第6章

相位估計 及其應用

決策*問題是在任何 n 位*輸入上只有兩個可能的輸出(是或否)的問題。決策 問題中的輸出「是」是解決方案的數量不為零,決策問題中的另一個輸出「否」 是解決方案的數量為零。決策問題的一個例子是確定給定的布林公式 $F(x_1,x_2)$ = $x_1 \land x_2$,具有滿足 $F(x_1,x_2)$ 是否為*真*值的解,其中兩個布林變數 x_1 和 x_2 為 true (1) 或 false (0),「 \land 」是兩個運算元的 *AND* 運算。為了表達方便,布 林變數 x_1^0 表示布林變數 x_1 的值0(零),布林變數 x_1^1 表示布林變數 x_2 的值1(-)。

決策過程採用演算法的形式來解決決策問題。決策問題的決策程序「給定布 林公式, $F(x_1,x_2) = x_1 \land x_2$,是否有滿足 $F(x_1,x_2)$ 為*真*值的解?將實施x1 ∧ 根據四個不同的輸入 x_2 (兩個操作數的 *AND* 運算)四次 $x_1^0 x_2^0, x_1^0 x_2^1, x_1^1 x_2^0 和 x_1^1 x_2^1$ 。執行完每個 *AND* 運算後,找到第四個輸入 $x_1^1 x_2^1$ 滿足 $F(x_1,x_2)$ 具有*真*值。最後,它對決策問題給出"是"輸出。這意味著解的數量不等 於零。如果解決輸入為 *n* 位的決策問題的決策過程的時間複雜度為 $O(2^n)$,則 該決策問題是 NP 完全問題。

我們假設 a (2 ^{*n*} × 2 ^{*n*}) 西矩陣(運算子) *U*有 (2 ^{*n*} × 1) 特徵向量|*u* > 具有 特徵值 $e^{\sqrt{-1} \times 2 \times \pi \times \theta}$ 使得 $U \times | \delta \!\!\!/ > = e^{\sqrt{-1} \times 2 \times \pi \times \theta} \times | u \!\!>$,其中 的值 θ 未知*且*為實數。 相位估計算法的目的是估計 的值 θ 。判斷一個問題是否存在 *n* 位輸入的解相當於 估計 的值 θ 。在本章中,我們首先描述相位估計演算法如何在量子電腦和各種實 際應用中運作。我們說明如何編寫量子程式來計算和估計任何 θ 給定 a (2 ^{*n*} × 2 ^{*n*}) 酉矩陣(運算子) *U*有 (2 ^{*n*} × 1) 特徵向量|*u* > 具有特徵值 ($e^{\sqrt{-1} \times 2 \times \pi \times \theta}$)。 接 下來,我們解釋為什麼用 *n* 位輸入來判斷問題是否存在解相當於估計 的值 θ 。我 們也解釋了量子計數演算法如何決定輸入為 *n* 位的決策問題的解數。接下來,我 們介紹如何編寫量子演算法來實現量子計數演算法,該演算法是相位估計演算法 的實際應用,用於以 *n* 位輸入計算各種實際應用的解的數量。

6.1 相位估計

我們使用圖 6.1 所示的量子電路來實現相位估計演算法。它使用兩個量子暫

存器。在圖 6.1 的左上角,第一個暫存器 ($\bigotimes_{k=t}^{1}|y_{k}^{0}$) 包含原本處於狀態 |0> 的 t 個量子位元。量子位| y_{1}^{0} > 是最高有效位。量子位| y_{1}^{0} > 是最低有效位元。 第一個暫存器對應的十進位值為 ($|y_{1}^{0} > \times 2^{t-1}$) + ...+ ($|y_{2}^{0} > \times 2^{2-1}$) + ($|y_{1}^{0} > \times 2^{t-1}$)。我們如何選擇 t 取決於兩件事。第一件事是我們希望在估計 的值時具 有多少精確度 θ 。第二件事是我們希望相位估計演算法成功的機率是多少。 t 對 這些量的依賴性從以下分析中自然可見。

圖 6.1:計算相位的量子電路。

在圖 6.1 的左下角,第二個暫存器 ($\bigotimes_{j=1}^{n} | u_{j}^{0}$) 包含原本處於狀態 |0> 的 n 個量子位元。量子位| u_{1}^{0} > 是最高有效位元。量子位| u_{n}^{0} > 是最低有效位元。 第二個暫存器對應的十進位值為 ($|u_{1}^{0} > \times 2^{n-1}$) + ($|u_{2}^{0} > \times 2^{n-2}$) + ...+($|y_{n}^{0} > \times 2^{n-n}$)。我們如何選擇 n 取決於事物。問題在於各種實際應用程式的輸入大小。 這意味著我們選擇的 n 實際上是問題的輸入位數。為了表達方便,下面的初始狀 態向量為

$$| \varphi_0 > = (\otimes_{k=t}^1 | y_k^0)) \otimes (\otimes_{i=1}^n | u_i^0)) \circ (6.1)$$

6.1.1 相位估計的初始化

在圖 6.1 中,電路首先使用 *第一個*暫存器 () $\bigotimes_{k=t}^{1} |y_{k}^{0}\rangle$ 上的哈達瑪變換和*第* 二個暫存器 () $\bigotimes_{j=1}^{n} |u_{j}^{0}\rangle$ 上的另一個哈達瑪變換。第一個暫存器的疊加是 $\left(\frac{1}{\sqrt{2t}}(\bigotimes_{k=t}^{1}(|y_{k}^{0}\rangle+|y_{k}^{1}\rangle))\right)$ 。第二個暫存器的疊加是 $(|u\rangle=\frac{1}{\sqrt{2n}}(\bigotimes_{j=1}^{n}(|u_{j}^{0}\rangle+|u_{j}^{1}\rangle)))$ 。這就是說,第二個暫存器的疊加從新的狀態向量 $(|u\rangle=\frac{1}{\sqrt{2n}}(\bigotimes_{j=1}^{n}(|u_{j}^{0}\rangle+|u_{j}^{1}\rangle)))$ 開始,由*n 個*量子組成)儲存 $(|u\rangle)$ 所需 $|u\rangle$ 的位元。

$$|\varphi_{l}\rangle = \left(\frac{1}{\sqrt{2^{t}}}\left(\bigotimes_{k=t}^{1}\left(\left|y_{k}^{0}\right\rangle + \left|y_{k}^{1}\right\rangle\right)\right)\right)\otimes\left(\frac{1}{\sqrt{2^{n}}}\left(\bigotimes_{j=1}^{n}\left(\left|u_{j}^{0}\right\rangle + \left|u_{j}^{1}\right\rangle\right)\right)\right)$$
$$= \left(\frac{1}{\sqrt{2^{t}}}\left(\bigotimes_{k=t}^{1}\left(\left|y_{k}^{0}\right\rangle + \left|y_{k}^{1}\right\rangle\right)\right)\right)\otimes\left(\left|u\right\rangle\right) \circ (6.2)$$

6.1.2 第二寄存器疊加到相位估計的受控 U 操作

接下來,在圖 6.1 中,電路在第二個暫存器(即狀態($|u\rangle$))的疊加上實 現受控*U 操作的應用*,其中 *U* 連續升到 2 的冪。因為西算子 *U 的一次應用*對 其特徵向量(特徵態)($|u\rangle$)的影響是($U \times | d \!\!\!\!/ > = e^{\sqrt{-1} \times 2 \times \pi \times \theta} \times | u >$),重複應用 西算符 *U* 對其特徵向量 (eigenstate)($|u\rangle$)的影響為

實現一個具有特徵向量(特徵狀態)($|u\rangle$)和特徵值的受控 $e^{\sqrt{-1}\times 2\times \pi \times \theta} U$ 運算是 指,如果受控量子位元為狀態 |1>,則完成酉算符 U 的一次應用,($U \times | h > e^{\sqrt{-1}\times 2\times \pi \times \theta} \times | h >)$ 。否則,它不會完成酉算子U的一次應用。

一個具有特徵向量(特徵狀態)($|u\rangle$)和特徵值的受控 $e^{\sqrt{-1}\times 2\times \pi \times \theta} U$ 運算的 重複應用是指,如果受控量子位元為狀態|1>,則完成酉算子U的重複應用,($U^{-m} \times |n> = e^{\sqrt{-1}\times 2\times \pi \times \theta \times a} \times |n>$)。否則,它不會完成酉算子U的重複應用。

在新的狀態向量| q1 > 在 (6.2) 中,第一個暫存器中的每個量子位元目前處

於其疊加狀態。加權位置 2^{0 處的}疊加($\frac{1}{\sqrt{2}}(|y_1^0\rangle + |y_1^1\rangle)^{\mathbb{R}}$ 在作為狀態($|u\rangle$)的第 二個暫存器的疊加上實施受控操作的受控量子位元 U^{2^0} 。這給了以下新的狀態向 量是

$$|\varphi_{2}\rangle = \left(\frac{1}{\sqrt{2^{t}}}\left(\bigotimes_{k=t}^{2}\left(\left|y_{k}^{0}\right\rangle + \left|y_{k}^{1}\right\rangle\right)\right)\otimes\left(\left|y_{1}^{0}\right\rangle\left|u\right\rangle + e^{\sqrt{-1}\times2\times\pi\times\theta\times2^{0}}\left|y_{1}^{1}\right\rangle\left|u\right\rangle\right)$$
$$= \left(\frac{1}{\sqrt{2^{t}}}\left(\bigotimes_{k=t}^{2}\left(\left|y_{k}^{0}\right\rangle + \left|y_{k}^{1}\right\rangle\right)\right)\otimes\left(\left|y_{1}^{0}\right\rangle + e^{\sqrt{-1}\times2\times\pi\times\theta\times2^{0}}\left|y_{1}^{1}\right\rangle\right)\otimes\left(\left|u\right\rangle\right) \circ (6.4)$$

改變狀態的階段 $|y_1|^2$ 從一(1) 變成($e^{\sqrt{-1} \times 2 \times \pi \times \theta \times 2^0}$)。我們稱之為*相位反沖*。

接下來,在新的狀態向量 | $\varphi_2 > 在$ (6.4) 中,加權位置 $2^{1 \text{ @n}}$ 疊加 ($\frac{1}{\sqrt{2}}(|y_2 + |y_2^1 >))$ 是在第二個暫存器的疊加實現受控操作的受控量子位 U^{2^1} ,即狀態 ($|u\rangle$) 。這意味著以下新的狀態向量是

$$|\varphi_{3}\rangle = \left(\frac{1}{\sqrt{2^{t}}}\left(\bigotimes_{k=t}^{3}\left(|y_{k}^{0}\rangle + |y_{k}^{1}\rangle\right)\right)\otimes\left(|y_{2}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi\times \theta\times 2^{1}}|y_{2}^{1}\rangle\right)$$
$$\otimes\left(|y_{1}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi\times \theta\times 2^{0}}|y_{1}^{1}\rangle\right)\otimes\left(|u\rangle\right) \circ (6.5)$$

由於相位*反衝*,相位狀態| y_2^1 >從一(1) 變成($e^{\sqrt{-1} \times 2 \times \pi \times \theta \times 2^1}$)。

$$\begin{array}{l} \cdots \\ \otimes (|y_2^0\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \theta \times 2^1} |y_2^1\rangle) \otimes (|y_1^0\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \theta \times 2^0} |y_1^1\rangle)) \otimes (|u\rangle) \\ = (\frac{1}{\sqrt{2^t}} (\sum_{Y=0}^{2^t-1} e^{\sqrt{-1} \times 2 \times \pi \times \theta \times Y} |Y\rangle)) \otimes (|u\rangle) \quad \circ \quad (6.6) \end{array}$$

由於相位*反衝*,相位狀態| $Y>0 \le \mathcal{E} \le 2^{\mbox{$^{\#}$}} - 1$ 是從一(1)變成($e^{\sqrt{-1} \times 2 \times \pi \times \theta \times Y}$)。根 據上面的描述,第二量子暫存器在計算過程中保持在狀態(|u>)。

