the set of strings of length two with 

each letter being either zero or one”. Put another way, the state of two quantum bits is 

a unit vector in the four-dimensional Hilbert space. 

 

Similarly, all the time, classical computers do examination of two bits to judge 

whether it is in the state 00, 01, 10 or 11 when they retrieve the content of the memory. 

However, quantum computers cannot do examination of two quantum bits to judge its 

quantum state, that is, the values of l0, l1, l2 and l3. Instead, when after two quantum bits 

are measured from quantum computers, the result 00 with the probability |l0|
2, the result 

01 with the probability |l1|
2, the result 10 with the probability |l2|

2 or the result 11 with 

the probability |l3|
2 is obtained. This is to say that reading quantum bits is to measure, 

and the readout is in classical bits. 

 

More generally, In a system of n classical bit, there are 2n possible states 0, 1, 2,   
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and (2n－1) that are the decimal representation of n classical bits. Similarly, a system 

of n quantum bits has 2n states |0>, |1>, |2>, … and |2n－1> that are the decimal 

representation of n quantum bits and correspond to the classical 2n states 0, 1, 2,   

and (2n－1). The 2n states are known as ‘computational basis state vectors’ of the 2n-

dimensional Hilbert space. The first computational basis state vector |0> of n quantum 

bits is represented as a (2n  1) column vector (

1
0
⋮
0

), the second computational basis 

state vector |1> of n quantum bits is represented as a (2n  1) column vector (

0
1
⋮
0

) and 

the last computational basis state vector |2n－1> of n quantum bits is represented as a 

(2n  1) column vector (

0
⋮
0
1

). They form an orthonormal basis for the 2n-dimensional 

Hilbert space. The arbitrary state of n quantum bits is nothing else than a linearly 

weighted combination of the following computational basis state vectors, often called 

superposition: 

 

|> = ∑ 𝑙𝑘
2𝑛−1
𝑘=0 |𝑘⟩.                                                       (1.3) 

 

 

Each weighted factor lk for 0  k  (2n－1) that is a complex number is the so-called 

probability amplitudes. Hence they must satisfy ∑ |𝑙𝑘
2𝑛−1
𝑘=0 |2 = ∑ |𝑙𝑘|

2
𝑘 ∈ {0,1}𝑛  = 1, 

where the notation “{0, 1}n” means “the set of strings of length n with each letter being 

either zero or one”. Put another way, the state of n quantum bit is a unit vector in the 2n 

-dimensional Hilbert space. 

 

Similarly, all the time, classical computers do examination of n bits to determine 

whether it is in the state 0, 1, 2,  and (2n－1) when they retrieve the content of the 

memory. However, quantum computers cannot do examination of n quantum bits to 

determine its quantum state, that is, the value of each lk for 0  k  (2n－1). Instead, 

when after n quantum bits are measured from quantum computers, the result 0 with the 

probability |l0|
2, the result 1 with the probability |l1|

2, the result 2 with the probability 

|l2|
2 or the last result (2n－1) with the probability |𝑙2𝑛−1|

2 is obtained. This is to say 

that reading n quantum bits is to measure, and the readout is in classical bits. 

 

1.1.2 Declaration and Measurement of Multiple Quantum Bits 
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QASM is the abbreviation of quantum assembly language. Open QASM is a simple 

text language that illustrates generic quantum circuits. In Open QASM, the syntax of 

the human-readable form has elements of C and assembly languages. For an Open 

QASM program, the first (non-comment) line must be “OPENQASM M.m;” that 

indicates a major version M and minor version m. Because in the cloud on IBM’s 

quantum computers it supports version 2.0, we describe version 2.0 and use version 2.0 

to write a quantum program. The version keyword cannot occur multiple times in a file. 

Statements are separated by semicolons and whitespace is ignored. Comments begin 

with a pair of forward slashes and end with a new line. The statement “include 

"filename";” continues parsing filename as if the contents of the file were pasted at the 

location of the include statement. The path is specified relative to the current working 

directory. 

 

In Open QASM (version 2.0) the only storage types are classical and quantum 

registers that are, respectively, one-dimensional arrays of bits and quantum bits. The 

statement “qreg name[size];” declares an array of quantum bits (quantum register) with 

the given name and size that is the number of quantum bits to this quantum register. 

Identifiers, such as name, must start with a lowercase letter and can contain alpha-

numeric characters and underscores. The label (variable) name[k] refers to the kth 

quantum bit of this register for 0  k  (size – 1). Each quantum bit of this register is 

initialized to |0>. Similarly, the statement “creg name[size];” declares an array of bits 

(classical register) with the given name and size that is the number of bits to this 

classical register. The label (variable) name[k] refers to the kth bit of this register for 0 

 k  (size – 1). Each bit of this classical register is initialized to 0. The statement 

“measure qubit|qreg -> bit|creg;” measures the quantum bit(s) and records the 

measurement outcome(s) by overwriting the classical bit(s). Both arguments must be 

register-type, or both must be bit-type. If both arguments are register-type and have the 

same size, the statement “measure a -> b;” means use measure a[k] -> b[k]; for each 

index k into register a. 

 

For IBM Q Experience, the graphical representation of the measurement gate is as 

follows: 

. 

 

It takes a quantum bit in a superposition of states as input and spits either a 1 or 0. 
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Moreover, the output is not random. There is a probability of a 1 or 0 as output which 

depends on the original state of the quantum bit. It records the measurement outcome(s) 

by overwriting the classical bit(s). 

 

In Listing 1.1, the program in the backend ibmqx4 with five quantum bits in IBM’s 

 

1 OPENQASM 2.0; 

2 include "qelib1.inc"; 

  3 qreg q[5]; 

4 creg c[5]; 

5 measure q[0] -> c[0]; 

6 measure q[1] -> c[1]; 

7 measure q[2] -> c[2]; 

8 measure q[3] -> c[3]; 

9 measure q[4] -> c[4]; 

Listing 1.1: The program of declared and measured statements of five quantum bits. 

 

quantum computer is the first example in which we describe how to declare quantum 

bits and to measure quantum bits. Figure 1.1 is the corresponding quantum circuit of 

the program in Listing 1.1. The statement “OPENQASM 2.0;” on line one of Listing 

1.1 is to indicate that the program is written with version 2.0 of Open QASM. Next, the 

statement “include "qelib1.inc";” on line two of Listing 1.1 is to continue parsing the 

file “qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.1 is to declare that in the program there  

 

 

Figure 1.1: The quantum circuit of declaring and measuring five quantum bits. 

 

are five quantum bits. In the left top of Figure 1.1, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 
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the statement “creg c[5];” on line four of Listing 1.1 is to declare that in the program 

there are five classical bits. In the left bottom of Figure 1.1, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. The statement “measure q[0] -> c[0];” on line five of Listing 1.1 is to measure the 

first quantum bit q[0] and to record the measurement outcome by overwriting the first 

classical bit c[0]. Next, the statement “measure q[1] -> c[1];” on line six of Listing 1.1 

is to measure the second quantum bit q[1] and to record the measurement outcome by 

overwriting the second classical bit c[1]. The statement “measure q[2] -> c[2];” on line 

seven of Listing 1.1 is to measure the third quantum bit q[2] and to record the 

measurement outcome by overwriting the third classical bit c[2]. Next, the statement 

“measure q[3] -> c[3];” on line eight of Listing 1.1 is to measure the fourth quantum b- 

  

 

Figure 1.2: After the measurement to the program in Listing 1.1 is completed, we obtain 

the answer 00000 with the probability 1.000. 

 

it q[3] and to record the measurement outcome by overwriting the fourth classical bit 

c[3]. The statement “measure q[4] -> c[4];” on line nine of Listing 1.1 is to measure the 

fifth quantum bit q[4] and to record the measurement outcome by overwriting the fifth 

classical bit c[4]. In the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers, we use the command “simulate” to execute the program in Listing 1.1. The 

result appears in Figure 1.2. From Figure 1.2, we obtain the answer 00000 (c[4] = q[4] 

= |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with 

the probability one. 

 

1.2 NOT Gate of Single Quantum Bit 

 

A classical computer is built from an electrical circuit including wires and logic 

gates. Similarly, a quantum computer is built from a quantum circuit consisting of wires 

and elementary quantum gates to complete and manipulate the quantum information. 

Occurring of changing a classical state to another classical state can be illustrated by 

means of using the language of classical computation. Analogous to the way, occurring 

of changing a quantum state to another quantum state can be introduced by means of 
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using the language of quantum computation. In this section and in the later sections, we 

introduce quantum gates on IBM’s quantum computers, propose quantum circuits of 

many examples describing their application and describe how to use Open QASM to 

write a program for implementing those examples.  

 

For a classical computer, its circuits contain wires and logic gates. We use the wires 

to carry information around the circuit and use the logic gates to complete manipulation 

of information that is to convert it from one state to another state. For example, we 

consider that one logic gate of classical single bit, NOT gate, whose operation is to 

convert the state 0 to another state 1 and the state 1 to another state 0. This is to say that 

the classical states 0 and 1 are interchanged. 

 

Similarly, the quantum NOT gate takes the state l0 |0> + l1 |1> to the corresponding 

state l0 |1> + l1 |0>, where the role of |0> and |1> have been interchanged. It is assumed 

that we denote a matrix X to represent the quantum NOT gate as follows: 

 

                            X = (
0 1
1 0

).                          (1.4) 

 

It is also assumed that X+ is the conjugate-transpose matrix of X and is equal to (X*)t = 

(
0 1
1 0

), where the * indicates complex conjugation and the t points out the transpose 

operation. Because X  (X*)t = (
0 1
1 0

)  (
0 1
1 0

) = (X*)t  X = (
0 1
1 0

)  (
0 1
1 0

) 

= (
1 0
0 1

), X is a unitary matrix or a unitary operator. If the quantum state l0 |0> + l1 

|1> is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                             (1.5) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the quantum NOT gate is 

 

                              (
𝑙1
𝑙0
) = l1 |0> + l0 |1>.                  (1.6) 

 

Notice that the action of the quantum NOT gate is to that the state |0> is replaced by 
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the state corresponding to the first column of the matrix X and the state |1> is also 

replaced by the state corresponding to the second column of the matrix X. Because X 2 

= X  X = (
0 1
1 0

)  (
0 1
1 0

) = (
1 0
0 1

), applying X twice to a state does nothing to 

it. For IBM Q Experience, the graphical representation of the quantum NOT gate is as 

follows: 

 

. 

 

1.2.1 Programming with NOT Gate of Single Quantum Bit 

 

In Listing 1.2, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the second example in which we introduce how to program with 

NOT gate operating one quantum bit. Figure 1.3 is the corresponding quantum circuit 

of the program in Listing 1.2. The statement “OPENQASM 2.0;” on line one of Listing 

1.2 is to indicate that the program is written with version 2.0 of Open QASM. Then, the 

statement “include "qelib1.inc";” on line two of Listing 1.2 is to continue parsing the 

file “qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.2 is to declare that in the program there  

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. x q[0]; 

6. x q[1]; 

7. x q[2]; 

8. x q[3]; 

9. x q[4]; 

10. measure q[0] -> c[0]; 

11. measure q[1] -> c[1]; 

12. measure q[2] -> c[2]; 

13. measure q[3] -> c[3]; 

14. measure q[4] -> c[4]; 
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Listing 1.2: The program to the use of five NOT gates operating five quantum bits. 

