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Chapter 6 

Phase Estimation and its Applications 

 

A decision problem is a problem in which it has only two possible outputs (yes or 

no) on any input of n bits. An output “yes” in the decision problem is to the number of 

solutions not to be zero and another output “no” in the decision problem is to the number 

of solutions to be zero. An example of a decision problem is deciding whether a given 

Boolean formula, F(x1, x2) = x1  x2, has solutions that satisfy F(x1, x2) to have a true 

value or not, where the value of two Boolean variables x1 and x2 is either true (1) or 

false (0) and “” is the AND operation of two operands. For the convenience of the 

presentation, Boolean variable x1
0 is to represent the value 0 (zero) of Boolean variable 

x1 and Boolean variable x1
1 is to represent the value 1 (one) of Boolean variable x1. 

Boolean variable x2
0 is to represent the value 0 (zero) of Boolean variable x2 and 

Boolean variable x2
1 is to represent the value 1 (one) of Boolean variable x2. 

 

A decision procedure is in the form of an algorithm to solve a decision problem. A 

decision procedure for the decision problem “a given Boolean formula, F(x1, x2) = x1  

x2, does it have solutions that satisfy F(x1, x2) to have a true value?” would implement 

x1  x2 (the AND operation of two operands) of four times according to four different 

inputs x1
0 x2

0, x1
0 x2

1, x1
1 x2

0 and x1
1 x2

1. After it executes each AND operation, it finds 

the fourth input x1
1 x2

1 that satisfies F(x1, x2) to have a true value. Finally, it gives an 

output “yes” to the decision problem. This implies that the number of solutions is not 

equal to zero. If time complexity of a decision procedure to solve a decision problem 

with the input of n bits is O(2n), then the decision problem is a NP-Complete problem. 

 

We assume that a (2n  2n) unitary matrix (operator) U has a (2n  1) eigenvector 

|u> with eigenvalue 𝑒√−1×2×𝜋×𝜃 such that U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>, where the 

value of  is unknown and is real. The purpose of the phase estimate algorithm is to 

estimate the value of . Deciding whether there exist solutions for a problem with the 

input of n bits is equivalent to estimate the value of . In this chapter, we first describe 

how the phase estimate algorithm works on quantum computers and various kinds of 

real applications. We illustrate how to write quantum programs to compute and estimate 

the value of  to that any given a (2n  2n) unitary matrix (operator) U has a (2n  1) 

eigenvector |u> with eigenvalue (𝑒√−1×2×𝜋×𝜃). Next, we explain the reason of why 

deciding whether there exist solutions for a problem with the input of n bits is equivalent 

to estimate the value of . We also explain how the quantum-counting algorithm 
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determines the number of solutions for a decision problem with the input of n bits. Next, 

we introduce how to write quantum algorithms to implement the quantum-counting 

algorithm that is a real application of the phase estimate algorithm for computing the 

number of solutions for various kinds of real applications with the input of n bits. 

 

6.1 Phase Estimation 

 

We use the quantum circuit shown in Figure 6.1 to implement the phase estimation 

algorithm. It uses two quantum registers. At the left top in Figure 6.1, the first register 

(⨂𝑘=𝑡
1 |𝑦𝑘

0⟩) contains t quantum bits initially in the state |0>. Quantum bit |yt
0> is the 

most significant bit. Quantum bit |y1
0> is the least significant bit. The corresponding 

decimal value of the first register is (|yt
0>  2t − 1) +  + (|y2

0>  22 − 1) + (|y1
0>  21 − 1). 

How we select t that is dependent on two things. The first thing is to that the number of 

bits of accuracy we wish to have in our estimation for the value of . The second thing 

is to that with what probability we wish the phase estimation algorithm to be successful. 

The dependence of t on these quantities appear naturally from the following analysis. 

 

 

Figure 6.1: Quantum circuit of calculating the phase. 

 

At the left bottom in Figure 6.1, the second register (⨂𝑗=1
𝑛 |𝑢𝑗

0⟩) contains n quantum 

bits initially in the state |0>. Quantum bit |u1
0> is the most significant bit. Quantum bit 

|un
0> is the least significant bit. The corresponding decimal value of the second register 

is (|u1
0>  2n − 1) + (|u2

0>  2n − 2) +  + (|yn
0>  2n − n). How we select n that is dependent 
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on a thing. The thing is to the size of the input for various kinds of real applications. 

This means that we select n that actually is to the number of bits of input for a problem. 