6.1.3 第一暫存器疊加的逆量子傅立葉變換到相位估計

接下來,在圖 6.1 中,電路實現了逆過程 第一個暫存器疊加的量子傳立葉 變換。它將(6.6)中的新狀態向量(| *q*4>)作為其輸入狀態向量。逆運算的輸出狀態 第一個暫存器疊加的量子傳立葉變換為

$$|\varphi_{5}\rangle = \left(\sum_{Y=0}^{2^{t}-1} \frac{1}{\sqrt{2^{t}}} e^{\sqrt{-1} \times 2 \times \pi \times \theta \times Y} \frac{1}{\sqrt{2^{t}}} \sum_{i=0}^{2^{t}-1} e^{-\sqrt{-1} \times 2 \times \pi \times \frac{i}{2^{t}} \times Y} |i\rangle\right) \quad \otimes (|u\rangle)$$

$$= \left(\frac{1}{2^{t}} \left(\sum_{Y=0}^{2^{t}-1} \sum_{i=0}^{2^{t}-1} e^{\sqrt{-1} \times 2 \times \pi \times Y \times (\theta - \frac{i}{2^{t}})} |i\rangle\right) \otimes (|u\rangle)$$

$$= \left(\sum_{i=0}^{2^{t}-1} \sum_{Y=0}^{2^{t}-1} \frac{1}{2^{t}} \left(e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^{t}})}\right)^{Y} |i\rangle\right) \otimes (|u\rangle) \quad \circ \quad (6.7)$$

上面的描述來看,第二量子暫存器在計算過程中仍保持在(| *u* >)狀態。根據(6.7) 中的新狀態向量(| *q*s >),|的機率幅*我*> 是

$$\phi_{\mathcal{R}} = \frac{1}{2^t} \times (\sum_{Y=0}^{2^t-1} (e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^t})})^Y) \quad \circ \quad (6.8)$$

6.1.4 理想相位估計

| 的機率幅 *i*> 只是一個幾何數列與商 *q*=的總和($e^{\sqrt{-1}\times 2\times\pi\times(\theta-\frac{i}{2^t})}$)。一方面, 如果 的值可以 θ 在第一個量子暫存器中以 θ t dcc表示,則 as = 0. *y*₁*yt*₋₁ ... *y*₂*y*₁=(*y*₁*yt*₋₁ ... *y*₂*y*₁/2^{*t*})。那麼 0≤的值 θ 其實等於 (*i*/2^{*t*}) $\mathcal{X} \leq 2^{\text{#}}$ 1 並且是 (1/2 -*i*)的整數倍。由此得出商 *q* 為 $e^{\sqrt{-1}\times 2\times\pi\times(\frac{i}{2^t}-\frac{i}{2^t})} = e^{\sqrt{-1}\times 2\times\pi\times 0}$ 1, | 的機率幅 值 \mathcal{X} > 是 $\frac{1}{2^t}$ ×($\sum_{Y=0}^{2^t-1} 1^Y$) = $\frac{1}{2^t}$ ×($\sum_{Y=0}^{2^t-1} 1$) = $\frac{1}{2^t}$ ×2^{*t*} = 1 且任何其他機率幅度都消 失。這是相位估計的*理想情況。*最後,在圖 6.1 中,完成第一暫存器疊加的量子 傅立葉逆變換的輸出狀態的測量後,我們得到計算基礎狀態| *i* >成功機率為 1 (100%)。這表示 的值 θ 等於 ($i/2^{t}$),成功機率為1(100%)。因此,我們得到 成功機率為1(100%)的特徵值。($e^{\sqrt{-1} \times 2 \times \pi \times \frac{i}{2^{t}}}$)

6.1.5 實際案例中的相位估計

另一方面,如果的值可能無法 θ 在第一個量子暫存器中以t *位元*表示。這就 是說 $\theta \neq 0.$ yt $yt_{-1} \dots y_{2} y_{1} \neq (y_{t} yt_{-1} \dots y_{2} y_{1}/2^{t})$ 。那麼商q 就是 $e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^{t}})}$ $\neq 1$ 我們可以重寫 | 的機率幅i > (6.8) 如下

$$\phi_{\text{F}} = \frac{1}{2^{t}} \times \frac{1 - q^{2^{t}}}{1 - q} = \frac{1}{2^{t}} \times \frac{1 - (e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^{t}})})^{2^{t}}}{1 - e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^{t}})}} = \frac{1}{2^{t}} \times \frac{1 - e^{\sqrt{-1} \times 2 \times \pi \times (2^{t} \times \theta - i)}}{1 - e^{\sqrt{-1} \times 2 \times \pi \times (\theta - \frac{i}{2^{t}})}} \circ (6.9)$$

這為測量圖 6.1 中量子傅立葉逆變換的輸出時的不確定性以及因此出現的 不準確性提供了另一個很好的解釋。測量合適狀態的機率 |圖 6.1 中第一個暫存 器上的 *i* > 為

$$\left|\phi_{\mathcal{R}}\right|^{2} = \frac{1}{2^{2 \times t}} \times \frac{|1 - e^{\sqrt{-1} \times 2 \times \pi \times (2^{t} \times \theta - i)}|^{2}}{|1 - e^{\sqrt{-1} \times 2 \times \pi \times \left(\theta - \frac{i}{2^{t}}\right)|^{2}}} \circ (6.10)$$

因為| $1 - e^{\sqrt{-1} \times \gamma}|^2 = 4 \times sin^2 (\gamma 2)$,我們可以重寫 $|\phi_{a}|$ (6.10) 中的²如下

$$\left|\phi_{\text{ft}}\right|^{2} = \frac{1}{2^{2 \times t}} \times \frac{4 \times \sin^{2}(\frac{2 \times \pi \times (2^{t} \times \theta - i)}{2})}{4 \times \sin^{2}(\frac{2 \times \pi \times (\theta - \frac{i}{2t})}{2})} = \frac{1}{2^{2 \times t}} \times \frac{\sin^{2}(\frac{2 \times \pi \times (2^{t} \times \theta - i)}{2})}{\sin^{2}(\frac{2 \times \pi \times (\theta - \frac{i}{2t})}{2})} \circ (6.11)$$

這是相位估計的*實際情況。*最後,在圖 6.1 中,完成第一暫存器疊加的量子傅立 葉逆變換的輸出狀態的測量後,我們得到計算基礎狀態|*i*>的機率為 $(\frac{1}{2^{2\times t}} \times \frac{\sin^2(\frac{2\times \pi \times (2^t \times \theta - i)}{2})}{\sin^2(\frac{2\times \pi \times (\theta - \frac{i}{2t})}{2})}$)。因為 $(i/2^t) = (y_t y_{t-1} \dots y_2 y_1/2^t) = 0.y_t y_{t-1} \dots y_2 y_1, (i/t)$

2^{*t*}) 是的估計值,
$$\theta$$
機率為 $\left(\frac{1}{2^{2\times t}} \times \frac{\sin^2(\frac{2\times \pi \times (2^t \times \theta - i)}{2})}{\sin^2(\frac{2\times \pi \times (\theta - \frac{i}{2^t})}{2})}\right)$ 。因此,我們只能得到*估計*
的特徵值 $\left(e^{\sqrt{-1}\times 2\times \pi \times \frac{i}{2^t}}\right)$,其機率為 $\left(\frac{1}{2^{2\times t}} \times \frac{\sin^2(\frac{2\times \pi \times (2^t \times \theta - i)}{2})}{\sin^2(\frac{2\times \pi \times (\theta - \frac{i}{2^t})}{2})}\right)$ 。

這就是說,如果超過一個 | / 與電不同,則在重複執行圖 6.1 中的相位估計電路時,測量後接收到不同估計相位(特徵值)的機率非零。

6.1.6 相位估計的性能和要求

人們估計 酉算符 U及其特徵向量 (|u>)的特徵值 ()的 $e^{\sqrt{-1}\times 2\times \pi \times \theta}$ 相位。 θ 由 6.1.4 分析,若相位值 to $\theta = \theta 0. y_t yt_{-1} \dots y_2 y_1 = (y_t yt_{-1} \dots y_2 y_1 / 2^t)$ 即對 第一個量子暫存器進行 t 位元二進位展開,那麼在圖 6.1 的電路中,最終測量的 結果是 |i>的機率為 100%。因為|i>是第一個量子暫存器的 t 位元二進位展開, 我們以 100%的機率得到相位的值 θ 等於($i/2t^{-1}$ 這是理想的情況。

另一方面,根據 6.1.5 小節的分析,如果相位 θ 的值不是第一量子暫存器的 t位元二進位展開,則最終測量的結果為 $|i\rangle$ 的機率為 $\left(\frac{1}{2^{2\times t}} \times \frac{\sin^2(\frac{2\times \pi \times (2^t \times \theta - i)}{2})}{\sin^2(\frac{2\times \pi \times (\theta - \frac{1}{2^t})}{2})}\right)$ 。 令 Y為 0 到 2^t 範圍內的整數 -1 使得 $(Y/2^t) = (y_t y_{t-1} \dots y_2 y_1/2^t) = (0, y_t)$

マ T 為 0 到 2' 範圍內的整數 -1 便侍 (<math>T/2') = ($y_t y_{t-1} \dots y_2 y_{1/2'}$) = ($0.y_t y_{t-1} \dots y_{2'} y_{1/2'}$) = ($0.y_t y_{t-$

$$\boldsymbol{P}(|\mathcal{R} - \mathcal{R}| > \varepsilon) \leq \frac{1}{2 \times (\varepsilon - 1)} \circ (6.12)$$

我們假設我們想要將相位值近似 θ 到精度 2^{-t},也就是說,我們選擇 $\varepsilon = 2^{t-n}$ -1. 透過在圖 6.1 的電路中使用 t = n + q 個量子位,我們從 (6.12) 中看出,獲 得正確於此精度的近似值的機率至少為

$$\boldsymbol{P}(|\mathcal{K} - \mathcal{E}| \leq \varepsilon) = 1 - \boldsymbol{P}(|\mathcal{K} - \mathcal{E}| > \varepsilon) = 1 - \frac{1}{2 \times (\varepsilon - 1)}$$

$$= 1 - \frac{1}{2 \times (2^{t-n} - 1 - 1)} = 1 - \frac{1}{2 \times (2^{t-n} - 2)} \circ \quad (6.13)$$

相位值 θ 精確到 t 位,成功機率至少為 $1-\alpha=1-\frac{1}{2\times(2^{t-n}-2)}$,我們選擇

$$t = n + \lceil \log_2(2 + (1 / (2 \times \alpha))) \rceil \circ (6.14)$$

因為 $\alpha = \frac{1}{2 \times (2^{t-n}-2)}$,我們得到 $\alpha \times (2 \times (2^{\frac{m}{n}}-2)) = 1$. 這就是說 $2^{t-n}-2 = (1/(2 \times \alpha))$ $\alpha \times (2 \times (2^{\frac{m}{n}}-2)) = 1$. 這就是說 $2^{t-n}-2 = (1/(2 \times \alpha))$ $\alpha \times (2 \times (2^{\frac{m}{n}}-2)) = \log_2(2 + (1/(2 \times \alpha)))$ 且 $t = n + \lceil \log_2(2 + (1/(2 \times \alpha))) \rceil$ 。這就是 (6.14)的結果。

6.1.7 相位估計複雜度評估

在圖 6.1 的電路中,*第一個*暫存器 ($\otimes_{k=t}^{1} | y_{k}^{0}$)) 的量子位元數量為 *t 個量子 位,第二個*暫存器 ($)\otimes_{j=1}^{n} | u_{j}^{0}$)的量子位元數量為 *n 個*量子位元。因此,相位估計的空間複雜度為 O(t+n)個量子位元。圖 6.1 電路的*第一*階段是實現 (*t+n*) 個 Hadamard 閘。

接下來,圖 6.1 電路中的*第二階段是在第二個暫存器(即狀態(*))的疊加上 |u)實現受控*U操作的應用*,其中*U*升到連續的 2 次方。 U1(λ)門為 U1(λ)=

 $UI \text{ (lambda)} = \begin{pmatrix} 1 & 0 \\ 0 & e^{\sqrt{-1} \times \lambda} \end{pmatrix}$ 因為 λ (lambda) 是實值。如果 的值 λ 等於 (2× $\pi \times \theta$

×2k⁻¹) 到 1≤k≤t ,則可以對 1 進行≤受控操作 $U^{2^{k-1}}$ k≤t 。這就是說,完成第 二階段的總成本是實施 t U1(λ) 門。

接下來,圖 6.1 電路中的第三階段是在第一個暫存器的疊加加實現量子傅立 葉逆變換。完成逆量子傅立葉變換的總成本是實現 $O(t^2)$ 個量子閘。最後讀出 量子傅立葉逆變換疊加在第一個暫存器上的輸出狀態,實現一次測量。因為根據 上面的陳述,完成相位估計的總成本是 $O(t^2 + n)$ 個量子閘,所以相位估計的 時間複雜度是 $O(t^2 + n)$ 個量子閘。