 

are five quantum bits. In the left top of Figure 1.3, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.2 is to declare that there are five 

classical bits in the program. In the left bottom of Figure 1.3, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

 

Figure 1.3: The quantum circuit to five NOT gates operating five quantum bits. 

 

The statement “x q[0];” on line five of Listing 1.2 actually implements (
0 1
1 0

)  

(
1
0
) = (

0
1
). This indicates that the statement “x q[0];” on line five of Listing 1.2 is to 

use NOT gate to convert q[0] from one state |0> to another state |1>, where “x” is to 

represent NOT gate. Next, the statement “x q[1];” on line six of Listing 1.2 actually 

completes (
0 1
1 0

)  (
1
0
) = (

0
1
). This is to say that the statement “x q[1];” on line 

six of Listing 1.2 is to make use of NOT gate to convert q[1] from one state |0> to 

another state |1>. Next, the statement “x q[2];” on line seven of Listing 1.2 actually 

implements (
0 1
1 0

)  (
1
0
) = (

0
1
). This implies that the statement “x q[2];” on line 

seven of Listing 1.2 is to apply NOT gate to convert q[2] from one state |0> to another 

state |1>. Next, the statement “x q[3];” on line eight of Listing 1.2 actually completes 

(
0 1
1 0

)  (
1
0
) = (

0
1
). This indicates that the statement “x q[3];” on line eight of 

Listing 1.2 is to use NOT gate to convert q[3] from one state |0> to another state |1>. 

Next, the statement “x q[4];” on line nine of Listing 1.2 actually performs (
0 1
1 0

)  
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(
1
0
) = (

0
1
). This is to say that the statement “x q[4];” on line nine of Listing 1.2 is to 

make use of NOT gate to convert q[4] from one state |0> to another state |1>. After the 

five statements above are completed, the state |0> of each quantum bit is converted as 

the state |1>. 

 

Next, the statement “measure q[0] -> c[0];” on line ten of Listing 1.2 is to measure 

the first quantum bit q[0] and to record the measurement outcome by overwriting the 

first classical bit c[0]. The statement “measure q[1] -> c[1];” on line eleven of Listing 

1.2 is to measure the second quantum bit q[1] and to record the measurement outcome 

by overwriting the second classical bit c[1]. Next, the statement “measure q[2] -> c[2];” 

on line 12 of Listing 1.2 is to measure the third quantum bit q[2] and to record the 

measurement outcome by overwriting the third classical bit c[2]. The statement 

“measure q[3] -> c[3];” on line 13 of Listing 1.1 is to measure the fourth quantum bit 

q[3] and to record the measurement outcome by overwriting the fourth classical bit c[3]. 

Next, the statement “measure q[4] -> c[4];” on line 14 of Listing 1.1 is to measure the 

fifth quantum bit q[4] and to record the measurement outcome by overwriting the fifth 

classical bit c[4]. In the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers, we use the command “simulate” to execute the program in Listing 1.2. The 

result appears in Figure 1.4. From Figure 1.4, we obtain the answer 11111 (c[4] = q[4] 

= |1>, c[3] = q[3] = |1>, c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |1>) with 

the probability one. 

 

 

Figure 1.4: After the measurement to the program in Listing 1.2 is completed, we obtain 

the answer 11111 with the probability 1.000. 

 

1.3 The Hadamard Gate of Single Quantum Bit 

 

The Hadamard gate of single quantum bit is 
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H = 
1

√2
 (
1 1
1 −1

) = (

1

√2

1

√2
1

√2
−

1

√2

).                 (1.7) 

 

It is supposed that H + is the conjugate-transpose matrix of H and is equal to (H *)t = 

(

1

√2

1

√2
1

√2
−

1

√2

) , where the * indicates complex conjugation and the t indicates the 

transpose operation. Since H  (H*)t = (

1

√2

1

√2
1

√2
−

1

√2

)  (

1

√2

1

√2
1

√2
−

1

√2

) = (H *)t  H = 

(

1

√2

1

√2
1

√2
−

1

√2

)  (

1

√2

1

√2
1

√2
−

1

√2

) = (
1 0
0 1

), H is a unitary matrix or a unitary operator. 

This is to say that the Hadamard gate H is one of quantum gates with single quantum 

bit. If the quantum state l0 |0> + l1 |1> is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                             (1.8) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the Hadamard gate H is 

 

                    (

𝑙0+𝑙1

√2
𝑙0−𝑙1

√2

) = 
𝑙0+𝑙1

√2
 |0> + 

𝑙0−𝑙1

√2
 |1>.                  (1.9) 

 

If in (1.8) the value of l0 is equal to one and the value of l1 is equal to zero, then the 

Hadamard gate H turns a |0> into 
1

√2
 (|0> + |1>) (the first column of H), which is 

‘halfway’ between |0> and |1>. Similarly, if in (1.8) the value of l0 is equal to zero and 

the value of l1 is equal to one, then the Hadamard gate H turns a |1> into 
1

√2
 (|0>  |1>) 

(the second column of H), which also is ‘halfway’ between |0> and |1>. Because H2 = 

H  H = (

1

√2

1

√2
1

√2
−

1

√2

)   (

1

√2

1

√2
1

√2
−

1

√2

)  = (
1 0
0 1

) , using H twice to a state does 

nothing to it. For IBM Q Experience, the graphical representation of the Hadamard 
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gate H is as follows: 

 

. 

 

1.3.1 Programming with the Hadamard Gate of Single Quantum Bit 

 

In Listing 1.3, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the third example in which we describe how to program with the 

Hadamard gate operating one quantum bit. Figure 1.5 is the corresponding quantum 

circuit of the program in Listing 1.3. The statement “OPENQASM 2.0;” on line one of 

Listing 1.3 is to point out that the program is written with version 2.0 of Open QASM.  

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. measure q[0] -> c[0]; 

Listing 1.3: The program to the use of the Hadamrad gate operating a quantum bit. 

 

 

Figure 1.5: The quantum circuit to the Hadamrad gate operating a quantum bit. 

 

Then, the statement “include "qelib1.inc";” on line two of Listing 1.3 is to continue 

parsing the file “qelib1.inc” as if the contents of the file were pasted at the location of 

the include statement, where the file “qelib1.inc” is Quantum Experience (QE) 

Standard Header and the path is specified relative to the current working directory. 

The statement “qreg q[5];” on line three of Listing 1.3 is to declare that in the program 

there are five quantum bits. In the left top of Figure 1.5, five quantum bits are 
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subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set 

to |0>.  

 

Next, the statement “creg c[5];” on line four of Listing 1.3 is to declare that there 

are five classical bits in the program. In the left bottom of Figure 1.5, five classical bits 

are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. The statement “h q[0];” on line five of Listing 1.3 actually completes 

(

1

√2

1

√2
1

√2
−

1

√2

)  (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is 

to say that the statement “h q[0];” on line five of Listing 1.3 is to use the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), 

where “h” is to represent the Hadamard gate. 

 

Next, the statement “measure q[0] -> c[0];” on line six of Listing 1.3 is to measure 

the first quantum bit q[0] and to record the measurement outcome by overwriting the 

first classical bit c[0]. In the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers, we apply the command “simulate” to execute the program in Listing 1.3. 

The result appears in Figure 1.6. From Figure 1.6, we obtain the answer 00001 (c[4] = 

q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) 

with the probability 0.520. Or we obtain the answer 00000 with the probability 0.480 

(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] 

= |0>). 

 

 

Figure 1.6: After the measurement to the program in Listing 1.3 is completed, we obtain 

the answer 00001 with the probability 0.520 or the answer 00000 with the probability 

0.480. 

 

1.4 The Z Gate of Single Quantum Bit 

 

The Z gate of single quantum bit is 
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Z = (
1 0
0 −1

) = (
1 0

0 𝑒√−1×𝜋
),         (1.10) 

 

where 𝑒√−1×𝜋 is equal to cos() + √−1  sin() = 1. It is assumed that Z + is the 

conjugate-transpose matrix of Z and is equal to (Z *)t = (
1 0
0 −1

), where the * indicates 

complex conjugation and the t is the transpose operation. Because Z  (Z*)t = (
1 0
0 −1

) 

 (
1 0
0 −1

) = (Z *)t  Z = (
1 0
0 −1

)  (
1 0
0 −1

) = (
1 0
0 1

), Z is a unitary matrix or 

a unitary operator. This implies that the Z gate is one of quantum gates with single 

quantum bit. If the quantum state l0 |0> + l1 |1> is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.11) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the Z gate is 

 

                    (
𝑙0
−𝑙1
) = l0 (

1
0
) + (l1) (

0
1
) = l0 |0> + (l1) |1>.   (1.12) 

 

This indicates that the Z gate leaves |0> unchanged, and flips the sign of |1> to give 

|1>. Since Z 2 = Z  Z = (
1 0
0 −1

)  (
1 0
0 −1

) = (
1 0
0 1

), applying Z twice to a state 

does nothing to it. For IBM Q Experience, the graphical representation of the Z gate is 

as follows: 

 

. 

 

1.4.1 Programming with the Z Gate of Single Quantum Bit 

 

In Listing 1.4, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the fourth example in which we illustrate how to program with 

the Z gate that leaves |0> unchanged and flips the sign of |1> to give |1>. Figure 1.7 is 



 16 

the corresponding quantum circuit of the program in Listing 1.4. The statement 

“OPENQASM 2.0;” on line one of Listing 1.4 is to indicate that the program is written 

with version 2.0 of Open QASM. Next, the statement “include "qelib1.inc";” on line 

two of Listing 1.4 is to continue parsing the file “qelib1.inc” as if the contents of the 

file were pasted at the location of the include statement, where the file “qelib1.inc” is 

Quantum Experience (QE) Standard Header and the path is specified relative to the 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. z q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.4: The program to the use of the Z gate. 

 

current working directory. The statement “qreg q[5];” on line three of Listing 1.4 is to 

declare that in the program there are five quantum bits. In the left top of Figure 1.7, five 

quantum bits are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each 

quantum bit is set to |0>. Next, the statement “creg c[5];” on line four of Listing 1.4 is 

to declare that there are five classical bits in the program. In the left bottom of Figure 

1.7, five classical bits are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value 

of each classical bit is set to 0. 

 

 

Figure 1.7: The corresponding quantum circuit of the program in Listing 1.4. 

 

The statement “h q[0];” on line five of Listing 1.4 actually implements 

(

1

√2

1

√2
1

√2
−

1

√2

)  (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This 
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indicates that the statement “h q[0];” on line five of Listing 1.4 is to use the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), 

where “h” is to represent the Hadamard gate. Next, the statement “z q[0];” on line six 

of Listing 1.4 actually completes (
1 0
0 −1

)  (

1

√2
1

√2

) = (

1

√2

−
1

√2

) = 
1

√2
 (
1
−1
) = 

1

√2
 

((
1
0
) + (

0
−1
)) = (

1

√2
 |0>) + (

1

√2
) (|1>) =  

1

√2
 (|0>  |1>). This is to say that the 

statement “z q[0];” on line six of Listing 1.4 is to apply the Z gate to convert q[0] from 

one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 (|0>  |1>). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.4 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Listing 1.4. The result appears in Figure 1.8. From Figure 1.8, we obtain the answer 

00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |1>) with the probability 0.490. Or we obtain the answer 00000 with the 

probability 0.510 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = 

|0> and c[0] = q[0] = |0>). 