For the convenience of the presentation, the following initial state vector is 

 

|0> = (⨂𝑘=𝑡
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
𝑛 |𝑢𝑗

0⟩).                 (6.1) 

 

6.1.1 Initialization of Phase Estimation 

 

In Figure 6.1, the circuit begins by means of using a Hadamard transform on the 

first register (⨂𝑘=𝑡
1 |𝑦𝑘

0⟩ ) and another Hadamard transform on the second register 

(⨂𝑗=1
𝑛 |𝑢𝑗

0⟩). A superposition of the first register is (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩))). Another 

superposition of the second register is (|𝑢⟩ = 
1

√2𝑛
 (⊗𝑗=1

𝑛 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩))). This is to 

say that the superposition of the second register begins in the new state vector (|𝑢⟩ = 

1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩))), and consists of n quantum bits as is necessary to store (|𝑢⟩). 

The new state vector (|𝑢⟩) is an eigenstate (eigenvector) of U. Therefore, this gives that 

the following new state vector is 

 

|1> = (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩))) 

              = (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩).                 (6.2) 

 

6.1.2 Controlled-U Operations on the Superposition of the Second 

Register to Phase Estimation 

 

Next, in Figure 6.1, the circuit implements application of controlled-U operations 

on the superposition of the second register that is the state (|𝑢⟩ ), with U raised to 

successive powers of two. Because the effect of one application of unitary operator U 

on its eigenvector (eigenstate) (|𝑢⟩) is (U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>), the effect of 

repeated application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is 

 

Ua |u> = Ua − 1 U |u> = Ua − 1(𝑒√−1×2×𝜋×𝜃   |u>) = 𝑒√−1×2×𝜋×𝜃   (Ua − 1|u>) =  

𝑒√−1×2×𝜋×𝜃  𝑒√−1×2×𝜋×𝜃    𝑒√−1×2×𝜋×𝜃 |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u>.     (6.3) 

 

Implementing one controlled-U operation that has its eigenvector (eigenstate) (|𝑢⟩) and 
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its eigenvalue 𝑒√−1×2×𝜋×𝜃 is to that if the controlled quantum bit is the state |1>, then 

it completes one application of unitary operator U, (U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>). 

Otherwise, it does not complete one application of unitary operator U. 

 

Similarly, implementing repeated application of one controlled-U operation that 

has its eigenvector (eigenstate) (|𝑢⟩) and its eigenvalue 𝑒√−1×2×𝜋×𝜃 is to that if the 

controlled quantum bit is the state |1>, then it completes repeated application of unitary 

operator U, (Ua  |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u>). Otherwise, it does not complete repeated 

application of unitary operator U. 

 

In the new state vector |1> in (6.2), each quantum bit in the first register is 

currently in its superposition. A superposition (
1

√2
  (|y1

0> + |y1
1>)) at the weighted 

position 20 is the controlled quantum bit of implementing controlled-𝑈20
 operations 

on the superposition of the second register that is the state (|𝑢⟩). This gives that the 

following new state vector is 

 

|2> = (
1

√2𝑡
 (⊗𝑘=𝑡

2 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦1
0⟩|𝑢⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩|𝑢⟩) 

      = (
1

√2𝑡
 (⊗𝑘=𝑡

2 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩)  (|𝑢⟩).    (6.4) 

 

Altering the phase of the state |y1
1> is from one (1) to become (𝑒√−1×2×𝜋×𝜃×20

). We 

call it as phase kickback. 

 

Next, in the new state vector |2> in (6.4), a superposition (
1

√2
 (|y2

0> + |y2
1>)) at 

the weighted position 21 is the controlled quantum bit of implementing controlled-𝑈21
 

operations on the superposition of the second register that is the state (|𝑢⟩). This means 

that the following new state vector is 

 

|3> = (
1

√2𝑡
 (⊗𝑘=𝑡

3 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×𝜃×21

|𝑦2
1⟩) 

 (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩)  (|𝑢⟩).                (6.5) 

 

Because of phase kickback, the phase of the state |y2
1> is from one (1) to become 

(𝑒√−1×2×𝜋×𝜃×21
). 
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Next, in the new state vector |3> in (6.5), a superposition (
1

√2
 (|y3

0> + |y3
1>)) at 

the weighted position 22 through a superposition (
1

√2
 (|yt

0> + |yt
1>)) at the weighted 

position 2t − 1 are the controlled quantum bits of implementing controlled- 𝑈22
 

operations through controlled-𝑈2𝑡 − 1
  operations on the superposition of the second 

register that is the state (|𝑢⟩). This gives that the following new state vector is 

 

|4> = (
1

√2𝑡
 (|𝑦𝑡

0⟩ + 𝑒√−1×2×𝜋×𝜃×2𝑡−1
|𝑦𝑡

1⟩)  (|𝑦𝑡−1
0 ⟩ + 𝑒√−1×2×𝜋×𝜃×2𝑡−2

|𝑦𝑡−1
1 ⟩)   

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×𝜃×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×𝜃×20
|𝑦1

1⟩))  (|𝑢⟩) 

    = (
1

√2𝑡
 (∑ 𝑒√−1×2×𝜋×𝜃×𝑌2𝑡−1

𝑌=0 |𝑌⟩))  (|𝑢⟩).                            (6.6) 

 

Because of phase kickback, the phase of the state |Y> for 0  Y  2t − 1 is from one (1) 

to become (𝑒√−1×2×𝜋×𝜃×𝑌). From this description above, the second quantum register 

stays in the state (|u>) through the computation. 