6.2 計算 a(2²×2²) 西矩陣 U 具有 (2²×1) 特徵向量|u> 相位估計

我們使用圖 6.2 的電路來計算 a (2²×2²) 酉矩陣

圖 6.2 :計算 a (2²×2²) 酉矩陣 U 具有 (2²×1) 特徵向量| 你>。

U與 (2²×1)特徵向量|*物*>。它使用兩個量子暫存器。在圖 6.2 的左上角,第一 個暫存器 ($\otimes_{k=4}^{1}|y_{k}^{0}$))包含*四個*原本處於狀態 |0> 的量子位元。量子位| y_{4}^{0} > 是最高有效位元。量子位| y_{1}^{0} > 是最低有效位元。第一個暫存器對應的十進位 值為 ($|y_{4}^{0} > \times 2^{4-1}$)+($|y_{3}^{0} > \times 2^{3-1}$)+($|y_{2}^{0} > \times 2^{2-1}$)+($|y_{1}^{0} > \times 2^{1-1}$)。在圖 6.2 的左下角,第二個暫存器 ($\otimes_{j=1}^{2}|u_{j}^{0}$))包含*兩個*原本處於狀態 |0> 的量子位 元。量子位| u_{1}^{0} > 是最高有效位元。量子位| u_{2}^{0} > 是最低有效位元。第二個暫 存器對應的十進位值為($|u_{1}^{0} > \times 2^{2-1}$)+($|u_{2}^{0} > \times 2^{2-2}$)。為了表達方便,下面的 初始狀態向量為

$$| \varphi_0 > = (\bigotimes_{k=4}^1 | y_k^0 \rangle) \otimes (\bigotimes_{j=1}^2 | u_j^0 \rangle) \circ (6.15)$$

6.2.1 初始化量子暫存器來計算 a (2²×2²) 西矩陣 U 具有 (2²×1)

特徵向量|u>相位估計

IBM 量子電腦中具有 32 個量子位元的 Open QASM 模擬器的後端。該程式 是計算 $a(2^2 \times 2^2)$ 酉矩陣 U具有 $(2^2 \times 1)$ 特徵向量|u|> 相位估計。圖 6.3 是 清單 6.1 程式對應的量子電路,是實現圖 6.2 的量子電路來計算 $a(2^2 \times 2^2)$ 酉 矩陣 U具有 $(2^2 \times 1)$ 特徵向量|u|> 相位估計。

- 1. 開放 QASM 2.0;
- 2. 包括"qelib1.inc";

- 3. qreg q[6];
- 4. 克雷格 c[4];

清單 6.1:計算 a(2²×2²) 酉矩陣 U 具有 (2²×1) 特徵向量| u> 相位估計。

聲明"OPENQASM 2.0;"清單 6.1 的第一行指出程式是用 Open QASM 2.0 版本編寫的。接下來,語句「 include _ qelib1.inc _; 」 清單 6.1 的第二行是繼續解析檔案「 q elib1.inc 」,就好像該檔案的內容被貼到 include 語句的位置, 其中檔案「 q elib1.inc 」是 Quantum Experience (QE)標準標頭,且路徑是相對於目前工作指定的 目錄。

圖 6.3: 實現圖 6.2 的量子電路來計算 $a(2^2 \times 2^2)$ 酉矩陣 U 具有 $(2^2 \times 1)$ 特徵 向量|u> 相位估計。

然後,語句「qreg q[6];清單 6.1 第三行是聲明程式中有六個*量子*位元。在圖 6.3 的左上角,六個量子位元依序為 q[0]、q[1]、q[2]、q[3]、q[4]和 q[5]。每個量 子位元的初始值被設定為狀態|0>。我們利用四個量子位元 q[0]、q[1]、q[2]和 q[3] 分別對四個量子位元|進行編碼。 y_{4} , $|y_{3}>$, $|y_{2}>$ 和 $|y_{1}>$ 在圖 6.2 中。我們 用兩個量子比特 q[4]和 q[5]分別編碼兩個量子位元 $|u_{1}>$ 和 $|u_{2}>$ 圖 6.2 中。 為了方便我們解釋,q[k]⁰代表 0≤ k ≤5 是表示 q[k]的值為 0,q[k]¹為 0≤ k ≤5 表示 q[k]的值 1。因為量子比特 $|y_{4}^{0}>$ 是最高有效位元和量子位元 $|y_{1}^{0}>$ 是最 低有效位,量子位 $|q[0]^{0}>$ 是最高有效位,量子位 $|q[3]^{0}>$ 是最低有效位。圖 6.3 中第一個暫存器對應的十進位值為 ($|q[0]^{0}> x2^{4-1}$) + ($|q[1]^{0}> x2^{3-1}$) + ($|q[2]^{0}> x2^{2-1}$) + ($|q[3]^{0}> x2^{1-1}$)。

接下來,語句"creg c[4];"清單 6.1 的第四行是聲明程序中有四個經典位。在圖 6.3 的左下角,四個經典位依序為 c[0]、c[1]、c[2]和 c[3]。每個經典位元的初始值設定為零 (0)。為了方便我們解釋,c[k]⁰代表 0 $\leq k \leq 3$ 是表示 c[k]的值 0, c[k]¹表示 0 $\leq k \leq 3$ 表示 c[k]的值 1。四個初始經典位元 c[3]⁰c[2]⁰c[1]⁰c[0]⁰^{對應}^{67+進位}值為 2³×c[3]⁰+2²×c[2]⁰+2¹×c[1]⁰+2⁰×c[0]⁰。這顯示經典位 c[3]⁰是最低有效位。為了方便我們解釋,我們可以重寫初

始狀態向量 |圖 6.2 中 (6.15) 中的 $\varphi_0 > = (\otimes_{k=4}^1 | y_k^0)) \otimes (\otimes_{i=1}^2 | u_i^0))$ 如下

 $|\varphi_{0}\rangle = |q[0]^{0}\rangle |q[1]^{0}\rangle |q[2]^{0}\rangle |q[3]^{0}\rangle |q[4]^{0}\rangle |q[5]^{0}\rangle \circ (6.16)$

6.2.2 疊加量子暫存器來計算 a (2²×2²) 酉矩陣 U 具有 (2²×1) 特

徵向量|u>相位估計

電路的第一級是實現 一個 在*第一個*暫存器 () $\otimes_{k=4}^{1}|y_{k}^{0}\rangle$ 上使用四個 Hadamrad 閘進行 Hadamard 變換,在*第二個*暫存器 () $\otimes_{j=1}^{2}|u_{j}^{0}\rangle$ 上使用兩個 Hadamrad 閘進行另一個 Hadamard 轉換。六個語句"hq [0];"、"hq[1];"、"hq[2];"、 "hq[3];"、"hq[4];"和"總部[5];"清單 6.1 的第五行*到清單 6.1 的第十行是*在第一 個暫存器和第二個暫存器上實作*六個 Hadamrad 閘*。他們在圖 6.3 的第一個時 隙中完成每個 Hadamrad 閘,並執行圖 6.2 電路的第一階段。

清	單 6.1 繼續
//存	王兩個暫存器上實作哈達瑪變換。
5.	總部[0];
6.	總部[1];
7.	總部[2];
8.	總部[3];
9.	總部[4];
10	. 總部[5];

第一個暫存器的疊加是 $\left(\frac{1}{\sqrt{2^4}}\left(\bigotimes_{k=4}^{1}(|y_k^0\rangle + |y_k^1\rangle)\right)\right) =$ $\left(\frac{1}{\sqrt{2^4}}\left(\bigotimes_{a=0}^{3}(|q[a]^0\rangle + |q[a]^1\rangle)\right)\right)$ 。第二個暫存器的疊加是 $(|u\rangle =$ $\frac{1}{\sqrt{2^2}}\left(\bigotimes_{j=1}^{2}(|u_j^0\rangle + |u_j^1\rangle)\right) = \frac{1}{\sqrt{2^2}}\left(\bigotimes_{b=4}^{5}(|q[b]^0\rangle + |q[b]^1\rangle)\right)$)。這就是說,第二個 暫存器的疊加從新的狀態向量開始 $(|u\rangle = \frac{1}{\sqrt{2^2}}\left(\bigotimes_{j=1}^{2}(|u_j^0\rangle + |u_j^1\rangle)\right) =$ $\frac{1}{\sqrt{2^2}}\left(\bigotimes_{b=4}^{5}(|q[b]^0\rangle + |q[b]^1\rangle)\right)$)並包含儲存 ()所需的 $|u\rangle$ 兩個量子位元。新的狀態向量 ()是 $|u\rangle$ U的本徵態(特徵向量)。因此,這給出了以下新的狀態向量

$$| \varphi_{l} \rangle = \left(\frac{1}{\sqrt{2^{4}}} \left(\bigotimes_{k=4}^{1} \left(|y_{k}^{0}\rangle + |y_{k}^{1}\rangle \right) \right) \otimes \left(\frac{1}{\sqrt{2^{2}}} \left(\bigotimes_{j=1}^{2} \left(|u_{j}^{0}\rangle + |u_{j}^{1}\rangle \right) \right) \right) \right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}} \left(\bigotimes_{k=4}^{1} \left(|y_{k}^{0}\rangle + |y_{k}^{1}\rangle \right) \right) \otimes \left(|u\rangle \right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}} \left(\bigotimes_{a=0}^{3} \left(|q[a]^{0}\rangle + |q[a]^{1}\rangle \right) \right) \right) \otimes \left(\frac{1}{\sqrt{2^{2}}} \left(\bigotimes_{b=4}^{5} \left(|q[b]^{0}\rangle + |q[b]^{1}\rangle \right) \right) \right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}} \left(\bigotimes_{a=0}^{3} \left(|q[a]^{0}\rangle + |q[a]^{1}\rangle \right) \right) \right) \otimes \left(|u\rangle \right) \circ (6.17)$$

6.2.3 對第二個暫存器進行疊加的受控 U 運算以確定 a (2² × 2²) 酉

矩陣 U 具有 (2²×1) 特徵向量|u > 相位估計

在新的狀態向量| φ_1 > 在 (6.17) 中,第一個暫存器中的每個量子位元目前處 於 其 疊 加 狀 態。 第一 個 暫 存 器 的 值 從 由 狀 態 ($\bigotimes_{k=4}^1 | y_k^0$))編碼 的 狀 態 ()(零) $\bigotimes_{a=0}^3 | q[a]^0$)到由狀態()編碼的狀態($\bigotimes_{k=4}^1 | y_k^1$)) (十五 $\bigotimes_{a=0}^3 | q[a]^1$))。圖 6.2 的電路可以精確地估計十六個相位。這就是說,第一個具有四個量子位元的暫存 器可以精確地表示十六個相位。十六個階段依序為 (0/2⁴)、(1/2⁴)、(2/2⁴)、 (3/2⁴)、(4/2⁴)、(5/2⁴)、(6/2⁴)、(7/2⁴)、(8/2⁴)、(9/2⁴)、(10/2⁴)、(11/2⁴)、 (3/2⁴)、(12/2⁴)、(5/2⁴)、(6/2⁴)、(7/2⁴)、(8/2⁴)、(9/2⁴)、(10/2⁴)、(11/2⁴)、 (12/2⁴)、(13/2⁴)、(14/2⁴) 和 (15/2⁴)。對應的十六個相位角依序為 (2× π×0/2⁴), (2× π×1/2⁴), (2× π×2/2⁴), (2× π×3/2⁴), (2× π×4/2⁴), (2× π ×5/2⁴), (2× π×6/2⁴), (2× π×7/2⁴), (2× π×8/2⁴), (2× π×9/2⁴), (2× π×10/2⁴), (2× π×11/2⁴), (2× π×12/2⁴), (2× π×13/2⁴), (2× π×14/2⁴) 和 (2× π×15/2⁴)。