 

 

Figure 1.8: After the measurement to the program in Listing 1.4 is completed, we obtain 

the answer 00001 with the probability 0.490 or the answer 00000 with the probability 

0.510. 

 

1.5 The Y Gate of Single Quantum Bit 

 

The Y gate of single quantum bit is 

 

Y = (
0 −√−1

√−1 0
) = (

0 −𝑖
𝑖 0

) = ( 0 𝑒−√−1×
𝜋

2

𝑒√−1×
𝜋

2 0
),           (1.13) 
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where i = √−1 is known as the imaginary unit and 𝑒√−1×
𝜋

2 = cos(
𝜋

2
) + √−1  sin(

𝜋

2
) 

= √−1 and 𝑒−√−1×
𝜋

2 = cos(−
𝜋

2
) + √−1  sin(−

𝜋

2
) = −√−1. It is supposed that Y + 

is the conjugate-transpose matrix of Y and is equal to (Y *)t = (
0 −√−1

√−1 0
) = 

(
0 −𝑖
𝑖 0

), where the * indicates complex conjugation and the t is the transpose operation. 

Since Y  (Y *)t = (
0 −√−1

√−1 0
)  (

0 −√−1

√−1 0
) = (Y *)t  Y = (

0 −√−1

√−1 0
) 

 (
0 −√−1

√−1 0
) = (

1 0
0 1

), Y is a unitary matrix or a unitary operator. This is to say 

that the Y gate is one of quantum gates with single quantum bit. If the quantum state l0 

|0> + l1 |1> is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.14) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the Y gate is 

 

(
−√−1𝑙1

√−1𝑙0
) = (−√−1l1)(

1
0
) + (√−1l0)(

0
1
) = (−√−1l1) |0> + (√−1l0) |1>.  (1.15) 

 

This indicates that the Y gate converts single quantum bit from one state l0 |0> + l1 |1> 

to another state (−√−1l1) |0> + (√−1l0) |1>. Since Y2 = Y  Y = (
0 −√−1

√−1 0
)  

(
0 −√−1

√−1 0
) = (

1 0
0 1

), using Y twice to a state does nothing to it. For IBM Q 

Experience, the graphical representation of the Y gate is as follows: 

 

. 

 

1.5.1 Programming with the Y Gate of Single Quantum Bit 
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In Listing 1.5, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the fifth example in which we introduce how to program with the 

Y gate that converts single quantum bit from one state 
1

√2
 |0> + 

1

√2
 |1> to another state 

(−√−1
1

√2
) |0> + (√−1

1

√2
) |1>. Figure 1.9 is the corresponding quantum circuit of the 

program in Listing 1.5. The statement “OPENQASM 2.0;” on line one of Listing 1.5 is 

to point out that the program is written with version 2.0 of Open QASM. Next, the 

statement “include "qelib1.inc";” on line two of Listing 1.5 is to continue parsing the 

file “qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.5 is to declare that in the program there 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. y q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.5: The program to the use of the Y gate. 

 

are five quantum bits. In the left top of Figure 1.9, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.5 is to declare that there are five 

classical bits in the program. In the left bottom of Figure 1.9, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 
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Figure 1.9: The corresponding quantum circuit of the program in Listing 1.5. 

 

The statement “h q[0];” on line five of Listing 1.5 actually completes (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is to say that 

the statement “h q[0];” on line five of Listing 1.5 is to apply the Hadamard gate to 

convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where 

“h” is to represent the Hadamard gate. Next, the statement “y q[0];” on line six of 

Listing 1.5 actually implements (
0 −√−1

√−1 0
)  (

1

√2
1

√2

) = (
−√−1 ×

1

√2

√−1 ×
1

√2

) = 
1

√2
 

(
−√−1

√−1
) = 

1

√2
 ((−√−1

0
) + (

0

√−1
)) = (−√−1 

1

√2
) (
1
0
) + (√−1 

1

√2
) (
0
1
) = 

(−√−1 
1

√2
) |0 >  + (√−1  

1

√2
) |1 >  = 

1

√2
 (−√−1 |0 >  + √−1  |1 >). This 

indicates that the statement “y q[0];” on line six of Listing 1.5 is to apply the Y gate to 

convert q[0] from one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 (−√−1 |0 > + √−1 

|1 >). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.5 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we apply the command “simulate” to execute the program 

in Listing 1.5. The result appears in Figure 1.10. From Figure 1.10, we obtain the answ-  

 

 

Figure 1.10: After the measurement to the program in Listing 1.5 is completed, we 

obtain the answer 00001 with the probability 0.520 or the answer 00000 with the 

probability 0.480. 
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er 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and 

c[0] = q[0] = |1>) with the probability 0.520. Or we obtain the answer 00000 with the 

probability 0.480 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = 

|0> and c[0] = q[0] = |0>). 

 

1.6 The S Gate of Single Quantum Bit 

 

The S gate of single quantum bit that is the square root of the Z gate is 

 

S = (
1 0

0 √−1
) = (

1 0
0 𝑖

) =  (
1 0

0 𝑒√−1×
𝜋

2
)     (1.16) 

 

where i = √−1 is known as the imaginary unit and 𝑒√−1×
𝜋

2 = cos(
𝜋

2
) + √−1  sin(

𝜋

2
) 

= √−1. It is assumed that S + is the conjugate-transpose matrix of S and is equal to (S 

*)t = (
1 0

0 −√−1
) = (

1 0
0 −𝑖

), where the * points out complex conjugation and the t 

indicates the transpose operation. Because S  (S*)t = (
1 0

0 √−1
)  (

1 0

0 −√−1
) = 

(S*)t  S = (
1 0

0 −√−1
)  (

1 0

0 √−1
) = (

1 0
0 1

), S is a unitary matrix or a unitary 

operator. This implies that the S gate is one of quantum gates with single quantum bit. 

If the quantum state l0 |0> + l1 |1> is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.17) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the S gate is 

 

(
𝑙0

√−1𝑙1
)= (l0)(

1
0
)+ (√−1l1)(

0
1
)=(l0)|0> + (√−1l1) |1>=(l0) |0>+(𝑒√−1×

𝜋

2 ×l1)|1>. (1.18) 

 

This indicates that the S gate converts single quantum bit from one state l0 |0> + l1 |1> 

to another state (l0) |0> + (√−1l1) |1> = (l0) |0> + (𝑒√−1×
𝜋

2 ×l1) |1>. This is also to say 

that the S gate leaves |0> unchanged and modifies the phase of |1> to give (√−1) |1> 

(𝑒√−1×
𝜋

2 |1>). The probability of measuring a |0> or |1> is unchanged after applying 
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the S gate, however it modifies the phase of the quantum state. Because S2 = S  S = 

(
1 0

0 √−1
)  (

1 0

0 √−1
) = (

1 0
0 −1

), applying S twice to a state is equivalent to do 

the Z gate to it. For IBM Q Experience, the graphical representation of the S gate is as 

follows: 

 

. 

 

1.6.1 Programming with the S Gate of Single Quantum Bit 

 

In Listing 1.6, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the sixth example in which we describe how to program with the 

S gate that converts single quantum bit from one state 
1

√2
 (|0> + |1>) to another state  

(
1

√2
) (|0> + (√−1) |1>). Figure 1.11 is the corresponding quantum circuit of the program 

in Listing 1.6. The statement “OPENQASM 2.0;” on line one of Listing 1.6 is to 

indicate that the program is written with version 2.0 of Open QASM. Next, the 

statement “include "qelib1.inc";” on line two of Listing 1.6 is to continue parsing the 

file “qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.6 is to declare that in the program there 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. s q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.6: The program to the use of the S gate. 

 

are five quantum bits. In the left top of Figure 1.11, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.6 is to declare that there are five 
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classical bits in the program. In the left bottom of Figure 1.11, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

 

Figure 1.11: The corresponding quantum circuit of the program in Listing 1.6. 

 

The statement “h q[0];” on line five of Listing 1.6 actually implements 

(

1

√2

1

√2
1

√2
−

1

√2

)  (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This 

indicates that the statement “h q[0];” on line five of Listing 1.6 is to use the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), 

where “h” is to represent the Hadamard gate. Next, the statement “s q[0];” on line six 

of Listing 1.6 actually completes (
1 0

0 √−1
)  (

1

√2
1

√2

) = (

1

√2

√−1 ×
1

√2

) = 
1

√2
 (

1

√−1
) 

= 
1

√2
 ((
1
0
) + (

0

√−1
)) = (

1

√2
) ((
1
0
) + (√−1) (

0
1
)) = 

1

√2
 (|0 > + √−1 |1 >). This is 

to say that the statement “s q[0];” on line six of Listing 1.6 is to use the S gate to convert 

q[0] from one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 (|0 > + √−1 |1 >). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.6 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Listing 1.6. The result appears in Figure 1.12. From Figure 1.12, we obtain the answer 

00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |1>) with the probability 0.550. Or we obtain the answer 00000 with the 
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probability 0.450 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = 

|0> and c[0] = q[0] = |0>). 

  

 

Figure 1.12: After the measurement to the program in Listing 1.6 is completed, we 

obtain the answer 00001 with the probability 0.550 or the answer 00000 with the 

probability 0.450. 

 

1.7 The S+ Gate of Single Quantum Bit 

 

The S+ gate of single quantum bit that is the conjugate-transpose matrix of the S 

gate is 

 

S+ = (
1 0

0 −√−1
) = (

1 0
0 −𝑖

) =  (
1 0

0 −𝑒√−1×
𝜋

2
) = (

1 0

0 𝑒−√−1×
𝜋

2
),   (1.19) 

 

where i = √−1 is known as the imaginary unit and 𝑒−√−1×
𝜋

2 = cos(−
𝜋

2
) + √−1  

sin(−
𝜋

2
) = −√−1. It is supposed that (S+)+ is the conjugate-transpose matrix of S+ and 

is equal to ((S+)*)t = (
1 0

0 √−1
) = (

1 0
0 𝑖

) = (
1 0

0 𝑒√−1×
𝜋

2
), where the * indicates 

complex conjugation and the t is the transpose operation. Since S+  ((S+)*)t = 

(
1 0

0 −√−1
)  (

1 0

0 √−1
)= ((S+)*)t  S+ = (

1 0

0 √−1
)  (

1 0

0 −√−1
) = (

1 0
0 1

), 

S+ is a unitary matrix or a unitary operator. This is to say that the S+ gate is one of 

quantum gates with single quantum bit. If the quantum state l0 |0> + l1 |1> is written in 

a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.20) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 
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then the corresponding output from the S+ gate is 

 

(
𝑙0

−√−1𝑙1
) = (l0) (

1
0
)+ (−√−1l1)(

0
1
)=(l0) |0> + (−√−1l1) |1> =(l0) |0> + (𝑒−√−1×

𝜋

2 ×l1) 

|1>.                                                  (1.21) 

 

This implies that the S+ gate converts single quantum bit from one state l0 |0> + l1 |1> 

to another state (l0) |0> + (−√−1l1) |1> = (l0) |0> + (𝑒−√−1×
𝜋

2 ×l1) |1>. This also 

indicates that the S+ gate leaves |0> unchanged and modifies the phase of |1> to give 

(−√−1) |1> (𝑒−√−1×
𝜋

2  |1>). The probability of measuring a |0> or |1> is unchanged 

after applying the S+ gate, however it modifies the phase of the quantum state. Because 

(S+)2 = S+  S+ = (
1 0

0 −√−1
)  (

1 0

0 −√−1
) = (

1 0
0 −1

), applying S+ twice to a 

state is equivalent to do the Z gate to it. For IBM Q Experience, the graphical 

representation of the S+ gate is as follows: 

 

. 