 

6.1.3 Inverse Quantum Fourier Transform on the Superposition of the 

First Register to Phase Estimation 

 

Next, in Figure 6.1, the circuit implements the inverse Quantum Fourier 

transform on the superposition of the first register. It takes the new state vector (|4>) 

in (6.6) as its input state vector. The output state of the inverse Quantum Fourier 

transform on the superposition of the first register is 

 

|5> = (∑
1

√2𝑡
𝑒√−1×2×𝜋×𝜃×𝑌 1

√2𝑡

2𝑡−1
𝑌=0  ∑ 𝑒

−√−1×2×𝜋×
𝑖

2𝑡×𝑌|𝑖⟩2𝑡−1
𝑖=0 )  (|𝑢⟩) 

          = (
1

2𝑡
 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(𝜃−

𝑖

2𝑡)2𝑡−1
𝑖=0

2𝑡−1
𝑌=0 |𝑖⟩))  (|𝑢⟩) 

          = (∑ ∑
1

2𝑡 (𝑒√−1×2×𝜋×(𝜃−
𝑖

2𝑡)2𝑡−1
𝑌=0

2𝑡−1
𝑖=0 )𝑌|𝑖⟩)  (|𝑢⟩).                (6.7) 

 

From this description above, the second quantum register still stays in the state (|u>) 

through the computation. From the new state vector (|5>) in (6.7), the probability 

amplitude of |i> is 
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i = 
1

2𝑡
  (∑ (𝑒√−1×2×𝜋×(𝜃−

𝑖

2𝑡)
)𝑌2𝑡−1

𝑌=0 ).               (6.8) 

 

6.1.4 Idealistic Phase Estimation 

 

The probability amplitude of |i> is simply the sum of a geometrical sequence with 

quotient q = (𝑒√−1×2×𝜋×(𝜃−
𝑖

2𝑡)
). On one hand if the value of  may be expressed in t 

bits in the first quantum register, as  = 0.yt yt − 1  y2 y1 = (yt yt − 1  y2 y1 / 2
t). Then 

the value of  actually is equal to (i / 2t) for 0  i  2t −1 and is an integer multiple of 

(1 / 2t). This gives that the quotient q is 𝑒√−1×2×𝜋×(
𝑖

2𝑡 − 
𝑖

2𝑡)
  = 𝑒√−1×2×𝜋×0  = 1, the 

probability amplitude of |i> is 
1

2𝑡  (∑ 1𝑌2𝑡−1
𝑌=0 ) = 

1

2𝑡  (∑ 12𝑡−1
𝑌=0 ) = 

1

2𝑡  2t = 1 and any 

other probability amplitudes disappear. This is the ideal case of phase estimation. 

Finally, in Figure 6.1, after a measurement on the output state of the inverse quantum 

Fourier transform to the superposition of the first register is completed, we obtain the 

computational basis state |i> with the successful probability 1 (100%). This indicates 

that the value of  is equal to (i / 2t) with the successful probability 1 (100%). Therefore, 

we obtain the eigenvalue (𝑒√−1×2×𝜋×
𝑖

2𝑡) with the successful probability 1 (100%). 

 

6.1.5 Phase Estimation in Practical Cases 

 

On the other hand if the value of  may not be expressed in t bits in the first 

quantum register. This is to say that   0.yt yt − 1  y2 y1  (yt yt − 1  y2 y1 / 2
t). Then 

the quotient q is 𝑒√−1×2×𝜋×(𝜃 − 
𝑖

2𝑡)
  1 and we can rewrite the probability amplitude of 

|i> in (6.8) as follows 

 

i = 
1

2𝑡  
1−𝑞2𝑡

1−𝑞
 = 

1

2𝑡  
1−(𝑒

√−1×2×𝜋×(𝜃 − 
𝑖

2𝑡)
)2𝑡

1−𝑒
√−1×2×𝜋×(𝜃 − 

𝑖

2𝑡)
 =  

1

2𝑡  
1−𝑒√−1×2×𝜋×(2𝑡×𝜃 − 𝑖)

1−𝑒
√−1×2×𝜋×(𝜃 − 

𝑖

2𝑡)
.    (6.9) 

 

This gives another good explanation of uncertainty and thus appearing inaccuracy 

when measuring the output of the inverse quantum Fourier transform in Figure 6.1. 