假設我們正在嘗試確定特徵值 90°。這就是說, 西算子 U 的一次應用對其特徵向量(特徵態)(|u))的影響是($U \times | d \rangle = e^{\sqrt{-1} \times 2 \times \pi \times \theta} \times | d \rangle = e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^4}} \times | d \rangle$)。因此, 重複應用酉算符 U 對其特徵向量 (eigenstate)(|u))的影響為

$$\texttt{M} = e^{\sqrt{-1} \times 2 \times \pi \times \theta \times a} |\texttt{M} = e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^4} \times a} \times |\texttt{M} > \circ \quad (6.18)$$

 $(|q[3]^{0} > + |q[3]^{1} >))$ 在加權位置 2⁰編碼的疊加<u>1</u>($\frac{1}{\sqrt{2}}(|y_{1}^{0} > + |y_{1}^{1} >))$ 是受

控量子在第二個暫存器的疊加上|u)實現受控操作的位,即狀態(U^{2^0})。類似地, 在加權位置 $2^{1 \overset{\text{R}}{\text{K}}}(|q[2]^{0}+|q[2]^{1}>)$) 編碼的疊加 ($\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}|y_2^{0}+|y_2^{1}>)$)是在 第二個暫存器的疊加上實現受控操作的受控量子位, U^{2^1} 即狀態 ($|u\rangle$)。接下來, $\frac{1}{\sqrt{2}}$ 在加權位置 $2^{2 \overset{\text{R}}{\text{R}}}(|q[1]^{0}+|q[1]^{1>})$) 編碼的疊加($\frac{1}{\sqrt{2}}(|y_3^{0}+|y_3^{1>})$ 是在 第二個暫存器的疊加上實現受控操作的受控量子位, U^{2^2} 即狀態 ($|u\rangle$)。接下來, $\frac{1}{\sqrt{2}}$ 在加權位置 $2^{3 \overset{\text{R}}{\text{K}}}(|q[0]^{0}+|q[0]^{1>})$)編碼的疊加($\frac{1}{\sqrt{2}}(|y_4^{0}+|y_4^{1>})$ 是在 第二個暫存器的疊加上實現受控操作的受控量子位, U^{2^3} 即狀態 ($|u\rangle$)。

第 11 行到*第 14 行的四個*語句是「u1(2*pi*4/16*1) q[3];」、「u1(2*pi*4/16*2) q[2];", "u1(2*pi*4/16*4) q[1];"和"u1(2*pi*4/16*8) q[0];"。他們將(6.17)中的新 狀態向量(| φ_1 >)作為輸入

清單 6.1 繼續...

//對第二個暫存器的疊加實作受控U操作。

11. u1(2*pi*4/16*1) q[3]; 12. u1(2*pi*4/16*2) q[2]; 13. u1(2*pi*4/16*4) q[1]; 14. u1(2*pi*4/16*8) q[0];

狀態向量,並在圖 6.3 的*第二時隙和*圖 6.2 的*第二階段中的*第二個暫存器的疊 加上實現每個受控*U操作*。他們警戒狀態的階段| $y_1^1 > (|q[3]^1 >)$ 從一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^0}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1}$) 。他們警戒狀態的階段| $y_2^1 > (|q[2]^1 >)$ 從 一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^1}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2}$) 。他們警戒狀態的階段| $y_3^1 >$ ($|q[1]^1 >$) 從一 (1) 變為 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^2}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4}$)並警戒狀態 | 的 階段 $y_4^1 > (|q[0]^1 >)$ 從一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^3}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8}$) 。這給 了以下新的狀態向量是

$$|\varphi_{2}\rangle = \left(\frac{1}{\sqrt{2^{4}}}(|y_{4}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi \times \frac{4}{16}\times 2^{3}}|y_{4}^{1}\rangle)\otimes (|y_{3}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi \times \frac{4}{16}\times 2^{2}}|y_{3}^{1}\rangle)\otimes (|y_{4}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi \times \frac{4}{16}\times 2^{2}}|y_{4}^{1}\rangle)\otimes (|y_{4}^{0}\rangle + e^{\sqrt{-1}\times 2\times \pi \times \frac{$$

$$(|y_{2}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{1}} |y_{2}^{1}\rangle) \otimes (|y_{1}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{0}} |y_{1}^{1}\rangle)) \otimes (|u\rangle)$$

$$= (\frac{1}{\sqrt{2^{4}}} (|y_{4}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8} |y_{4}^{1}\rangle) \otimes (|y_{3}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4} |y_{3}^{1}\rangle) \otimes (|y_{2}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2} |y_{2}^{1}\rangle) \otimes (|y_{1}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1} |y_{1}^{1}\rangle)) \otimes (|u\rangle)$$

$$= (\frac{1}{\sqrt{2^{4}}} (|q[0]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8} |q[0]^{1}\rangle) \otimes (|q[1]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4} |q[1]^{1}\rangle) \otimes (|q[2]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2} |q[2]^{1}\rangle) \otimes (|q[3]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1} |q[3]^{1}\rangle)) \otimes (|u\rangle)$$

$$= \left(\frac{1}{\sqrt{2^4}} \left(\sum_{Y=0}^{2^4-1} e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times Y} | Y \right) \right) \otimes (|u\rangle) \quad \circ \quad (6.19)$$

上面的描述,第二量子暫存器在計算過程中保持在狀態(|u>)。由於相位*反衝*, 相位狀態| $Y>0 \le \mathcal{E} \le 2^{4} - 1$ 是從一(1)變成($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times Y}$)。在(6.19)中的狀態 向量($|\varphi_{2}>$)中,它包含從狀態|0>到狀態|15>的十六個相位角。前八個相位角為(90° ×0 = 0°), (90° ×1 = 90°), (90° ×2 = 180°), (90° ×3 = 270°), (90° ×4 = 360°= 0°), (90° ×5 = 450°= 90°), (90° ×6 = 540°= 180°)和 (90° ×7 = 630°= 270°)。最後八 個相位角是 (90° ×8 = 720°= 0°), (90° ×9 = 810°= 90°), (90° ×10 = 900°= 180°), (90° ×11 = 990°= 270°), (90° ×12 = 1080°= 0°), (90° ×13 = 1170°= 90°), (90° ×14 = 1260°= 180°)和 (90° ×15 = 1350°= 270°)。相位角旋轉回其起始值 0° 四次。

6.2.4 第一個暫存器疊加的量子傅立葉逆變換計算 a (2²×2²) 酉矩

陣U具有 (2²×1) 特徴向量|u > 相位估計

狀態向量(| ∞ >)中儲存的隱藏模式和資訊是其相位角旋轉回其起始值 0° 四 次。這意味著每十六個相位角的週期數為四,頻率等於四 (16/4).清單 6.1 中*第* 15 行到*第 26 行*的 12 個語句

清單 6.1 繼續...

//在第一個暫存器的疊加上實作一個逆量子傅立葉變換。

15. 總部[0];
 16. cu1(-2*pi*1/4) q[1],q[0];
 17. cu1(-2*pi*1/8) q[2],q[0];
 18. cu1(-2*pi*1/16) q[3],q[0];
 19. 總部[1];
 20. cu1(-2*pi*1/4) q[2],q[1];
 21. cu1(-2*pi*1/8) q[3],q[1];
 22. 總部[2];
 23. cu1(-2*pi*1/4) q[3],q[2];
 24. 總部[3];
 25. 交換 q[0],q[3];
 26. 交換 q[1],q[2];

第三個時隙到第十四個時隙的每個量子操作。他們實際上實現了在圖 6.2 中第 一個暫存器的疊加上完成**逆量子傅立葉變換**的每個量子操作。他們將(6.19)中 的狀態向量(|\phi_2>)作為輸入狀態向量。由於**逆量子傅立葉變換有效地將第一** 個暫存器的狀態轉換為週期訊號成分頻率的疊加,因此它們產生以下狀態向量

$$|\varphi_{3}\rangle = \left(\sum_{Y=0}^{2^{4}-1} \frac{1}{\sqrt{2^{4}}} e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^{4}} \times Y} \frac{1}{\sqrt{2^{4}}} \sum_{i=0}^{2^{4}-1} e^{-\sqrt{-1} \times 2 \times \pi \times \frac{i}{2^{4}} \times Y} |i\rangle\right) \quad \otimes (|u\rangle)$$

$$= \left(\frac{1}{2^4} \left(\sum_{Y=0}^{2^4-1} \sum_{i=0}^{2^4-1} e^{\sqrt{-1} \times 2 \times \pi \times Y \times \left(\frac{4}{2^4} - \frac{1}{2^4}\right)} |i\rangle \right) \otimes (|u\rangle)$$

$$= \left(\sum_{i=0}^{2^{4}-1} \sum_{Y=0}^{2^{4}-1} \frac{1}{2^{4}} \left(e^{\sqrt{-1} \times 2 \times \pi \times \left(\frac{4}{2^{4}} - \frac{i}{2^{4}}\right)} \right)^{Y} |i\rangle \right) \otimes (|u\rangle) \quad \circ \quad (6.20)$$

6.2.5 讀取量子結果以計算出 a (2²×2²) 酉矩陣 U 具有 (2²×1) 特

徵向量| *u* > 相位估計

最後,四個語句"measure q[0] -> c[3];"、"measure q[1] -> c[2];"、"measure q[2] -> c[1];"和"測量 q[3] -> c[0];"清單 6.1 中的*第 27* 行到*第 30 行*實現了測量。 他們測量逆量子傅立葉變換的輸出狀態到圖 6.3 和圖 6.2 中第一個暫存器的疊 加。也就是說,它們測量第一個暫存器的四個量子位元 q[0]、q[1]、q[2] 和 q[3], 並透過覆蓋四個經典位元 c[3]、c[來記錄測量結果。

清單 6.1 繼續	
//完成第一個暫存器的測量。	
 27. 測量 q[0] -> c[3]; 28. 測量 q[1] -> c[2]; 29. 測量 q[2] -> c[1]; 30 測量 q[3] -> c[0]; 	

IBM 量子電腦的 32 個量子位元的後端*模擬器中*,我們使用「run」指令來執 行清單 6.1 中的程式。測量結果如圖 6.4 所示。從圖 6.4 中,我們得到計算基礎 狀態 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> 和 c[0] = 0 = q[3] = |0>) 的機率為 100%。這就是說 的值*θ*等於(4/16)。因此,我們得到 a ($2^2 \times 2^2$) 酉矩陣 *U* 具有 ($2^2 \times 1$) 特徵向量|*u*> 等於 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^4}}$) 的機率為 100%。

圖 6.4:計算基礎狀態 0100 的機率為 100%。

相位估計實際應用中任意 n 位輸入的決策問題的量子計數

決策問題是在任何n位輸入上只有兩個可能的輸出(是或否)的問題。決策問題中的輸出「是」是解決方案的數量不為零,決策問題中的另一個輸出「否」是解決方案的數量為零。解決任意n位輸入的決策問題相當於解決一個有趣的問題任何n位輸入都來自未排序的資料庫,包括2"項目,每個項目有n位 有多少項滿足任何給定條件以及 我們想找出解的數量。如果解決方案的數量不等於零,則決策問題的輸出為"是"任意n位輸入。否則,決策問題的輸出為"否"任意n位輸入。

任意*n*位輸入的決策問題的常見表述如下。對於任何給定的神諭函數 O_f : { $u_1u_2...$ *聯合國*_{1 #6@}-| $\forall f_{0j} \in \{0, 1\}$ 為 $1 \le j \le n$ } $\rightarrow \{0, 1\}$,其定義域為 { u_1u_2 ... *聯合國*_{1 #6@}-| $\forall f_{0j} \in \{0, 1\}$ 為 $1 \le j \le n$ } ,其範圍為 $\{0, 1\}$ 。任意*n位輸入的*決策問題是詢問其域中有多少元素滿足條件 $O_f(u_1u_2...u_{n-1}u_n) = 1$ 。 ... $u_{n-1}u_n$) 具有真值 (1) 不等於 0,則對於任意*n*位輸入的決策問題,輸出為「是」。否則,對於任意*n位輸入*的決策問題,輸出為「否」 。

6.3.1 表示決策域的二元搜尋樹 n 位任意輸入的問題

一個 *樹*是一個或多個節點的有限集合,其中有一個專門指定的節點稱為根, 其餘節點被分割為 $v \ge 0$ 個不相交的集合 T_1, \ldots, T_v ,其中每個集合都是一棵樹。 T_1, \ldots, T_v 稱為根的子樹。一個 二進位 *樹*是有限的節點集,它要麼為空,要 麼包含一個根和兩個不相交的二元樹,稱為*左*子樹和*右子*樹。