 

1.7.1 Programming with the S+ Gate of Single Quantum Bit 

 

In Listing 1.7, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the seventh example in which we illustrate how to program with 

the S+ gate that converts single quantum bit from one state 
1

√2
 (|0> + |1>) to another 

state  (
1

√2
) (|0> + (−√−1) |1>). Figure 1.13 is the corresponding quantum circuit of 

the program in Listing 1.7. The statement “OPENQASM 2.0;” on line one of Listing 

1.7 is to point out that the program is written with version 2.0 of Open QASM. Next, 

the statement “include "qelib1.inc";” on line two of Listing 1.7 is to continue parsing 

the file “qelib1.inc” as if the contents of the file were pasted at the location of the 

include statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.7 is to declare that in the program there 
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1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. sdg q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.7: The program to the use of the S+ gate. 

 

are five quantum bits. In the left top of Figure 1.13, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.7 is to declare that there are five 

classical bits in the program. In the left bottom of Figure 1.13, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

 

Figure 1.13: The corresponding quantum circuit of the program in Listing 1.7. 

 

The statement “h q[0];” on line five of Listing 1.7 actually completes (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is to say that 

the statement “h q[0];” on line five of Listing 1.7 is to apply the Hadamard gate to 

convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where 

“h” is to represent the Hadamard gate. Next, the statement “sdg q[0];” on line six of 



 27 

Listing 1.7 actually performs (
1 0

0 −√−1
)   (

1

√2
1

√2

)  = (

1

√2

−√−1 ×
1

√2

)  = 
1

√2
 

(
1

−√−1
)  = 

1

√2
 ((
1
0
)  + (

0

−√−1
)) = (

1

√2
) ((

1
0
)  + (−√−1) (

0
1
)) = 

1

√2
 ( |0 >  + 

(−√−1) |1 >). This indicates that the statement “sdg q[0];” on line six of Listing 1.7 

is to apply the S+ gate to convert q[0] from one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 

(|0 > + (−√−1) |1 >). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.7 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we apply the command “simulate” to execute the program 

in Listing 1.7. The result appears in Figure 1.14. From Figure 1.14, we obtain the 

answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |1>) with the probability 0.500. Or we obtain the answer 00000 with 

the probability 0.500 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] 

= |0> and c[0] = q[0] = |0>). 

 

 

Figure 1.14: After the measurement to the program in Listing 1.7 is completed, we 

obtain the answer 00001 with the probability 0.500 or the answer 00000 with the 

probability 0.500. 

 

1.8 The T Gate of Single Quantum Bit 

 

The T gate of single quantum bit that is the square root of the S gate is 

 

T = (
1 0

0 𝑒√−1×
𝜋

4
) = (

1 0

0
1+√−1

√2

) = (
1 0

0
1+𝑖

√2

),         (1.22) 

 

where i = √−1 is known as the imaginary unit and 𝑒√−1×
𝜋

4 = cos(
𝜋

4
) + √−1  sin(

𝜋

4
) 
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= 
1+√−1

√2
 = 

1+𝑖

√2
. It is assumed that T+ is the conjugate-transpose matrix of T and is equal 

to (T *)t = (
1 0

0 𝑒−√−1×
𝜋

4
)  = (

1 0

0
1−√−1

√2

)   = (
1 0

0
1−𝑖

√2

) , where the * indicates 

complex conjugation and the t is the transpose operation. Since T  (T*)t = 

(
1 0

0 𝑒√−1×
𝜋

4
)   (

1 0

0 𝑒−√−1×
𝜋

4
)= (T*)t  T = (

1 0

0 𝑒−√−1×
𝜋

4
)   (

1 0

0 𝑒√−1×
𝜋

4
)  = 

(
1 0
0 1

), T is a unitary matrix or a unitary operator. This indicates that the T gate is one 

of quantum gates with single quantum bit. If the quantum state l0 |0> + l1 |1> is written 

in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.23) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the T gate is 

 

 (
𝑙0

𝑒√−1×
𝜋

4 × 𝑙1
) = (l0) (

1
0
) + (𝑒√−1×

𝜋

4 × 𝑙1) (
0
1
) = (l0) |0> + (𝑒√−1×

𝜋

4 × 𝑙1) |1>. (1.24) 

 

This is to say that the T gate converts single quantum bit from one state l0 |0> + l1 |1> 

to another state (l0) |0> + (𝑒√−1×
𝜋

4 × 𝑙1) |1>. This also is to say that the T gate leaves 

|0> unchanged and modifies the phase of |1> to give (𝑒√−1×
𝜋

4) |1>. The probability of 

measuring a |0> or |1> is unchanged after using the T gate, however it modifies the 

phase of the quantum state. Because (T)2 = T  T = (
1 0

0 𝑒√−1×
𝜋

4
)  (

1 0

0 𝑒√−1×
𝜋

4
) =

 (
1 0

0 𝑒√−1×
𝜋

2
)  = (

1 0

0 √−1
), using T twice to a state is equivalent to do the S gate to 

it. For IBM Q Experience, the graphical representation of the T gate is as follows: 

 

. 

 

1.8.1 Programming with the T Gate of Single Quantum Bit 
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In Listing 1.8, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the eighth example in which we describe how to program with 

the T gate that converts single quantum bit from one state 
1

√2
 (|0> + |1>) to another 

state (
1

√2
) (|0> + (𝑒√−1×

𝜋

4) |1>). Figure 1.15 is the corresponding quantum circuit of the 

program in Listing 1.8. The statement “OPENQASM 2.0;” on line one of Listing 1.8 is 

to indicate that the program is written with version 2.0 of Open QASM. Next, the 

statement “include "qelib1.inc";” on line two of Listing 1.8 is to continue parsing the 

file “qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.8 is to declare that in the program there 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. t q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.8: The program to the use of the T gate. 

 

are five quantum bits. In the left top of Figure 1.15, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.8 is to declare that there are five cla- 

 

 

Figure 1.15: The corresponding quantum circuit of the program in Listing 1.8. 
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ssical bits in the program. In the left bottom of Figure 1.15, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

The statement “h q[0];” on line five of Listing 1.8 actually implements 

(

1

√2

1

√2
1

√2
−

1

√2

)  (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This 

implies that the statement “h q[0];” on line five of Listing 1.8 is to use the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), 

where “h” is to represent the Hadamard gate. Next, the statement “t q[0];” on line six 

of Listing 1.8 actually completes (
1 0

0 𝑒√−1×
𝜋

4
)   (

1

√2
1

√2

)  = (

1

√2

𝑒√−1×
𝜋

4 ×
1

√2

)  = 
1

√2
 

(
1

𝑒√−1×
𝜋

4
) = 

1

√2
 ((
1
0
) + (

0

𝑒√−1×
𝜋

4
)) = (

1

√2
) ((

1
0
) + (𝑒√−1×

𝜋

4 ) (
0
1
)) = 

1

√2
 (|0 > + 

(𝑒√−1×
𝜋

4) |1 >). This is to say that the statement “t q[0];” on line six of Listing 1.8 is 

to use the T gate to convert q[0] from one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 (|0 > 

+ (𝑒√−1×
𝜋

4) |1 >). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.8 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Listing 1.8. The result appears in Figure 1.16. From Figure 1.16, we obtain the answer 

 

 

Figure 1.16: After the measurement to the program in Listing 1.8 is completed, we 
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obtain the answer 00001 with the probability 0.480 or the answer 00000 with the 

probability 0.520. 

 

00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |1>) with the probability 0.480. Or we obtain the answer 00000 with the 

probability 0.520 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = 

|0> and c[0] = q[0] = |0>). 

 

1.9 The T+ Gate of Single Quantum Bit 

 

The T+ gate of single quantum bit that is the conjugate-transpose matrix of the T 

gate is 

 

T+ = (
1 0

0 𝑒−√−1×
𝜋

4
) = (

1 0

0
1−√−1

√2

) = (
1 0

0
1−𝑖

√2

),        (1.25) 

 

where i = √−1 is known as the imaginary unit and 𝑒−√−1×
𝜋

4 = cos(−
𝜋

4
) + √−1  

sin(−
𝜋

4
) = 

1−√−1

√2
 = 

1−𝑖

√2
. It is supposed that (T+)+ is the conjugate-transpose matrix of 

T+ and is equal to ((T+)*)t = (
1 0

0 𝑒√−1×
𝜋

4
) = (

1 0

0
1+√−1

√2

)  = (
1 0

0
1+𝑖

√2

), where the * 

is the complex conjugation and the t is the transpose operation. Since T+  ((T+)*)t = 

(
1 0

0 𝑒−√−1×
𝜋

4
)  (

1 0

0 𝑒√−1×
𝜋

4
)= ((T+)*)t  T+ = (

1 0

0 𝑒√−1×
𝜋

4
)  (

1 0

0 𝑒−√−1×
𝜋

4
) = 

(
1 0
0 1

), T+ is a unitary matrix or a unitary operator. This is to say that the T+ gate is one 

of quantum gates with single quantum bit. If the quantum state l0 |0> + l1 |1> is written 

in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.26) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the T+ gate is 

 

(
𝑙0

𝑒−√−1×
𝜋

4 × 𝑙1
)= (l0)(

1
0
) + (𝑒−√−1×

𝜋

4 × 𝑙1)(
0
1
) = (l0) |0> + (𝑒−√−1×

𝜋

4 × 𝑙1) |1>. (1.27) 
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This indicates that the T+ gate converts single quantum bit from one state l0 |0> + l1 |1> 

to another state (l0) |0> + (𝑒−√−1×
𝜋

4 × 𝑙1) |1>. This also is to say that the T+ gate leaves 

|0> unchanged and modifies the phase of |1> to give (𝑒−√−1×
𝜋

4) |1>. The probability of 

measuring a |0> or |1> is unchanged after applying the T+ gate, however it modifies the 

phase of the quantum state. Because (T+)2 = T+  T+ = (
1 0

0 𝑒−√−1×
𝜋

4
)   

(
1 0

0 𝑒−√−1×
𝜋

4
) =  (

1 0

0 𝑒−√−1×
𝜋

2
)  =  (

1 0

0 −√−1
) , applying T+ twice to a state is 

equivalent to do the S+ gate to it. For IBM Q Experience, the graphical representation 

of the T+ gate is as follows: 

 

. 