對於任何給定的神諭函數 O_f : { $u_1u_2...$ 聯合國_{1 聯合國} | $\forall \ m_j \in \{0, 1\}$ 為 1 $\leq j \leq n$ } $\rightarrow \{0, 1\}$,其定義域為{ $u_1u_2...$ 聯合國_{1 聯合國} | $\forall \ m_j \in \{0, 1\}$ 為 1 $\leq j \leq n$ } ,其範圍為{0, 1} 。任意 $n \ cmmmode m h h h h$ 的決策問題是詢問其域中有多少元素滿 足條件 $O_f(u_1u_2...u_{n-1}u_n)$ 具有真值 (1)。我們使用圖 6.5 的二元樹來表示域 的結構{ $u_1u_2...$ 聯合國_{1 聯合國} | $\forall \ m_j \in \{0, 1\}$ 為 $1 \leq j \leq n$ } 。在圖 6.5 的二元 樹中,一個節點代表{ u_1u_2 中的一個元素的一位 ... 聯合國_{1 聯合國} | $\forall \ m_j \in \{0, 1\}$ 為 $1 \leq j \leq n$ } 。圖 6.5 中二元樹的根是 u_1 。每個節點 左分支的值代表對應位 的值等於零 (0),每個節點 右邊分支的值代表對應位的值等於一 (1) 。由於每 個節點的左分支的值都小於每個節點的右分支的值,因此我們將其視為圖 6.5 中 二元樹 作為二元搜尋樹。

圖 6.5: 一種二元搜尋樹,用來表示任意 n 位輸入的決策問題的域。

圖 6.5 二元搜尋樹 包括 2ⁿ個子樹,每個子樹編碼{ $u_1 u_2 ...$ *聯合國*_{1 *聯合國*¹} → *你*_{*j*} ∈ {0,1} 為 1≤*j*≤*n*} 。例如,第一個子樹(u_1)--⁰--(u_2)--⁰--...(u_{n-1})--⁰--(u_n)--⁰--編碼第一個元素{ $u_1^0 2_0 ... u_{n-1}^0 u_n^0$ } 。第二個子樹(u_1)--⁰--(u_2)--⁰--...(u_{n-1})--⁰--(u_n)--¹--編碼第二個元素{ $u_1^0 u_2^0 ... u_{n-1}^0 u_n^1$ }。最後一個子樹(u_1)--¹--(u_2)--¹--...(u_{n-1})--¹--(u_n)--¹--編碼最後一個元素{ $u_1^1 u_2^1 ... u_{n-1}^1 u_n^1$ }。

6.3.2 決策求解流程圖 n 位任意輸入的問題

圖 6.6 是解決任意 n 位輸入的決策問題的流程圖。在執行第一條語句 S_{1 時·它會 ^{設定} $u_1 u_2$ 的初始值 ... $u_{n-1} u_n$ 為零(0)。接下來,在執行*第二條*語句 S_{2 時</sub>,判斷是 否 $O_f(u_1 u_2 ... u_{n-1} u_n)$ 是否具有真值 (1)。如果它傳回真值,則在執行*第三條* 語句 S_{3 時</sub>,它會產生輸出「yes」。接下來,在執行*第四條*語句 S_{4 時·它執行一個「End」指令 ***/##決任意 n 位輸入的決策問題的處理。否則,在執行*第五條*語句 S_{5 時·它會增加 $u_1 u_2$ 的值 ... $u_{n-1} u_n$.接下來,執行*第六條*語句 S_{6 時</sub>,判斷 $u_1 u_{2}$ 的進是否為 ... $u_{n-1} u_n$ 是 否大於 2^n 如果它傳回真值,則在執行*第七條*語句 S_{7 時,它會產生輸出「否」。 接下來,在執行*第八條*語句 S_{8 時·它執行一個「End」指令來終止解決任意 n 位輸入的決策問題的處 理。否則,請轉到語句 S_2 並繼續執行語句 S_2 。

圖 6.6 : 解決任意 n 位輸入的決策問題的邏輯流程圖。

6.3.3 解決決策的幾何解釋 n 位任意輸入的問題

圖 6.5 編碼中的二元搜尋樹 { $m_1 m_2 ...$ *聯合國*_{1 ண∂ண}- | ∀ $m_j \in \{0, 1\}$ 為 1≤ $j \le n$ } *這是任意 n 位*輸入的決策問題的域。我們假設初始狀態向量($|\phi_0\rangle$)為 ($\otimes_{j=1}^n | u_j^0 \rangle$)。我們開始利用 一個 對初始狀態向量($|\phi_0\rangle$)即暫存器($\otimes_{j=1}^n | u_j^0 \rangle$) 進行 Hadamard 變換($\otimes_{j=1}^n H$)。寄存器的疊加是

$$\left|\phi_{1}\right\rangle = \frac{1}{\sqrt{2^{n}}} \left(\otimes_{j=1}^{n} \left(\left|u_{j}^{0}\right\rangle + \left|u_{j}^{1}\right\rangle\right)\right). \quad (6.21)$$

新的狀態向量 $\mathbf{r} \left(\left| \boldsymbol{\phi}_1 \right\rangle \right)$ 對圖 6.5 中的每個子樹進行編碼,每個子樹的幅度為 $\left(\frac{1}{\sqrt{2^n}} \right)$ 。這就是說,它將域的每個元素編碼為任意 n 位輸入的決策問題。

在 (6.21) 中的狀態向量() $|\phi_1\rangle$ 中,滿足 $O_f(u_1u_2...u_{n-1}u_n)$ 具有真值 (1) 稱為*標記*狀態,而不會產生解的狀態稱為*未標記*狀態。 我們假設 N 等於 2ⁿ。 我們也假設在(6.21)中的狀態向量($|\phi_1\rangle$)中, S 代表解的數量且(N-) 代表任意 $n \hat{U}$ 輸入的決策問題的非解數。我們建構兩個由均勻分佈的計算基礎狀態組成的 疊加

$$|\varphi\rangle = \frac{1}{\sqrt{N-S}} (\sum_{o_f(u_1 \, u_2 \cdots \, u_n)=0} |u_1 \, u_2 \, \cdots \, u_n\rangle), (6.22)$$
$$|\lambda\rangle = \frac{1}{\sqrt{S}} (\sum_{o_f(u_1 \, u_2 \cdots \, u_n)=1} |u_1 \, u_2 \, \cdots \, u_n\rangle) \circ (6.23)$$

和 $|\lambda\rangle$ 的內積 $|\varphi\rangle$ 等於 0, 且 $|\varphi\rangle$ 和的長度 $|\lambda\rangle$ 等於 1, $|\varphi\rangle$ 因此 和構成如圖 $|\lambda\rangle$ 6.7 所 示的二維希爾伯特空間的正交基底。圖 6.7 中, D 點是二維希爾伯特空間的原 點,座標為(0,0)。

狀態向量 6.21 中的($|\phi_1\rangle$)可以表示為圖 6.7 的二維希爾伯特空間中($|\varphi\rangle$) 和($|\lambda\rangle$)的線性組合,如下所示

$$\left| \phi_{1} \right\rangle = \frac{1}{\sqrt{N}} \left(\sum_{O_{f} \left(u_{1} u_{2} \cdots u_{n} \right) = 0} \left| u_{1} u_{2} \cdots u_{n} \right\rangle + \sum_{O_{f} \left(u_{1} u_{2} \cdots u_{n} \right) = 1} \left| u_{1} u_{2} \cdots u_{n} \right\rangle \right)$$

$$= \left(\frac{\sqrt{N-S}}{\sqrt{N}} \left| \varphi \right\rangle + \frac{\sqrt{S}}{\sqrt{N}} \left| \lambda \right\rangle)$$

$$(6.24)$$

由 (6.24) 可知() 在圖 $|\phi_1\rangle$ 6.7 的二維希爾伯特空間中的座標為($\frac{\sqrt{N-S}}{\sqrt{N}}, \frac{\sqrt{S}}{\sqrt{N}}$) 並 且與($|\phi_1\rangle$)和() $|\phi\rangle$ 之間的角度(用()表示)嚴格 $\frac{\theta}{2}$ 相關,如圖 6.7 所示。B點是($|\phi_1\rangle$)的座標點。

圖 6.7:使用由($|\varphi\rangle$) 和($|\lambda\rangle$)跨越的二維希爾伯特空間中的任何 n 位輸入解決決策問題的幾何解釋。

在第三章介紹的量子搜尋演算法中,Oracle O 將答案的機率幅度乘以-1,並 保持任何其他幅度不變。我們使用 Oracle O 對 (6.21)中的狀態向量 ()進行運 算 $|\phi_1\rangle$,得到新的狀態向量 $|\phi_2\rangle = O(|\phi_1\rangle)$,可以表示為圖 2 的二維希爾伯特 空間中($|\varphi\rangle$)和($|\lambda\rangle$)的線性組合 6.7 如下

$$|\phi_2\rangle = \left(\frac{\sqrt{N-S}}{\sqrt{N}}|\varphi\rangle + \left(-\frac{\sqrt{S}}{\sqrt{N}}|\lambda\rangle\right)\right)$$

(6.25)

由(6.25)可知,() 在圖 $|\phi_2\rangle$ 6.7的二維希爾伯特空間中的座標為($\frac{\sqrt{N-S}}{\sqrt{N}}, -\frac{\sqrt{S}}{\sqrt{N}}$), 如圖 6.7 所示。 C 點是($|\phi_2\rangle$)的座標點。($|\phi_2\rangle$)和($|\varphi\rangle$)之間的角度為 實際 上等於圖 6.7 所示的($\frac{\theta}{2}$)。 Oracle O 相當於 $|\varphi\rangle$ 圖 6.7 的二維幾何解釋中關於軸 的反射。因為圖 6.7 中 Z 點是直線的交點 \overline{BC} 和軸 $|\varphi\rangle$ 當它們互相垂直時,我們 得到它的座標為($\frac{\sqrt{N-S}}{\sqrt{N}}$, 0)。

在第三章介紹的量子搜尋演算法中,酉算符 U 是關於平均值的逆。 Grover 運算子 G *由索引暫存器上的兩個變換組成*,即 U 和 O。我們應用酉算符 U 對式 (6.25) 中的狀態向量 ($|\phi_2\rangle$) 來運算,得到新的狀態向量 $|\phi_3\rangle = U(|\phi_2\rangle) =$ $(U)(O)(|\phi_1\rangle) = G(|\phi_1\rangle)$ 。新的狀態向量 ($|\phi_3\rangle$) 可以表示為圖 6.7 的二維 希爾伯特空間中($|\phi\rangle$) 和($|\lambda\rangle$)的線性組合,如下所示

$$\left|\phi_{3}\right\rangle = \left(\begin{array}{cc} \sqrt{N-S} \\ \sqrt{N} \end{array} \times \left(\begin{array}{c} \frac{N-4\times S}{N} \end{array}\right) \quad \left|\varphi\right\rangle \quad + \quad \frac{\sqrt{S}}{\sqrt{N}} \quad \times \left(\begin{array}{c} \frac{3\times N-4\times S}{N} \end{array}\right) \quad \left|\lambda\right\rangle \right) \quad \circ$$

(6.26)

由 (6.26)可知() 在圖 $|\phi_3\rangle$ 6.7 的二維希爾伯特空間中的座標為 $(\frac{\sqrt{N-S}}{\sqrt{N}} \times (\frac{N-4\times S}{N}),$ $\frac{\sqrt{S}}{\sqrt{N}} \times (\frac{3\times N-4\times S}{N})$)並如圖 6.7 所示。 E點是($|\phi_3\rangle$)的座標點。 ($|\phi_3\rangle$)和($|\phi_1\rangle$) 之間的角其實等於(θ)如圖 6.7 所示。圖 6.7 中的酉算符 U (關於平均值的反 轉)反映了其輸入狀態($|\phi_2\rangle$)圖 6.7 的二維幾何解釋中的($|\phi_1\rangle$)到() $|\phi_3\rangle$ 。 在圖 6.7 中,點 F *是*直線的交點 \overline{EC} 和線 \overline{DB} 其中它們彼此垂直,點 H *是*直線 的交點 \overline{EH} 和軸 $|\phi\rangle$ 其中它們彼此垂直。

6.3.4 確定幾何解釋中 Grover 算子的矩陣來解決策 n 位任意輸入

的問題

由圖 6.7 中 , *B* 點為 $\left(\frac{\sqrt{N-S}}{\sqrt{N}}, \frac{\sqrt{S}}{\sqrt{N}}\right)$, *D* 點為 (0, 0) , *Z* 點為 $\left(\frac{\sqrt{N-S}}{\sqrt{N}}, 0\right)$ 。線 段長度 \overline{DB} 為(1),線段長度 \overline{DZ} 為($\sqrt{\frac{N-S}{N}}$),線段長度 \overline{BZ} 為 $\left(\sqrt{\frac{S}{N}}\right)$ 。因此 ,我們得 到 $\sin(\theta/2) = \left(\sqrt{\frac{S}{N}}/1\right) = \left(\sqrt{\frac{S}{N}}\right)$ 和 $\cos(\theta/2) = \left(\sqrt{\frac{N-S}{N}}/1\right) = \left(\sqrt{\frac{N-S}{N}}\right)$ 。因為圖 6.7

中($|\phi_1\rangle$)的座標是($\frac{\sqrt{N-S}}{\sqrt{N}}, \frac{\sqrt{S}}{\sqrt{N}}$),它的座標也等於($\cos(\theta/2), 罪惡(\theta/2))$ 在($|\varphi\rangle$) 和($|\lambda$))的基礎上。從圖 6.7 中, sin(θ + (θ /2)) = ($\frac{\sqrt{s}}{\sqrt{N}} \times (\frac{3 \times N - 4 \times S}{N})$)和 cos(θ + (θ / 2)) = $\left(\frac{\sqrt{N-S}}{\sqrt{N}} \times (\frac{N-4\times S}{N})\right)$ 得到。由於座標為 $\left|\phi_3\right\rangle$ 圖 6.7 中是 $\left(\frac{\sqrt{N-S}}{\sqrt{N}} \times (\frac{N-4\times S}{N}), \frac{\sqrt{S}}{\sqrt{N}}\right)$ ×($\frac{3\times N-4\times S}{N}$)),其座標也等於 (cos(θ + (θ /2)), 罪(θ + (θ /2))) $\dot{E}(|\varphi\rangle$)和(| λ))的 基礎上。由圖 6.7 可知,在($|\varphi\rangle$)和($|\lambda\rangle$)的基礎上 Grover 算子 G 的矩陣為

$$G = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}_{2 \times 2} \circ (6.27)$$

基於(
$$|\varphi\rangle$$
)和($|\lambda\rangle$)的 Grover 算子 *G* 的矩陣是酉矩陣(酉算符),因為
($\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}_{2\times 2} \times \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}_{2\times 2} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}_{2\times 2} \times \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}_{2\times 2} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}_{2\times 2}$)。 Grover 算子 *G* 在($|\varphi\rangle$)和($|\lambda\rangle$)的基礎上的特徵值是

小村餌阻刀

$$(e^{\sqrt{-1} \times \theta})$$
 和 $(e^{-\sqrt{-1} \times \theta})$ •

(6.28)

的價值 θ 是真實的。 Grover 算子 $G \dot{a}(|\varphi)$)和($|\lambda$))的基礎上對應的特徵向量為

的價值/是真實的。

6.3.5 用於解決決策的量子計數電路 n 位任意輸入的問題

從圖 6.7 我們可以算出在軸上的投影 $|\phi_1\rangle | \phi \rangle$ 即罪($\theta' 2$) = $(\sqrt{\frac{S}{N}}/1) = (\sqrt{\frac{S}{N}})$ 。 S 的值是解的數量,即域 { $u_1u_{2 \mapsto 0 fr, g \\ mage g \\ mag g \\$

圖 6.8 是量子計數電路,它是相位估計的實際應用。在圖 6.8 中,如果從受 控 Grover 操作產生特徵值

圖 6.8 :量子計數 用於計算輸入為 n 位的決策問題的解數的電路。

是 ($e^{\sqrt{-1}\times\theta}$),那麼我們使用受控 Grover 運算,然後進行**逆量子傅立葉變換來 找到** *t* 位與 的值的 θ 最佳近似值。否則,我們使用受控 Grover 運算,然後進行 **量子傅立葉變換**來找到 *t* 位與 值的 θ 最佳近似值。在圖 6.8 中,第二個暫存器的 疊加就是狀態向量|h>。狀態向量| $u > \mathcal{E}(6.22)$ 中的($|\varphi$))和| λ)(6.23) 中的 () 的疊加。因為 $|V_1\rangle$ (6.29) 中的和形成由 $|V_2\rangle$ (6.22) 中的($|\varphi\rangle$)和 (6.23) 中的 () $|\lambda\rangle$ 跨越的空間的正交基,所以狀態向量 |圖 6.8 中的 $u > \overline{GU}$ 表示為(6.2 9)中和 $|V_2\rangle$ 的線性組合。 $|V_1\rangle$

6.4 相位估計中確定二頂點一邊圖獨立集問題的解數

我們假設圖 G 具有一組 V 的頂點和一組 E 的邊。我們也假設 V 是 { v₁, ..., v_n } 其中每個元素 v_j為 1≤j≤n 是圖 G 中的頂點。我們假設 E 是 {(v_a, v_b)] $\overline{A} \in V$ 和 Vb $\in V$ }。我們用 G = (V, E)來表示。我們假設 | V| 是 V 和 | 中的頂點數 電子是 E 中的邊數。我們也假設 | V|等於 n 且 | 電子等於 m 。 m 的值至多等 於 ((n×(n-1))/2)。對於圖 G = (V, E),其補圖為 \overline{G} = (V, \overline{E}) 其中每條邊 \overline{E} 是 在 E 之 A。這就是說 \overline{E} 是 {(v_c, v_d)] 電壓 $\in V$ 和 V_d $\in V$ 和 (v_c, v_d) $\notin E$ }。我們 假設 | \overline{E} | 是 中的邊數 \overline{E} 。中的邊數 \overline{E} 為(((n×(n-1))/2)- \mathscr{K})。具有 n 個 頂點和 m 個 邊的圖 G 的 獨立 集合 是子集 V¹ \subseteq 頂點 V 使得對 may v c, v_d $\in V^1$,邊(vc, vd),不在 E 中。具有 n 個 頂點和 m 個 邊的圖 G 的 獨立 集問題是找到 G 中最大尺 寸的 獨立集。

考慮在圖 6.9 中,圖 G^1 包含兩個頂點 { v_1, v_2 } 和一邊

圖 6.9 : 圖 G^1 有兩個頂點和一條邊。

 $\{(v_1, v_2)\}$ 及其補圖 G^1 包含相同的頂點和零邊。這是決策問題的一個例子,決定圖 6.9 中的圖 $G^{1^{\mathbb{R} \oplus \mathbb{R}^n}}$ 最大尺寸的獨立集合。頂點的所有子集為 $\{\}(空集合)$ 、 $\{v_1\}$ 、 $\{v_2\}$ 和 $\{v_1, v_2\}$ 。由於在 $\{v_1, v_2\}$ 中,邊 (v_1, v_2) 是圖 $G^{1^{n \mapsto \mathbb{B}}}$,因此 $\{v_1, v_2\}$ 不滿足獨立集的定義。對於其他三個頂點子集 $\{\}(空集合)$ 、 $\{v_1\}$ 和 $\{v_2\}$,它們中沒有邊連接到其他不同的頂點。因此,它們滿足獨立集的定義。因此,圖 G^1 中的所有獨立集合都是空集合 $\{\}$ 、 $\{v_1\}$ 和 $\{v_2\}$ 。由於其中的頂點數依序為 0、1 和 1,因此圖 G^{1^n} 最大獨立集為 $\{v_1\}$ 和 $\{v_2\}$ 。最後,對於決策問題"圖 6.9 中的圖 $G^{1 + c \mathbb{R} \oplus \mathbb{R}^n}$ 最大尺寸的獨立集?"它給出輸出"是"。

具有 *n* 個頁點和 *m* 個邊的圖 *G* ,所有可能的獨立集合都是由 *G* 中合法和非法獨立集合組成的 2^{*n* 個可能選擇</sub>。每個可能的選擇對應於 *G* 中的頂點子集。因此,我們假設 *Y* 是一組 2^{*n* 個}可能的選擇,且 *Y* 等於 { $u_1 u_2 ... \ m_{n-1} \ w | \forall \ m_j \in \{0,1\}$ 為 $1 \le j \le n$ }。這表示 *Y* 中每個元素的長度為 *n* 位,每個元素代表 2^{*n* 種可}}

^{能的選擇}之一。為了方便表述,我們假設 $u_j^{0} u_j$ 的值為 0, $u_j^{1} u_j$ 的值為 1。如果 一個元素 $u_1 u_2 ...$ $m_{n-1} Y$ 中的 u_n 是合法的獨立集且 $u_{j \, \ell \ell} u_j n_{\ell} u_j 1 \le j \le n$ 為 1,則 u_j^{1} 表示第 $j^{@}$ 頂點在合法獨立集中。如果一個元素 $u_1 u_2 ...$ $m_{n-1} Y$ 中的 u_n 是合法的獨立集且 $u_{j \, \ell \ell} u_{\ell} u_j \le j \le n$ 為零,則 u_j^{0} 表示第 $j^{@}$ 頂點不在合法獨立集中。我 們使用具有 n 個量子位元($\frac{1}{\sqrt{2^n}}(\bigotimes_{j=1}^n (|u_j^0\rangle + |u_j^1\rangle)))$ 的暫存器的疊加來編碼一組 2^{n @}可能的選擇, $Y = \{u_1 u_2 ..., m_{n-1} @ | \forall m_j \in \{0, 1\}$ 為 $1 \le j \le n$ }。

圖 6.9 中具有兩個頂點和一條邊的圖 G^{1是否具有}最大獨立集相當於計算相同問題的解數。因此,我們利用圖 6.10 中的電路來確定

圖 6.10 :用於判斷圖 6.9 中具有兩個頂點和一條邊的圖 G¹是否具有最大獨立 集的量子電路。

$$| \varphi_0 > = (\otimes_{k=4}^1 | y_k^0)) \otimes (\otimes_{i=1}^2 | u_i^0)) \circ (6.30)$$

6.4.1 初始化量子暫存器計算相位估計中二頂點一邊圖獨立集問題的

解數

IBM 量子電腦中具有 32 個量子位元的 Open QASM 模擬器的後端。程式是計算圖 6.9 中具有兩個頂點和一條邊的圖 G¹中的獨立集問題的解數。圖 6.11 是清單 6.2 中程式對應的量子電路,是實現圖 6.10 的量子電路,用於計算圖 6.9 中具有兩個頂點和一條邊的圖 G¹中的獨立集問題的解數。

- 1. 開放 QASM 2.0;
- 2. 包括"qelib1.inc";
- 3. qreg q[6] ;
- 4. 克雷格 c[4];

圖 6.9 中具有兩個頂點和一條邊的圖 G¹中的獨立集合問題的解數的程式。

聲明"OPENQASM 2.0;"清單 6.2 的第一行表示程式是用 Open QASM 2.0 版本編寫的。然後,語句"include"qelib1.inc"; 」清單 6.2 的第二行是繼續解析 檔案「 q elib1.inc」,就好像該檔案的內容被貼到 include 語句的位置,其中檔 案「 q elib1.inc 」是 Quantum Experience (QE) 標準標頭,且路徑是相對於目 前工作指定的 目錄。

 G^1 中獨立集問題的解數,圖G1具有圖6.9中的兩個頂點和一條邊。

接下來,語句「qreg q[6];清單 6.2 的第三行是聲明程式中有 6 個量子位元。 在圖 6.11 的左上角,六個量子位元分別是 q[0]、q[1]、q[2]、q[3]、q[4]和 q[5]。 每個量子位元的初始值被設定為狀態 $|0>\circ$ 我們使用四個量子位元 q[0]、q[1]、q[2] 和 q[3] 來隨後編碼四個量子位元 $|y_4>, |y_3>, |y_2>$ 和 $|y_1>$ 在圖 6.10中。 我們應用兩個量子比特 q[4]和 q[5]分別編碼兩個量子位元| $u_1 > \pi | u_2 > 在圖 6.10$ 中。為了方便我們解釋,q[k]⁰代表 $0 \le k \le 5$ 是表示 q[k]的值為 0,q[k]¹為 $0 \le k \le 5$ 表示 q[k]的值 1。自從量子比特| $y_4^0 >$ 是最高有效位元和量子位元| $y_1^0 >$ 是最低有效位,量子位|q[0]⁰>是最高有效位,量子位|q[3]⁰>是最低有效位。 圖 6.11 中第一個暫存器對應的十進位值為 (|q[0]⁰>×2⁴⁻¹)+(|q[1]⁰>×2³⁻¹)+(|q[2]⁰>×2²⁻¹)+(|q[3]⁰>×2¹⁻¹)。