1.9.1 Programming with the T+ Gate of Single Quantum Bit 

 

In Listing 1.9, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the ninth example in which we introduce how to program with 

the T+ gate that converts single quantum bit from one state 
1

√2
 (|0> + |1>) to another 

state (
1

√2
) (|0> + (𝑒−√−1×

𝜋

4) |1>). Figure 1.17 is the corresponding quantum circuit of 

the program in Listing 1.9. The statement “OPENQASM 2.0;” on line one of Listing 

1.9 is to point out that the program is written with version 2.0 of Open QASM. Next, 

the statement “include "qelib1.inc";” on line two of Listing 1.9 is to continue parsing 

the file “qelib1.inc” as if the contents of the file were pasted at the location of the 

include statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. The 

statement “qreg q[5];” on line three of Listing 1.9 is to declare that in the program there 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 
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6. tdg q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.9: The program to the use of the T+ gate. 

 

are five quantum bits. In the left top of Figure 1.17, five quantum bits are subsequently 

q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set to |0>. Next, 

the statement “creg c[5];” on line four of Listing 1.9 is to declare that there are five 

classical bits in the program. In the left bottom of Figure 1.17, five classical bits are 

subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

 

Figure 1.17: The corresponding quantum circuit of the program in Listing 1.9. 

 

The statement “h q[0];” on line five of Listing 1.9 actually completes (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is to say that 

the statement “h q[0];” on line five of Listing 1.9 is to use the Hadamard gate to convert 

q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where “h” is 

to represent the Hadamard gate. Next, the statement “tdg q[0];” on line six of Listing 

1.9 actually implements (
1 0

0 𝑒−√−1×
𝜋

4
)   (

1

√2
1

√2

)  = (

1

√2

𝑒−√−1×
𝜋

4 ×
1

√2

)  = 
1

√2
 

(
1

𝑒−√−1×
𝜋

4
) = 

1

√2
 ((
1
0
) + (

0

𝑒−√−1×
𝜋

4
)) = (

1

√2
) ((

1
0
) + (𝑒−√−1×

𝜋

4) (
0
1
)) = 

1

√2
 (|0 > + 

(𝑒−√−1×
𝜋

4) |1 >). This indicates that the statement “tdg q[0];” on line six of Listing 1.9 
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is to use the T+ gate to convert q[0] from one state 
1

√2
 (|0> + |1>) to another state 

1

√2
 

(|0 > + (𝑒−√−1×
𝜋

4) |1 >). 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.9 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we apply the command “simulate” to execute the program 

in Listing 1.9. The result appears in Figure 1.18. From Figure 1.18, we obtain the 

answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |1>) with the probability 0.550. Or we obtain the answer 00000 with 

the probability 0.450 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] 

= |0> and c[0] = q[0] = |0>). 

 

 

Figure 1.18: After the measurement to the program in Listing 1.9 is completed, we 

obtain the answer 00001 with the probability 0.550 or the answer 00000 with the 

probability 0.450. 

 

1.10 The Identity Gate of Single Quantum Bit 

 

The identity gate id of single quantum bit is 

 

id = (
1 0
0 1

).                        (1.28) 

 

It is assumed that id+ is the conjugate-transpose matrix of id and is equal to ((id)*)t = 

(
1 0
0 1

), where the * is the complex conjugation and the t is the transpose operation. 

Because id  ((id)*)t = (
1 0
0 1

)   (
1 0
0 1

)= ((id)*)t  id = (
1 0
0 1

)   (
1 0
0 1

)  = 

(
1 0
0 1

), id is a unitary matrix or a unitary operator. This indicates that the identity gate 
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id is one of quantum gates with single quantum bit. If the quantum state l0 |0> + l1 |1> 

is written in a vector notation as 

 

                                (
𝑙0
𝑙1
),                            (1.29) 

 

with the top entry is the amplitude for |0> and the bottom entry is the amplitude for |1>, 

then the corresponding output from the identity gate id is 

 

(
𝑙0
𝑙1
) = (l0) (

1
0
) + (𝑙1) (

0
1
) = (l0) |0> + (𝑙1) |1>.    (1.30) 

 

This is to say that the identity gate id converts single quantum bit from one state l0 |0> 

+ l1 |1> to another state (l0) |0> + (𝑙1) |1>. This also is to say that the identity gate id 

does not change |0> and |1> and only performs an idle operation on single quantum bit 

for a time equal to one unit of time. The probability of measuring a |0> or |1> is 

unchanged after using the identity gate id. Since (id)2 = id  id = (
1 0
0 1

)  (
1 0
0 1

) =

 (
1 0
0 1

), applying the identity gate id twice to a state is equivalent to do nothing to it. 

For IBM Q Experience, the graphical representation of the identity gate id is as follows: 

 

. 

 

1.10.1 Programming with the Identity Gate of Single Quantum Bit 

 

In Listing 1.10, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the tenth example in which we introduce how to program with the 

identity gate id that converts single quantum bit q[0] from one state 
1

√2
 (|0> + |1>) to 

another state (
1

√2
) (|0> + |1>). Actually, the identity gate id only completes an idle 

operation on q[0] for a time equal to one unit of time. Figure 1.19 is the corresponding 

quantum circuit of the program in Listing 1.10. The statement “OPENQASM 2.0;” on 

line one of Listing 1.10 is to indicate that the program is written with version 2.0 of 

Open QASM. Next, the statement “include "qelib1.inc";” on line two of Listing 1.10 is 
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to continue parsing the file “qelib1.inc” as if the contents of the file were pasted at the 

location of the include statement, where the file “qelib1.inc” is Quantum Experience 

(QE) Standard Header and the path is specified relative to the current working 

directory. The statement “qreg q[5];” on line three of Listing 1.10 is to declare that in 

the program there are five quantum bits. In the left top of Figure 1.19, five quantum bits 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. id q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.10: The program to the use of the identity gate. 

 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. Next, the statement “creg c[5];” on line four of Listing 1.10 is to declare that 

there are five classical bits in the program. In the left bottom of Figure 1.19, five 

classical bits are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each 

classical bit is set to 0. 

  

 

Figure 1.19: The corresponding quantum circuit of the program in Listing 1.10. 

 

 

The statement “h q[0];” on line five of Listing 1.10 actually performs (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This implies that the 

statement “h q[0];” on line five of Listing 1.10 is to apply the Hadamard gate to convert 
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q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where “h” is 

to represent the Hadamard gate. Next, the statement “id q[0];” on line six of Listing 

1.10 actually completes (
1 0
0 1

)  (

1

√2
1

√2

) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0 > + |1 >). This is to say that the statement “id q[0];” on line six of Listing 1.10 

is to use the identity gate id to convert q[0] from one state 
1

√2
 (|0> + |1>) to another 

state 
1

√2
 (|0 > + |1 >). This also is to say that the identity gate id only completes an 

idle operation on q[0] for a time equal to one unit of time. 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.10 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we apply the command “simulate” to execute the program 

in Listing 1.10. The result appears in Figure 1.20. From Figure 1.20, we obtain the 

answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |1>) with the probability 0.460. Or we obtain the answer 00000 with 

the probability 0.540 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] 

= |0> and c[0] = q[0] = |0>). 

 

 

Figure 1.20: After the measurement to the program in Listing 1.10 is completed, we 

obtain the answer 00001 with the probability 0.460 or the answer 00000 with the 

probability 0.540. 

 

1.11 The Controlled-NOT Gate of Two Quantum Bits 

 

The controlled-NOT or CNOT gate of two quantum bits is 
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UCN = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

).                  (1.31) 

 

It is supposed that UCN
+ is the conjugate-transpose matrix of UCN and is equal to 

((UCN)*)t = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

), where the * is the complex conjugation and the t is the 

transpose operation. Since UCN  ((UCN)*)t = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

)  (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) = 

((UCN)*)t  UCN = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

)  (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) = (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

), UCN is a 

unitary matrix or a unitary operator. This is to say that the controlled-NOT or CNOT 

gate UCN is one of quantum gates with two quantum bits. If the quantum state l0 |00> + 

l1 |01> + l2 |10> + l3 |11> is written in a vector notation as 

 

                               (

𝑙0
𝑙1
𝑙2
𝑙3

),                            (1.32) 

 

with the first entry l0 is the amplitude for |00>, the second entry l1 is the amplitude for 

|01>, the third entry l2 is the amplitude for |10> and the fourth entry l3 is the amplitude 

for |11>, then the corresponding output from the CNOT gate UCN is 

 

(

𝑙0
𝑙1
𝑙3
𝑙2

)= l0(

1
0
0
0

) + 𝑙1(

0
1
0
0

) + 𝑙3 (

0
0
1
0

)+ 𝑙2(

0
0
0
1

)= l0 |00> + l1 |01> + l3 |10> + l2 |11>. (1.33) 

 

This indicates that the CNOT gate UCN converts two quantum bits from one state l0 |00> 

+ l1 |01> + l2 |10> + l3 |11> to another state l0 |00> + l1 |01> + l3 |10> + l2 |11>. This is 

to say that in the CNOT gate UCN if the control quantum bit (the first quantum bit) is 

set to 0, then the target quantum bit (the second quantum bit) is left alone. If the control 

quantum bit (the first quantum bit) is set to 1, then the target quantum bit (the second 

quantum bit) is flipped. The probability of measuring a |00> or |01> is unchanged, the 
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probability of measuring a |10>  is |l3|
2 and the probability of measuring a |11>  is |l2|

2 

after applying the CNOT gate UCN. Because (UCN)2 = UCN  UCN = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

)  

(

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) = (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

), applying the CNOT gate UCN twice to a state is 

equivalent to do nothing to it. For IBM Q Experience, the graphical representation of 

the CNOT gate UCN is as follows: 

 

. 

 

In the graphical representation of the CNOT gate UCN, the top wire carries the controlled 

quantum bit and the bottom wire carries the target quantum bit. 

 

1.11.1 Connectivity of the Controlled-NOT Gate in IBMQX4 

 

Those authors that wrote textbooks write quantum algorithms with a fully 

connected hardware in which one can apply a quantum gate of two quantum bits to any 

pair of two quantum bits. In practice, ibmqx4 that is a real quantum computer may not 

have full connectivity. In the ibmqx4 with five quantum bits, there are six connections. 

Six connections of a CNOT gate appears in Figure 1.21.The first CNOT gate in Figure 

1.21 has the controlled quantum bit q[1] and the target quantum bit q[0] and the 

corresponding instruction in version 2.0 of Open QASM is “cx q[1],q[0];”, where cx is 

to represent the CNOT gate. The second CNOT gate in Figure 1.21 has the controlled 

 

 

Figure 1.21: A CNOT gate has six connections in ibmqx4 on IBM quantum computers. 
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quantum bit q[2] and the target quantum bit q[0] and the corresponding instruction in 

version 2.0 of Open QASM is “cx q[2],q[0];”, where cx is to represent the CNOT gate. 