然後,語句"creg c[4];"清單 6.2 的第四行是聲明程序中有四個經典位。在圖 6.11 的左下角,四個經典位分別是 c[0]、c[1]、c[2]和 c[3]。每個經典位元的初始 值設定為零 (0)。為了方便我們解釋,c[k]⁰代表 $0 \le k \le 3$ 是表示 c[k]的值 0,c[k] ¹表示 $0 \le k \le 3$ 表示 c[k]的值 1。四個初始經典位元 c[3]⁰c[2]⁰c[1]⁰c[0]⁰^{對應的+推} ^位值為 2³×c[3]⁰+2²×c[2]⁰+2¹×c[1]⁰+2⁰×c[0]⁰。這就是說,經典位 c[3]⁰ 是最高有效位,經典位 c[0]⁰是最低有效位。為了方便我們解釋,我們可以重寫 初始狀態向量 |圖 6.10 中的 (6.30) 中 $\varphi_0 > = (\bigotimes_{k=4}^{1} |y_k^0)) \otimes (\bigotimes_{i=1}^{2} |u_i^0))$ 如下

 $|\varphi_{0}\rangle = (\bigotimes_{k=4}^{1} |y_{k}^{0}\rangle) \otimes (\bigotimes_{j=1}^{2} |u_{j}^{0}\rangle) = |q[0]^{0} > |q[1]^{0} > |q[2]^{0} > |q[3]^{0} > |q[4]^{0} > |q[5]^{0} > \circ (6.31)$

6.4.2 相位估計中二頂點一邊圖獨立集問題的解數疊加量子暫存器計

算

電路的第一級是實現 一個 在*第一個*暫存器() $\otimes_{k=4}^{1}|y_{k}^{0}\rangle$ 上使用四個 Hadamrad 閘進行 Hadamard 變換,在*第二個*暫存器() $\otimes_{j=1}^{2}|u_{j}^{0}\rangle$ 上使用兩個 Hadamrad 閘進行另一個 Hadamard 轉換。六個語句"hq[0];"、"hq[1];"、"hq[2];"、 "hq[3];"、"hq[4];"和"總部[5];"清單 6.2 的第五行*到清單 6.2 的第十行是*在第一 個暫存器和第二個暫存器上實作*六個 Hadamrad 閘*。它們在圖 6.11 的第一個時 隙中執行每個 Hadamrad 閘,並完成圖 6.10 中電路的第一階段。

清單 6.2 繼續...

//在兩個暫存器上實作哈達瑪變換。

5. 總部[0];

- 6. 總部[1];
- 7. 總部[2];
- 8. 總部[3];

9. 總部[4];
 10. 總部[5];

第一個暫存器的疊加是 $\left(\frac{1}{\sqrt{2^4}}\left(\bigotimes_{k=4}^{1}\left(|y_k^0\rangle + |y_k^1\rangle\right)\right)\right) =$ $\left(\frac{1}{\sqrt{2^4}}\left(\bigotimes_{a=0}^{3}\left(|q[a]^0\rangle + |q[a]^1\rangle\right)\right)\right)$ 。第二個暫存器的另一個疊加是 $\left(|u\rangle =$ $\frac{1}{\sqrt{2^2}}\left(\bigotimes_{j=1}^{2}\left(|u_j^0\rangle + |u_j^1\rangle\right)\right) = \frac{1}{\sqrt{2^2}}\left(\bigotimes_{b=4}^{5}\left(|q[b]^0\rangle + |q[b]^1\rangle\right)\right)$)。這表示第二個暫存器的疊加從新的狀態向量 $\left(|u\rangle = \frac{1}{\sqrt{2^2}}\left(\bigotimes_{j=1}^{2}\left(|u_j^0\rangle + |u_j^1\rangle\right)\right) =$ $\frac{1}{\sqrt{2^2}}\left(\bigotimes_{b=4}^{5}\left(|q[b]^0\rangle + |q[b]^1\rangle\right)\right)$)並包含儲存 ()所需的 $|u\rangle$ 兩個量子位元。在第二 個暫存器 ($|u\rangle$)的疊加中,由狀態 ($|u_1^1\rangle|u_2^1$)編碼的狀態 ($|q[4]^1\rangle|q[5]^1\rangle$)的振幅為 (1/2)編碼 { v_1,v 狀態 ($|u_1^1\rangle|u_2^1\rangle$)是由狀態 ($|q[4]^1\rangle|q[5]^0\rangle$)編碼的子集。 $|q[4]^0\rangle|q[5]^1\rangle v_2$ },它是一個頂點的子集 $|u_1^0\rangle|u_2^0\rangle$ 由具有幅度 (1/2)的狀態 ($|q[4]^0\rangle|q[5]^0\rangle$)編碼{},它是沒有頂點的空子集。 $|u\rangle$),它是 Grover 算子, 並且是酉算子,因此,這給出了以下新狀態向量:

$$|\varphi_{1}\rangle = \left(\frac{1}{\sqrt{2^{4}}}\left(\bigotimes_{k=4}^{1}\left(|y_{k}^{0}\rangle + |y_{k}^{1}\rangle\right)\right)\otimes\left(\frac{1}{\sqrt{2^{2}}}\left(\bigotimes_{j=1}^{2}\left(|u_{j}^{0}\rangle + |u_{j}^{1}\rangle\right)\right)\right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}}\left(\bigotimes_{k=4}^{1}\left(|y_{k}^{0}\rangle + |y_{k}^{1}\rangle\right)\right)\otimes\left(|u\rangle\right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}}\left(\bigotimes_{a=0}^{3}\left(|q[a]^{0}\rangle + |q[a]^{1}\rangle\right)\right)\otimes\left(\frac{1}{\sqrt{2^{2}}}\left(\bigotimes_{b=4}^{5}\left(|q[b]^{0}\rangle + |q[b]^{1}\rangle\right)\right)\right)$$

$$= \left(\frac{1}{\sqrt{2^{4}}}\left(\bigotimes_{a=0}^{3}\left(|q[a]^{0}\rangle + |q[a]^{1}\rangle\right)\right)\otimes\left(|u\rangle\right) \circ (6.32)$$

6.4.3 第二暫存器疊加上的受控 G 運算確定相位估計中二頂點一邊圖

獨立集問題的解數

在新的狀態向量 $|\varphi_{l}\rangle$ 在 (6.32)中,第一個暫存器中的每個量子位元目前處 於其疊加狀態。第一暫存器的值從由狀態($\bigotimes_{k=4}^{1}|y_{k}^{0}$))編碼的狀態($\bigotimes_{a=0}^{3}|q[a]^{0}$)) (零)到由狀態($\bigotimes_{k=4}^{1}|y_{k}^{1}$))編碼的狀態()(十五) $\bigotimes_{a=0}^{3}|q[a]^{1}$,每個狀態的振幅為(1/4)。圖 6.10 的電路可以精確地估計十六個相位。這表明第一個具有四個量子位 元的暫存器可以精確地表示十六個相位。十六相分別為 $(0/2^4)$ 、 $(1/2^4)$ 、 $(2/2^4)$ 、 $(3/2^4)$ 、 $(4/2^4)$ 、 $(5/2^4)$ 、 $(6/2^4)$, $(7/2^4)$, $(8/2^4)$, $(9/2^4)$, $(10/2^4)$, $(11/2^4)$, $(12/2^4)$, $(13/2^4)$ 、 $(14/2^4)$ 和 $(15/2^4)$ 。對應的十六個相位角分別為 $(2 \times \pi \times 0/2^4)$, $(2 \times \pi \times 1/2^4)$, $(2 \times \pi \times 2/2^4)$, $(2 \times \pi \times 3/2^4)$, $(2 \times \pi \times 4/2^4)$, $(2 \times \pi \times 5/2^4)$, $(2 \times \pi \times 6/2^4)$, $(2 \times \pi \times 7/2^4)$, $(2 \times \pi \times 8/2^4)$, $(2 \times \pi \times 9/2^4)$, $(2 \times \pi \times 10/2^4)$, $(2 \times \pi \times 11/2^4)$, $(2 \times \pi \times 12/2^4)$, $(2 \times \pi \times 13/2^4)$, $(2 \times \pi \times 14/2^4)$ 和 $(2 \times \pi \times 15/2^4)$.

假設我們正在嘗試計算特徵值 90°。圖 6.9 中具有兩個頂點和一邊的圖 G^1 中獨立集問題的解數為 $S = N \times (\sin(\theta' 2))^2 = 4 \times (\sin(90^\circ/2))^2 = 4 \times (1/2) = 2 \circ$ 的 圖 G^1 有兩個頂點和一條邊。因此,Grover 算子 G 的一種應用對其特徵向量(特 徵態) (|u))的影響為 ($G \times |dr \rangle = e^{\pm \sqrt{-1} \times 2 \times \pi \times \theta} \times |dr \rangle = e^{\pm \sqrt{-1} \times 2 \times \pi \times \frac{4}{2^4}} \times |dr \rangle) \circ$ 因 此,重複應用 Grover 算子 G 對其特徵向量(特徵態) (|u))的影響為

 $(|q[3]^{0} > + |q[3]^{1} >))$ 在加權位置 2⁰編碼的疊加 $\frac{1}{\sqrt{2}}(\frac{1}{\sqrt{2}}(|y_{1}^{0} > + |y_{1}^{1} >))$ 是受 控量子在第二個暫存器的疊加上|u)實現受控操作的位,即狀態($G^{2^{0}}$)。類似地, $\frac{1}{\sqrt{2}}$ 在加權位置 2^{1 & = (}(|q[2]^{0} + |q[2]^{1} >)))編碼的疊加 ($\frac{1}{\sqrt{2}}(|y_{2}^{0} + |y_{2}^{1} >))$ 是在 第二個暫存器的疊加上實現受控操作的受控量子位, $G^{2^{1}}$ 即狀態 (|u))。那麼, $\frac{1}{\sqrt{2}}$ 在加權位置 2^{2 & = (}(|q[1]^{0} > + |q[1]^{1^{>}}))編碼的疊加($\frac{1}{\sqrt{2}}(|y_{3}^{0} > + |y_{3}^{1} >))$ 是在 第二個暫存器的疊加上實現受控操作的受控量子位, $G^{2^{2}}$ 即狀態 (|u))。接下來, $\frac{1}{\sqrt{2}}$ 在加權位置 2^{3 & = (}(|q[0]^{0} > + |q[0]^{1^{>}}))編碼的疊加($\frac{1}{\sqrt{2}}(|y_{4}^{0} > + |y_{4}^{1} >))$ 是在 第二個暫存器的疊加上實現受控操作的受控量子位, $G^{2^{3}}$ 即狀態 (|u))。

Grover 算子 *G* 有兩個特徵值 ($e^{\sqrt{-1} \times 2 \times \pi \times \theta}$) 和 ($e^{-\sqrt{-1} \times 2 \times \pi \times \theta}$)。我們假設它 會產生特徵值 ($e^{\sqrt{-1} \times 2 \times \pi \times \theta}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^4}}$)。清單 6.2 中從*第 11* 行到*第 14* 行的四個語句是「 $u1(2^*pi^*4/16^*1)$ q[3]; 」、「 $u1(2^*pi^*4/16^*2)$ q [2] ;", " $u1(2^*pi^*4/16^*4)$ q[1];"和" $u1(2^*pi^*4/16^*8)$ q[0];"。 清單 6.2 繼續...