 

The third CNOT gate in Figure 1.21 has the controlled quantum bit q[2] and the 

target quantum bit q[1] and the corresponding instruction in version 2.0 of Open QASM 

is “cx q[2],q[1];”, where cx is to represent the CNOT gate. The fourth CNOT gate in 

Figure 1.21 has the controlled quantum bit q[3] and the target quantum bit q[2] and the 

corresponding instruction in version 2.0 of Open QASM is “cx q[3],q[2];”, where cx is 

to represent the CNOT gate. The fifth CNOT gate in Figure 1.21 has the controlled 

quantum bit q[4] and the target quantum bit q[2] and the corresponding instruction in 

version 2.0 of Open QASM is “cx q[4],q[2];”, where cx is to represent the CNOT gate. 

The sixth CNOT gate in Figure 1.21 has the controlled quantum bit q[3] and the target 

quantum bit q[4] and the corresponding instruction in version 2.0 of Open QASM is 

“cx q[3],q[4];”, where cx is to represent the CNOT gate. 

 

In contrast, a fully connected hardware with five quantum bits would allow a 

CNOT gate to apply to twenty different pairs of any two-quantum bits. This indicates 

that there are fourteen “missing connections”. Fortunately, there are different ways to 

yield connections by means of using clever gate sequences. For example, a CNOT gate 

that has the controlled quantum bit q[j] and the target quantum bit q[k] for 0  j and k  

4 can be reversed by means of applying Hadamard gates on each quantum bit both 

before and after the CNOT gate. This is to say that the new instruction (the new 

connection) “cx q[k], q[j]” is implemented by means of applying the five instructions 

that are subsequently “h q[j];”, “h q[k]”, “cx q[j], q[k]”, “h q[j]” and “h q[k]” for 0  j 

and k  4. Similarly, there exists a gate sequence to make a CNOT gate with the 

controlled bit q[j] and the target bit q[l] if one has connections between the controlled 

bit q[j] and the target bit q[k], and the controlled bit q[k] and the target bit q[l] for 0  j, 

k and l  4. This indicates that the new instruction (the new connection) “cx q[j], q[l]” 

is implemented by means of applying the four instructions that are subsequently “cx 

q[k], q[l]”, “cx q[j], q[k]”, “cx q[k], q[l]” and “cx q[j], q[k]” for 0  j, k and l  4.  

 

1.11.2 Implementing a Copy Machine of one bit with the CNOT Gate 

 

Offered its data input is initialized permanently with |0>. Then, the CNOT gate 

emits a copy of the controlled input on each output. Therefore, the CNOT gate actually 

is a copy machine of one bit. In Listing 1.11, the program in the backend ibmqx4 with 

five quantum bits in IBM’s quantum computer is the eleventh example in which we 
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describe how to program with the CNOT gate that converts the controlled bit q[3] and 

the target bit q[3] from one state (
1

√2
 (|0> + |1>)) (|0>) (

1

√2
 (|00> + |10>) to another state 

(
1

√2
) (|00> + |11>). Actually, the CNOT gate emits a copy of the controlled input on 

each output. Figure 1.22 is the corresponding quantum circuit of the program in Listing 

1.11. The statement “OPENQASM 2.0;” on line one of Listing 1.11 is to point out that 

the program is written with version 2.0 of Open QASM. Then, the statement “include 

"qelib1.inc";” on line two of Listing 1.11 is to continue parsing the file “qelib1.inc” as 

if the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. The statement “qreg q[5];” on line 

three of Listing 1.11 is to declare that in the program there are five quantum bits. In the 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[3]; 

6. cx q[3],q[4]; 

7. measure q[3] -> c[3]; 

8. measure q[4] -> c[4]; 

Listing 1.11: Implementing a copy machine of one bit with the CNOT gate. 

 

left top of Figure 1.22, five quantum bits are subsequently q[0], q[1], q[2], q[3] and 

q[4]. The initial value of each quantum bit is set to |0>. Next, the statement “creg c[5];” 

on line four of Listing 1.11 is to declare that there are five classical bits in the program. 

In the left bottom of Figure 1.22, five classical bits are subsequently c[0], c[1], c[2], 

c[3] and c[4]. The initial value of each classical bit is set to 0. 
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Figure 1.22: The corresponding quantum circuit of the program in Listing 1.11. 

 

The statement “h q[3];” on line five of Listing 1.11 actually completes (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is to say that 

the statement “h q[3];” on line five of Listing 1.11 is to use the Hadamard gate to 

convert q[3] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where 

“h” is to represent the Hadamard gate. Next, the statement “cx q[3],q[4];” on line six 

of Listing 1.11 actually completes (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

)  

(

 
 

1

√2

0
1

√2

0)

 
 

 = 

(

 
 

1

√2

0
0
1

√2)

 
 

 = 
1

√2
 (

1
0
0
1

) = 

1

√2
 ((

1
0
0
0

)  + (

0
0
0
1

)) = 
1

√2
 (|00 >  + |11 >). This indicates that the statement “cx 

q[3],q[4];” on line six of Listing 1.11 is to apply the CNOT gate to emit a copy of the 

controlled input q[3] on each output. 

 

Next, the statement “measure q[3] -> c[3];” on line seven of Listing 1.11 is to 

measure the fourth quantum bit q[3] and to record the measurement outcome by 

overwriting the fourth classical bit c[3]. The statement “measure q[4] -> c[4];” on line 

eight of Listing 1.11 is to measure the fifth quantum bit q[4] and to record the 

measurement outcome by overwriting the fifth classical bit c[4].In the backend ibmqx4 

with five quantum bits in IBM’s quantum computers, we use the command “simulate” 

to execute the program in Listing 1.11. The result appears in Figure 1.23. From Figure 

 

 

Figure 1.23: After the measurement to the program in Listing 1.11 is completed, we 

obtain the answer 00000 with the probability 0.540 or the answer 11000 with the 
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probability 0.460. 

 

1.23, we obtain the answer 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.540. Or we obtain 

the answer 11000 with the probability 0.460 (c[4] = q[4] = |1>, c[3] = q[3] = |1>, c[2] 

= q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>). If the answer is 00000, then this 

imply that the CNOT gate copy the value 0 of the controlled input q[3] to the target bit 

q[4]. If the answer is 11000, then this indicates that the CNOT gate copy the value 1 of 

the controlled input q[3] to the target bit q[4]. 

 

1.12 The U1(𝜆) Gate of Single Quantum Bit with One Parameter 

 

The U1(𝜆) gate that is the first physical gate of the Quantum Experience and is a 

phase gate of single quantum bit of one parameter with zero duration is 

 

U1(𝜆) = U1(lambda) = (
1 0

0 𝑒√−1×𝜆
),        (1.34) 

 

where 𝜆 (lambda) is a real value. It is assumed that (U1(𝜆))+ (U1(lambda))+ is the 

conjugate-transpose matrix of U1(𝜆) (U1(lambda)) and is equal to (((U1(𝜆)))*)t = 

(
1 0

0 𝑒−√−1×𝜆
), where the * is the complex conjugation and the t is the transpose 

operation. Because U1(𝜆)  (U1(𝜆))+ = U1(𝜆)  (((U1(𝜆)))*)t = (
1 0

0 𝑒√−1×𝜆
)  

(
1 0

0 𝑒−√−1×𝜆
)  = (U1(𝜆 ))+  U1(𝜆 ) = (((U1(𝜆 )))*)t  U1(𝜆 ) = (

1 0

0 𝑒−√−1×𝜆
)   

(
1 0

0 𝑒√−1×𝜆
) = (

1 0
0 1

), U1(𝜆) (U1(lambda)) is a unitary matrix or a unitary operator. 

This implies that the phase gate U1(𝜆) (U1(lambda)) is one of quantum gates that is a 

phase gate of single quantum bit of one parameter with zero duration. If the quantum 

state l0 |0> + l1 |1> is written in a vector notation as 

 

                               (
𝑙0
𝑙1
),                            (1.35) 

 

with the first entry l0 is the amplitude for |0> and the second entry l1 is the amplitude 

for |1>, then the corresponding output from the phase gate U1(𝜆) (U1(lambda)) is 
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(
𝑙0

𝑒√−1×𝜆 × 𝑙1
) = l0 (

1
0
) + (𝑒√−1×𝜆 × 𝑙1) (

0
1
) = l0 |0> + (𝑒√−1×𝜆 × 𝑙1) |1>.  (1.36) 

 

This is to say that the phase gate U1(𝜆) (U1(lambda)) converts one quantum bit from 

one state l0 |0> + l1 |1> to another state l0 |0> + (𝑒√−1×𝜆 × 𝑙1) |1>. This indicates that 

the phase gate U1(𝜆) (U1(lambda)) leaves |0> unchanged and modifies the phase of |1> 

to give (𝑒√−1×𝜆) |1>. The probability of measuring a |0> or |1> is unchanged after using 

the phase gate U1(𝜆) (U1(lambda)), however it modifies the phase of the quantum state. 

Because (U1( 𝜆 ))2 = U1( 𝜆 )  U1( 𝜆 ) = (
1 0

0 𝑒√−1×𝜆
)   (

1 0

0 𝑒√−1×𝜆
) =

 (
1 0

0 𝑒√−1×2×𝜆
), using the phase gate U1(𝜆) (U1(lambda)) twice to a state is equivalent 

to do that leaves |0> unchanged and modifies the phase of |1> to give (𝑒√−1×2×𝜆) |1> to 

it. For IBM Q Experience, the graphical representation of the phase gate U1(𝜆 ) 

(U1(lambda)) is as follows: 

 

. 

 

1.12.1 Programming with the U1(𝛌) Gate with One Parameter 

 

In Listing 1.12, in the backend ibmqx4 with five quantum bits in IBM’s quantum 

computer, the program is the twelfth example in which we introduce how to program 

with the phase gate U1(2 * pi) that converts single quantum bit q[0] from one state (
1

√2
) 

(|0> +  |1>) to another state (
1

√2
) (|0> + |1>). Because the input value of the first 

parameter lambda for the phase gate U1(lambda) is (2 * pi) and U1(2 * pi) is equal to  

(
1 0

0 𝑒√−1×2×𝜋
) = (

1 0
0 1

), the phase gate U1(2 * pi) actually implements one identity 

gate. Figure 1.24 is the corresponding quantum circuit of the program in Listing 1.12. 

 

The statement “OPENQASM 2.0;” on line one of Listing 1.12 is to indicate that the 

program is written with version 2.0 of Open QASM. Next, the statement “include 

"qelib1.inc";” on line two of Listing 1.12 is to continue parsing the file “qelib1.inc” as 

if the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. The statement “qreg q[5];” on line 
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three of Listing 1.12 is to declare that in the program there are five quantum bits. In the 

left top of Figure 1.24, five quantum bits are subsequently q[0], q[1], q[2], q[3] and 

q[4]. The initial value of each quantum bit is set to |0>. Then, the statement “creg c[5];” 

on line four of Listing 1.12 is to declare that there are five classical bits in the program. 

In the left bottom of Figure 1.24, five classical bits are subsequently c[0], c[1], c[2], 

c[3] and c[4]. The initial value of each classical bit is set to 0. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. u1(2 * pi) q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.12: Program of using the phase gate U1(2 * pi) with one parameter. 

 

The statement “h q[0];” on line five of Listing 1.12 actually implements 

(

1

√2

1

√2
1

√2
−

1

√2

)  (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is 

 

 

Figure 1.24: The corresponding quantum circuit of the program in Listing 1.12. 

 

to say that the statement “h q[0];” on line five of Listing 1.12 is to apply the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), 

where “h” is to represent the Hadamard gate. Next, the statement “u1(2 * pi) q[0];” on 

line six of Listing 1.12 actually completes (
1 0

0 𝑒√−1×2×𝜋
)  (

1

√2
1

√2

) = (
1 0
0 1

)  
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(

1

√2
1

√2

)  = (

1

√2
1

√2

)  = 
1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0 >  + |1 >). This is to say that the 

statement “u1(2 * pi) q[0];” on line six of Listing 1.12 is to implement one identity gate 

to q[0]. 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.12 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we apply the command “simulate” to execute the program 

in Listing 1.12. The result appears in Figure 1.25. From Figure 1.25, we obtain the 

answer 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |0>) with the probability 0.530. Or we obtain the answer 00001 (c[4] 

= q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) 

with the probability 0.470. 

 

 

Figure 1.25: After the measurement to the program in Listing 1.12 is completed, we 

obtain the answer 00000 with the probability 0.530 or the answer 00001 with the 

probability 0.470. 

 

1.13 The U2(𝜙, 𝜆) Gate of Single Quantum Bit with Two Parameters 

 

The phase gate U2(𝜙, 𝜆) (U2(phi, lambda)) that is the second physical gate of the 

Quantum Experience and is a phase gate of single quantum bit of two parameters with 

duration one unit of gate time is 

 

U2(𝜙, 𝜆) = U2(phi, lambda) = (

1

√2

−𝑒√−1×𝜆

√2

𝑒√−1×𝜙

√2

𝑒√−1×(𝜆+𝜙)

√2

),    (1.37) 

 

where 𝜙 and 𝜆 (phi and lambda) are both real numbers. It is assumed that (U2(𝜙, 

𝜆))+ ((U2(phi, lambda))+) is the conjugate-transpose matrix of U2(𝜙 , 𝜆) (U2(phi, 
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lambda)) and is equal to ((U2(𝜙, 𝜆))*)t = (

1

√2

𝑒−√−1×𝜙

√2

−𝑒−√−1×𝜆

√2

𝑒−√−1×(𝜆+𝜙)

√2

), where the * is the 

complex conjugation and the t is the transpose operation. Because U2(𝜙, 𝜆)  (U2(𝜙, 

𝜆 ))+ = U2( 𝜙 , 𝜆 )  ((U2( 𝜙 , 𝜆 ))*)t = (

1

√2

−𝑒√−1×𝜆

√2

𝑒√−1×𝜙

√2

𝑒√−1×(𝜆+𝜙)

√2

)   

(

1

√2

𝑒−√−1×𝜙

√2

−𝑒−√−1×𝜆

√2

𝑒−√−1×(𝜆+𝜙)

√2

) = (U2(𝜙, 𝜆))+  U2(𝜙, 𝜆) = ((U2(𝜙, 𝜆))*)t  U2(𝜙, 𝜆) = 

(

1

√2

𝑒−√−1×𝜙

√2

−𝑒−√−1×𝜆

√2

𝑒−√−1×(𝜆+𝜙)

√2

)   (

1

√2

−𝑒√−1×𝜆

√2

𝑒√−1×𝜙

√2

𝑒√−1×(𝜆+𝜙)

√2

)  = (
1 0
0 1

) , U2(𝜙 , 𝜆 ) (U2(phi, 

lambda)) is a unitary matrix or a unitary operator. This implies that the phase gate U2(𝜙, 

𝜆) (U2(phi, lambda)) is one of quantum gates that is a phase gate of single quantum bit 

of two parameters with duration one unit of time. If the quantum state l0 |0> + l1 |1> is 

written in a vector notation as 

 

                               (
𝑙0
𝑙1
),                            (1.38) 

 

with the first entry l0 is the amplitude for |0> and the second entry l1 is the amplitude 

for |1>, then the corresponding output from the phase gate U2(𝜙, 𝜆) (U2(phi, lambda)) 

is 

 

(

𝑙0−𝑒
√−1×𝜆×𝑙1

√2

𝑒√−1×𝜙×𝑙0+𝑒
√−1×(𝜆+𝜙)×𝑙1

√2

) = 
𝑙0−𝑒

√−1×𝜆×𝑙1

√2
 |0> + 

𝑒√−1×𝜙×𝑙0+𝑒
√−1×(𝜆+𝜙)×𝑙1

√2
 |1>.   (1.39) 

 

This is to say that the phase gate U2(𝜙, 𝜆) (U2(phi, lambda)) converts single quantum 

bit from one state l0 |0> + l1 |1> to another state 
𝑙0−𝑒

√−1×𝜆×𝑙1

√2
 |0> + 

𝑒√−1×𝜙×𝑙0+𝑒
√−1×(𝜆+𝜙)×𝑙1

√2
 |1>. Since (U2( 𝜙 , 𝜆 ))2 = U2( 𝜙 , 𝜆 )  U2( 𝜙 , 𝜆 ) = 

(

1

√2

−𝑒√−1×𝜆

√2

𝑒√−1×𝜙

√2

𝑒√−1×(𝜆+𝜙)

√2

)   (

1

√2

−𝑒√−1×𝜆

√2

𝑒√−1×𝜙

√2

𝑒√−1×(𝜆+𝜙)

√2

) = 
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(

1−𝑒√−1×(𝜆+𝜙)

2

−𝑒√−1×𝜆×(1+𝑒√−1×(𝜆+𝜙))

2

𝑒√−1×𝜙×(1+𝑒√−1×(𝜆+𝜙))

2

(1−𝑒√−1×(𝜆+𝜙))×(−𝑒√−1×(𝜆+𝜙))

2

), using the phase gate U2(𝜙, 𝜆) 

(U2(phi, lambda)) twice to a state is equivalent to modify the amplitude to it. For IBM 

Q Experience, the graphical representation of the phase gate U2(𝜙 , 𝜆 ) (U2(phi, 

lambda)) is as follows: 

 

. 

 

1.13.1 Programming with the U2(𝜙, 𝜆) Gate with Two Parameters 

 

For the phase gate U2(phi, lambda) the input values of the first parameter phi and 

the second parameter lambda are respectively (0 * pi) and (1 * pi), so U2(0*pi, 1*pi) is 

equal to (

1

√2

−𝑒√−1×1×𝜋

√2

𝑒√−1×0×𝜋

√2

𝑒√−1×(1×𝜋+0×𝜋)

√2

)  = (

1

√2

1

√2
1

√2
−

1

√2

) . Therefore, the phase gate 

U2(0*pi, 1*pi) actually implements one Hadamard gate. In Listing 1.13, in the backend 

ibmqx4 with five quantum bits in IBM’s quantum computer, the program is the 

thirteenth example in which we illustrate how to program with the phase gate U2(0*pi, 

1*pi) that converts single quantum bit q[0] from one state (
1

√2
) (|0> + |1>) to another 

state (|0>). Figure 1.26 is the corresponding quantum circuit of the program in Listing 

1.13. 

 

The statement “OPENQASM 2.0;” on line one of Listing 1.13 is to point out that 

the program is written with version 2.0 of Open QASM. Then, the statement “include 

"qelib1.inc";” on line two of Listing 1.13 is to continue parsing the file “qelib1.inc” as 

if the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. The statement “qreg q[5];” on line 

three of Listing 1.13 is to declare that in the program there are five quantum bits. In the 

left top of Figure 1.26, five quantum bits are subsequently q[0], q[1], q[2], q[3] and 

q[4]. The initial value of each quantum bit is set to |0>. Next, the statement “creg c[5];” 

on line four of Listing 1.13 is to declare that there are five classical bits in the program. 

In the left bottom of Figure 1.26, five classical bits are subsequently c[0], c[1], c[2], 

c[3] and c[4]. The initial value of each classical bit is set to 0. 
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1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. u2(0*pi,1*pi) q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.13: Program of using the phase gate U2(0*pi, 1*pi) with two parameters. 

 

The statement “h q[0];” on line five of Listing 1.13 actually completes (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This is to say that 

the statement “h q[0];” on line five of Listing 1.13 is to use the Hadamard gate to 

convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where 

  

 

Figure 1.26: The corresponding quantum circuit of the program in Listing 1.13. 

 

“h” is to represent the Hadamard gate. Next, the statement “u2(0*pi,1*pi) q[0];” on line 

six of Listing 1.13 actually implements (

1

√2

−𝑒√−1×1×𝜋

√2

𝑒√−1×0×𝜋

√2

𝑒√−1×(1×𝜋+0×𝜋)

√2

)   (

1

√2
1

√2

)  = 

(

1

√2

1

√2
1

√2
−

1

√2

)  (

1

√2
1

√2

) = (
1
0
) = |0 >. This indicates that the statement “u2(0*pi,1*pi) 

q[0];” on line six of Listing 1.13 is to complete one Hadamard gate to q[0]. Therefore, 

applying the Hadamard gate twice from line five and line six of Listing 1.13 to q[0] 
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does nothing to it. 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.13 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Figure 1.27: After the measurement to the program in Listing 1.13 is completed, we 

obtain the answer 00000 with the probability 1.000. 

 

Listing 1.13. The result appears in Figure 1.27. From Figure 1.27, we obtain the answer 

00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |0>) with the probability 1.000. 