//對第二個暫存器的疊加執行受控 G 操作。

11. u1(2*pi*4/16*1) q[3];

12. u1(2*pi*4/16*2) q[2];

13. u1(2*pi*4/16*4) q[1];

14. u1(2*pi*4/16*8) q[0];

他們將(6.32)中的新狀態向量($| \varphi_1 >$)作為輸入狀態向量,並在圖 6.11 的*第二*時隙 和圖 6.10 的*第二階段中的*第二個暫存器的疊加上實現每個受控*G 操作*。他們警 戒狀態的階段 $| y_1 | > (|q[3] | >)$ 從一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^0}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1}$)。他們警戒狀態的階段 $| y_2 | > (|q[2] | >)$ 從一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^1}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2}$)。他們警戒狀態的階段 $| y_3 | > (|q[1] | >)$ 從 一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^2}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4}$) 並警戒狀態 | 的階段 $y_4 | >$ (|q[0] | >) 從一 (1) 變成 ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^3}$) = ($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8}$)。這給了以下新的 狀態向量是

$$\begin{split} | \varphi_{2} \rangle &= \left(\begin{array}{c} \frac{1}{\sqrt{2^{4}}} (\ |y_{4}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{3}} |y_{4}^{1}\rangle) \otimes (\ |y_{3}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{2}} |y_{3}^{1}\rangle) \otimes \\ & (\ |y_{2}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{1}} |y_{2}^{1}\rangle) \otimes (\ |y_{1}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2^{0}} |y_{1}^{1}\rangle)) \otimes (\ |u\rangle) \\ &= \left(\begin{array}{c} \frac{1}{\sqrt{2^{4}}} (\ |y_{4}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8} |y_{4}^{1}\rangle) \otimes (\ |y_{3}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4} |y_{3}^{1}\rangle) \otimes \\ & (\ |y_{2}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2} |y_{2}^{1}\rangle) \otimes (\ |y_{1}^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1} |y_{1}^{1}\rangle)) \otimes (\ |u\rangle) \\ &= \left(\begin{array}{c} \frac{1}{\sqrt{2^{4}}} (\ |q[0]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 8} |q[0]^{1}\rangle) \otimes (\ |q[1]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 4} |q[1]^{1}\rangle) \otimes \\ & (\ |q[2]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 2} |q[2]^{1}\rangle) \otimes (\ |q[3]^{0}\rangle + e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times 1} |q[3]^{1}\rangle)) \\ & \otimes (\ |u\rangle) \end{array}$$

$$= \left(\frac{1}{\sqrt{2^4}} \left(\sum_{Y=0}^{2^4-1} e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times Y} | Y \right) \right) \otimes (|u\rangle) \circ (6.34)$$

上面的描述,第二量子暫存器在計算過程中保持在狀態($|u\rangle$)。由於*相位反衝*, 相位狀態| $Y > 0 \le \mathcal{E} \le 2^{-4} - 1$ 是從一(1)變成($e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{16} \times Y}$)。在(6.34)中的狀態 向量($|\varphi_2\rangle$)中,它包括從狀態|0>到狀態|15>的十六個相位角。前八個相位角為($90^{\circ} \times 0 = 0^{\circ}$), ($90^{\circ} \times 1 = 90^{\circ}$), ($90^{\circ} \times 2 = 180^{\circ}$), ($90^{\circ} \times 3 = 270^{\circ}$), ($90^{\circ} \times 4 = 360^{\circ} = 0^{\circ}$), ($90^{\circ} \times 5 = 450^{\circ} = 90^{\circ}$), ($90^{\circ} \times 6 = 540^{\circ} = 180^{\circ}$)和 ($90^{\circ} \times 7 = 630^{\circ} = 270^{\circ}$)。最後八 個相位角是 ($90^{\circ} \times 8 = 720^{\circ} = 0^{\circ}$), ($90^{\circ} \times 9 = 810^{\circ} = 90^{\circ}$), ($90^{\circ} \times 10 = 900^{\circ} = 180^{\circ}$), ($90^{\circ} \times 11 = 990^{\circ} = 270^{\circ}$), ($90^{\circ} \times 12 = 1080^{\circ} = 0^{\circ}$), ($90^{\circ} \times 13 = 1170^{\circ} = 90^{\circ}$), ($90^{\circ} \times 14 = 1260^{\circ} = 180^{\circ}$)和 ($90^{\circ} \times 15 = 1350^{\circ} = 270^{\circ}$)。相位角旋轉回其起始值 0°四次。

6.4.4 第一個暫存器疊加的量子傅立葉逆變換計算相位估計中二頂點

一條邊圖獨立集問題的解數

狀態向量(|φ₂>)中儲存的隱藏模式和資訊是其相位角旋轉回其起始值0°四 次。這就是說,每十六個相位角的週期數為四,頻率等於四(16/4)。清單 6.2 中 第 15 行到 第 26 行的 12 個語句

清單 6.2 繼續...

//在第一個暫存器的疊加上實作一個逆量子傅立葉變換。

15. 總部[0];

16. cu1(-2*pi*1/4) q[1],q[0];

17. cu1(-2*pi*1/8) q[2],q[0];

- 18. cu1(-2*pi*1/16) q[3],q[0];
- 19. 總部[1];

```
20. cu1(-2*pi*1/4) q[2],q[1];
```

```
21. cu1(-2*pi*1/8) q[3],q[1];
```

22. 總部[2];

23. cu1(-2*pi*1/4) q[3],q[2];

24. 總部[3];

25. 交換 q[0],q[3]; 26. 交換 q[1],q[2];

第三個時隙到第十四個時隙的每個量子操作。他們實際上實現了對圖 6.10 中第 一個暫存器的疊加執行量子傅立葉逆變換的每個量子操作。他們將(6.34)中的 狀態向量(| q2>)作為輸入狀態向量。由於逆量子傅立葉變換有效地將第一個 暫存器的狀態轉換為週期訊號成分頻率的疊加,因此它們產生以下狀態向量

$$|\varphi_{3}\rangle = \left(\sum_{Y=0}^{2^{4}-1} \frac{1}{\sqrt{2^{4}}} e^{\sqrt{-1} \times 2 \times \pi \times \frac{4}{2^{4}} \times Y} \frac{1}{\sqrt{2^{4}}} \sum_{i=0}^{2^{4}-1} e^{-\sqrt{-1} \times 2 \times \pi \times \frac{i}{2^{4}} \times Y} |i\rangle\right) \otimes (|u\rangle)$$

$$= \left(\frac{1}{2^{4}} \left(\sum_{Y=0}^{2^{4}-1} \sum_{i=0}^{2^{4}-1} e^{\sqrt{-1} \times 2 \times \pi \times Y \times \left(\frac{4}{2^{4}} - \frac{i}{2^{4}}\right)} |i\rangle\right) \otimes (|u\rangle)$$

$$= \left(\sum_{i=0}^{2^{4}-1} \sum_{Y=0}^{2^{4}-1} \frac{1}{2^{4}} \left(e^{\sqrt{-1} \times 2 \times \pi \times \left(\frac{4}{2^{4}} - \frac{i}{2^{4}}\right)}\right)^{Y} |i\rangle\right) \otimes (|u\rangle) \otimes (|u\rangle)$$

6.4.5 讀取量子結果,求相位估計中二頂點一邊圖獨立集問題的解數

最後,四個語句"measure q[0] -> c[3];"、"measure q[1] -> c[2];"、"measure q[2] -> c[1];"和"測量 q[3] -> c[0];"清單 6.2 中的*第 27* 行到*第 30 行*實現了測量。 他們測量逆量子傅立葉變換的輸出狀態到圖 6.11 和圖 6.10 中第一個暫存器的 疊加。也就是說,它們測量第一個暫存器的四個量子位元 q[0]、q[1]、q[2] 和 q[3], 並透過覆蓋四個經典位元 c[3]、c[來記錄測量結果。

清單 6.2 繼續	
//完成第一個暫存器的測量。	
27. 測量 q[0] -> c[3]; 28. 測量 q[1] -> c[2]; 29. 測量 q[2] -> c[1];	

IBM 量子電腦的 32 個量子位元的後端*模擬器中*,我們使用「run」指令來執 行清單 6.2 中的程式。測量結果如圖 6.12 所示。從圖 6.12 中,我們得到計算基 礎狀態 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> 和 c[0] = 0 = q[3] = |0>)的機率為 100%。這表示相位角 θ = 2× π ×(4 / 16) = 90°機率為 100% 。因此,圖 6.9 中具有兩個頂點和一條邊的圖 G^1 中獨立集問題的解數為 $S = N \times (\sin(\theta/2))^2 = 4 \times (\sin(90^\circ/2))^2 = 4 \times (1/2) = 2$ 。個頂點和一邊的圖 G^1 的獨立集合問題。因此,對於決定圖 6.9 中的圖 G^1 是否具有最大獨立集的決策問題,輸出為「是」 。

圖 6.12:計算基礎狀態 0100 的機率為 100%。

6.5 總結

在本章中,我們說明了*決策問題是在任何 n* 位輸入上只有兩個可能的輸出 (是或否)的問題。任意 n 位輸入的決策問題中的輸出「是」表示解的數量不為 零,而任意 n 位輸入的決策問題中的另一個輸出「否」表示解的數量為零。接下 來,我們描述了 a $(2^n \times 2^n)$ 西矩陣(運算子) U有 $(2^n \times 1)$ 特徵向量|u> 特 徵值 $e^{\sqrt{-1} \times 2 \times \pi \times \theta}$ 使得 $U \times | h \rangle = e^{\sqrt{-1} \times 2 \times \pi \times \theta} \times |u>$,其中 的值 θ 未知 L為實數。然 後我們說明了相位估計演算法如何以何種可能性估計 的值 θ 。我們也描述了相位 估計演算法的時間複雜度、空間複雜度和效能。接下來,我們介紹如何設計量子 電路和編寫量子程式來計算 a $(2^2 \times 2^2)$ 酉矩陣 U 具有 $(2^2 \times 1)$ 特徵向量 $|h\rangle$ 。 接下來,我們描述了量子計數演算法如何決定輸入為 n 位的決策問題的解數。我 們也說明了量子計數演算法的時間複雜度、空間複雜度和性能。然後我們介紹如 何設計量子電路和編寫量子程式來確定具有兩個頂點和一條邊的圖 G^1 中獨立集 問題的解數。

6.6 參考文獻註釋

本章詳細介紹了相位估計演算法,推薦書籍 是 [尼爾森和莊 2000;伊姆雷和 巴拉茲 2005;利普頓和里根 2014 ;席爾瓦 2018;約翰斯頓等人,2019]。有關 二元搜尋樹的更詳細描述,建議的書是 [Horowitz et al 2003]。有關離散傅立葉 變換和離散傅立葉逆變換的更詳細介紹,推薦書籍為[Cormen et al 2009;尼爾森和 莊 2000; 伊姆雷和巴拉茲 2005;利普頓和里根 2014;席爾瓦 2018;約翰斯 頓等人,2019]。兩篇著名文章[Copper smith 1994; Shor 1994]給出了量子傅立 葉變換和量子傅立葉逆變換的原始版本。量子傅立葉變換和逆量子傅立葉變換的 乘積態分解的一個很好的例證是 [Griffiths and Niu 1996;克利夫等人 1998]。有 關量子計數演算法的更詳細描述,建議的文章和書籍是[Brassard et al 1998;尼 爾森和莊 2000;伊姆雷和巴拉茲 2005;利普頓和里根 2014;席爾瓦 2018;約 翰斯頓等人,2019]。 關於 Open QASM 指令的一個很好的介紹是 [Cross et al 2017] 中的著名文章。

6.7 練習

- 6.1 證明 Oracle 的變換是 $O = I_{2^{n},2^{n}} 2 \times |x_{0}| \times |x_{0}|$, 其中 x_{0} 是 Oracle 域中的 一個元素, 且 x_{0} 滿足 $O(x_{0}) = 1$ 。
- 6.2 確定 Oracle 的矩陣 $O = I_{2^2, 2^2} 2 \times |x_0| + x_0 = 2 \quad \exists x_0 \ x_0 \ \exists x_0 \ \exists x_0 \ x_0 \ \exists x_0 \ x_0$

6.3 證明酉算子 U (關於平均值的逆)等價於反映其輸入狀態 $|\phi_2\rangle$ 到 $|\phi_1\rangle|\phi_3\rangle$ 這是關於 $|\phi_1\rangle$ 圖 6-7 的二維幾何解釋。

根據 ($|\varphi\rangle$) 和計算 Grover 算子($|\lambda\rangle$)G 的矩陣 如圖 6.7 所示。

6.5 根據($|\varphi\rangle$)和($|\lambda\rangle$)圖 6.7 計算 Grover 算子 G 的特徵值和對應的特徵向量。