 

1.14 The U3(,𝜙,𝜆) Gate of Single Quantum Bit of Three Parameters 

 

The phase gate U3(, 𝜙, 𝜆) (U3(theta, phi, lambda)) that is the third physical gate 

of the Quantum Experience and is a phase gate of single quantum bit of three parameters 

with duration two units of gate time is 

 

U3(, 𝜙, 𝜆) = (
cos (

𝜃

2
) −𝑒√−1×𝜆 × sin (

𝜃

2
)

𝑒√−1×𝜙 × sin (
𝜃

2
) 𝑒√−1×(𝜆+𝜙) × cos (

𝜃

2
)
),   (1.40) 

 

where , 𝜙 and 𝜆 (theta, phi and lambda) are all real numbers. It is supposed that 

(U3(, 𝜙, 𝜆))+ ((U3(theta, phi, lambda))+) is the conjugate-transpose matrix of U3(, 

𝜙 , 𝜆 ) (U3(theta, phi, lambda)) and is equal to ((U3(, 𝜙 , 𝜆 ))*)t = 

(
cos (

𝜃

2
) 𝑒−√−1×𝜙 × sin (

𝜃

2
)

−𝑒−√−1×𝜆 × sin (
𝜃

2
) 𝑒−√−1×(𝜆+𝜙) × cos (

𝜃

2
)
) , where the * is the complex 

conjugation and the t is the transpose operation. Because U3(, 𝜙, 𝜆)  ((U3(, 𝜙, 
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𝜆 ))*)t = (
cos (

𝜃

2
) −𝑒√−1×𝜆 × sin (

𝜃

2
)

𝑒√−1×𝜙 × sin (
𝜃

2
) 𝑒√−1×(𝜆+𝜙) × cos (

𝜃

2
)
)   

(
cos (

𝜃

2
) 𝑒−√−1×𝜙 × sin (

𝜃

2
)

−𝑒−√−1×𝜆 × sin (
𝜃

2
) 𝑒−√−1×(𝜆+𝜙) × cos (

𝜃

2
)
) = ((U3(, 𝜙, 𝜆))*)t  U3(, 𝜙, 𝜆) 

= (
cos (

𝜃

2
) 𝑒−√−1×𝜙 × sin (

𝜃

2
)

−𝑒−√−1×𝜆 × sin (
𝜃

2
) 𝑒−√−1×(𝜆+𝜙) × cos (

𝜃

2
)
)   

(
cos (

𝜃

2
) −𝑒√−1×𝜆 × sin (

𝜃

2
)

𝑒√−1×𝜙 × sin (
𝜃

2
) 𝑒√−1×(𝜆+𝜙) × cos (

𝜃

2
)
) = (

1 0
0 1

), U3(, 𝜙, 𝜆) (U3(theta, phi, 

lambda)) is a unitary matrix or a unitary operator. This implies that the phase gate U3(, 

𝜙, 𝜆) (U3(theta, phi, lambda)) is one of quantum gates that is a phase gate of single 

quantum bit of three parameters with duration two units of gate time. If the quantum 

state l0 |0> + l1 |1> is written in a vector notation as 

 

                               (
𝑙0
𝑙1
),                            (1.41) 

 

with the first entry l0 is the amplitude for |0> and the second entry l1 is the amplitude 

for |1>, then the corresponding output from the phase gate U3(, 𝜙, 𝜆) (U3(theta, phi, 

lambda)) is 

 

(
𝑙0 × cos (

𝜃

2
) − 𝑙1 × 𝑒

√−1×𝜆 × sin (
𝜃

2
)

𝑙0 × 𝑒
√−1×𝜙 × sin (

𝜃

2
) + 𝑙1 × 𝑒

√−1×(𝜆+𝜙) × cos (
𝜃

2
)
) = ( 𝑙0 × cos (

𝜃

2
) − 𝑙1 ×

𝑒√−1×𝜆 × sin (
𝜃

2
)) |0> + (𝑙0 × 𝑒

√−1×𝜙 × sin (
𝜃

2
) + 𝑙1 × 𝑒

√−1×(𝜆+𝜙) × cos (
𝜃

2
)) |1>. 

(1.42) 

 

This indicates that the phase gate U3(, 𝜙, 𝜆) (U3(theta, phi, lambda)) converts single 

quantum bit from one state l0 |0> + l1 |1> to another state (𝑙0 × cos (
𝜃

2
) − 𝑙1 × 𝑒

√−1×𝜆 ×

sin (
𝜃

2
) ) |0> + ( 𝑙0 × 𝑒

√−1×𝜙 × sin (
𝜃

2
) + 𝑙1 × 𝑒

√−1×(𝜆+𝜙) × cos (
𝜃

2
) ) |1>. Because 

(U3(, 𝜙 , 𝜆 ))2 =   
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(
cos2 (

𝜃

2
) − 𝑒√−1×(𝜆+𝜙) × sin2 (

𝜃

2
) − cos (

𝜃

2
) × sin (

𝜃

2
) × 𝑒√−1×𝜆 × (1 + 𝑒√−1×(𝜆+𝜙))

cos (
𝜃

2
) × sin (

𝜃

2
) × 𝑒√−1×𝜙 × (1 + 𝑒√−1×(𝜆+𝜙)) (sin2 (

𝜃

2
) − cos2 (

𝜃

2
) × 𝑒√−1×(𝜆+𝜙)) × (−𝑒√−1×(𝜆+𝜙))

) , 

applying the phase gate U3(, 𝜙 , 𝜆 ) (U3(theta, phi, lambda)) twice to a state is 

equivalent to modify the amplitude to it. For IBM Q Experience, the graphical 

representation of the phase gate U3(, 𝜙, 𝜆) (U3(theta, phi, lambda)) is as follows: 

 

. 

 

1.14.1 Programming with the U3(, 𝜙, 𝜆) Gate with Three Parameters 

 

For the phase gate U3(theta, phi, lambda), the input value of the first parameter 

theta is (0.5 * pi), the input value of the second parameter phi is (0 * pi) and the input 

value of the third parameter lambda is (1 * pi), so U3(0.5*pi, 0*pi, 1*pi) is equal to 

(
cos (

𝜋

4
) −𝑒√−1×1×𝜋 × sin (

𝜋

4
)

𝑒√−1×0×𝜋 × sin (
𝜋

4
) 𝑒√−1×(1×𝜋+0×𝜋) × cos (

𝜋

4
)
) = (

1

√2

−𝑒√−1×1×𝜋

√2

𝑒√−1×0×𝜋

√2

𝑒√−1×(1×𝜋+0×𝜋)

√2

) = 

(

1

√2

1

√2
1

√2
−

1

√2

). Hence, the phase gate U3(0.5*pi, 0*pi, 1*pi) actually completes one 

Hadamard gate. In Listing 1.14, in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer, the program is the fourteenth example in which we describe how to 

program with the phase gate U3(0.5*pi, 0*pi, 1*pi) that converts single quantum bit 

q[0] from one state (
1

√2
) (|0> +  |1>) to another state (|0>). Figure 1.28 is the 

corresponding quantum circuit of the program in Listing 1.14. 

 

The statement “OPENQASM 2.0;” on line one of Listing 1.14 is to indicate that the 

program is written with version 2.0 of Open QASM. Next, the statement “include 

"qelib1.inc";” on line two of Listing 1.14 is to continue parsing the file “qelib1.inc” as 

if the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. The statement “qreg q[5];” on line 

three of Listing 1.14 is to declare that in the program there are five quantum bits. In the 

left top of Figure 1.28, five quantum bits are subsequently q[0], q[1], q[2], q[3] and 

q[4]. The initial value of each quantum bit is set to |0>. Next, the statement “creg c[5];” 

on line four of Listing 1.14 is to declare that there are five classical bits in the program. 

In the left bottom of Figure 1.28, five classical bits are subsequently c[0], c[1], c[2], 
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c[3] and c[4]. The initial value of each classical bit is set to 0. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. u3(0.5*pi,0*pi,1*pi) q[0]; 

7. measure q[0] -> c[0]; 

Listing 1.14: Program of using the phase gate U3(0.5*pi, 0*pi, 1*pi) of three parameters. 

 

The statement “h q[0];” on line five of Listing 1.14 actually performs (

1

√2

1

√2
1

√2
−

1

√2

) 

 (
1
0
) = (

1

√2
1

√2

) = 
1

√2
 (
1
1
) = 

1

√2
 ((
1
0
) + (

0
1
)) = 

1

√2
 (|0> + |1>). This indicates that 

the statement “h q[0];” on line five of Listing 1.14 is to apply the Hadamard gate to 

convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition), where 

“h” is to represent the Hadamard gate. Next, the statement “u3(0.5*pi,0*pi,1*pi) q[0];”  

 

 

Figure 1.28: The corresponding quantum circuit of the program in Listing 1.14. 

 

on line six of Listing 1.14 actually completes 

(
cos (

𝜋

4
) −𝑒√−1×1×𝜋 × sin (

𝜋

4
)

𝑒√−1×0×𝜋 × sin (
𝜋

4
) 𝑒√−1×(1×𝜋+0×𝜋) × cos (

𝜋

4
)
)   (

1

√2
1

√2

)  =  
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(

1

√2

−𝑒√−1×1×𝜋

√2

𝑒√−1×0×𝜋

√2

𝑒√−1×(1×𝜋+0×𝜋)

√2

)  (

1

√2
1

√2

) = (

1

√2

1

√2
1

√2
−

1

√2

)  (

1

√2
1

√2

) = (
1
0
) = |0 >. This 

is to say that the statement “u3(0.5*pi,0*pi,1*pi) q[0];” on line six of Listing 1.14 is to 

complete one Hadamard gate to q[0]. Hence, using the Hadamard gate twice from line 

five and line six of Listing 1.14 to q[0] does nothing to it. 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 1.14 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Listing 1.14. The result appears in Figure 1.29. From Figure 1.29, we obtain the answer 

00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |0>) with the probability 1.000. 

 

 

Figure 1.29: After the measurement to the program in Listing 1.14 is completed, we 

obtain the answer 00000 with the probability 1.000. 

 

1.15 Summary 

 

In this chapter, we introduced single quantum bit, multiple quantum bits and their 

superposition. We also described two statements of declaration and measurement for 

quantum bits and classical bits in Open QASM (version 2.0) in the backend ibmqx4 

with five quantum bits in IBM’s quantum computers. We illustrated all of the quantum 

gates with single quantum bit and the controlled-NOT or CNOT gate of two quantum 

bits in the backend ibmqx4 with five quantum bits in IBM’s quantum computers. 

Simultaneously, we also in detail introduced connectivity of the controlled-NOT gate 

in the backend ibmqx4 with five quantum bits in IBM’s quantum computers. We 

introduced how to program with each quantum gate of single quantum bit completing 

each different kind of application and how to execute each quantum program in the 

backend ibmqx4 with five quantum bits in IBM’s quantum computers. We also 

described how to program with the controlled-NOT gate to implement a copy machine 
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of one bit.   

 

1.16 Bibliographical Notes 

 

A famous article that gives a detailed technical definition for quantum supremacy 

is [Aaronson and Chen 2017]. Popular textbooks [Nielsen and Chuang 2000; Imre and 

Balazs 2007; Lipton and Regan 2014] give an excellent introduction for quantum bits 

and quantum gates. A popular textbook [Silva 2018], a famous project [IBM Q 2016] 

and two famous articles [Cross et al 2017; Coles et al 2018] give many excellent 

examples to write quantum programs with quantum assembly language in Open QASM 

(version 2.0) in the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers. 

 

1.17 Exercises 

 

1.1 Please write a quantum program in which we use the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the NOT gate. 

 

1.2 Please write a quantum program in which we apply the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the Hadamard gate. 

 

1.3 Please write a quantum program in which we make use of the U3(, 𝜙, 𝜆) gate with 

three parameters to implement the Z gate. 

 

1.4 Please write a quantum program in which we use the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the Y gate. 

 

1.5 Please write a quantum program in which we use the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the S gate. 

 

1.6 Please write a quantum program in which we apply the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the S+ gate. 

 

1.7 Please write a quantum program in which we make use of the U3(, 𝜙, 𝜆) gate with 

three parameters to implement the T gate. 

 

1.8 Please write a quantum program in which we use the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the T+ gate. 
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1.9 Please write a quantum program in which we apply the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the identity gate. 

 

1.10 Please write a quantum program in which we make use of the U3(, 𝜙, 𝜆) gate 

with three parameters to implement the U1(𝜆) gate with one parameter. 

 

1.11 Please write a quantum program in which we use the U3(, 𝜙, 𝜆) gate with three 

parameters to implement the U2(𝜙, 𝜆) gate with two parameters. 