The probability of measuring a suitable state |i> on the first register in Figure 6.1 is 
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|i|
2 = 

1

22×𝑡  
|1−𝑒√−1×2×𝜋×(2𝑡×𝜃 − 𝑖)|2

|1−𝑒
√−1×2×𝜋×(𝜃 − 

𝑖

2𝑡)
|2

.           (6.10) 

 

Because |1 − 𝑒√−1×𝛾|2 = 4  sin2( / 2), we can rewrite |i|
2 in (6.10) as follows 

 

|i|
2 = 

1

22×𝑡  
4×sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

4×sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

 = 
1

22×𝑡  
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

.   (6.11) 

 

This is the practical case of phase estimation. Finally, in Figure 6.1, after a 

measurement on the output state of the inverse quantum Fourier transform to the 

superposition of the first register is completed, we obtain the computational basis state 

|i> with the probability (
1

22×𝑡  
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

). Because (i / 2t) = (yt yt − 1  y2 y1 / 

2t) = 0.yt yt − 1  y2 y1, (i / 2
t) is an estimated value to the value of  with the probability 

(
1

22×𝑡   
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

 ). Hence, we only obtain an estimated eigenvalue 

(𝑒√−1×2×𝜋×
𝑖

2𝑡) with the probability (
1

22×𝑡  
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

). 

 

This is to say that if more than one |i|
2 differs from zero then there is a nonzero 

probability of receiving different estimated phases (eigenvalues) after the measurement 

when repeating to execute the circuit of phase estimation in Figure 6.1. 

 

6.1.6 Performance and Requirement to Phase Estimation 

 

The phase estimation algorithm allows one to estimate the value of the phase  to 

an eigenvalue (𝑒√−1×2×𝜋×𝜃) of a unitary operator U with its eigenvector (|u>). From 

the analysis in subsection 6.1.4, if the value of the phase  is to  = 0.yt yt − 1  y2 y1 = 

(yt yt − 1  y2 y1 / 2
t) that is to a t bit binary expansion of the first quantum register, then 

in the circuit of Figure 6.1 the outcome of the final measurement is |i> with the 

probability 100%. Because |i> is a t bit binary expansion of the first quantum register, 

we obtain that the value of the phase  is equal to (i / 2t) with the probability 100%. 

This is the ideal case. 
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On the other hand, from the analysis in subsection 6.1.5, if the value of the phase 

 is not a t bit binary expansion of the first quantum register, then the outcome of the 

final measurement is |i> with the probability (
1

22×𝑡  
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 − 

𝑖

2𝑡)

2
)

). Let Y be the 

integer in the range 0 to 2t − 1 so that (Y / 2t) = (yt yt − 1  y2 y1 / 2
t) = (0.yt yt − 1  y2 

y1) is the best t bit approximation to the value of the phase  and (Y / 2t) is less than the 

value of the phase . This indicates that the difference  =  − (Y / 2t) between  and (Y 

/ 2t) satisfies 0    (1 / 2t). We assume that the outcome of the final measurement in 

the circuit of Figure 6.1 is |i>. We aim to bound the probability of obtaining a value of 

i such that |i − Y| > , where  is a positive integer characterizing our desired tolerance 

to error. The probability of measuring such a state |i> is 

 

P(|i − Y| > )  
1

2×(𝜀−1)
.                  (6.12) 

 

We assume that we would like to approximate the value of the phase  to an 

accuracy 2−t, that is, we select  = 2t − n −1. By means of using t = n + q quantum bits in 

the circuit of Figure 6.1, we see from (6.12) that the probability of obtaining an 

approximation correct to this accuracy is at least 

 

P(|i − Y|  ) = 1 − P(|i − Y| > ) = 1 − 
1

2×(𝜀−1)
 

= 1 − 
1

2×(2𝑡−𝑛−1−1)
 = 1 − 

1

2×(2𝑡−𝑛−2)
.             (6.13) 

 

Therefore to successfully obtain the value of the phase  accurate to t bits with 

probability of success at least 1 −  = 1 − 
1

2×(2𝑡−𝑛−2)
, we select 

 

t = n + log2(2 + (1 / (2  ))).                 (6.14) 

 

Because  = 
1

2×(2𝑡−𝑛−2)
, we obtain   (2  (2t − n − 2)) = 1. This is to say that 2t − n − 2 

= (1 / (2  )) and 2t − n = (1 / (2  )) + 2 and log2(2
t− n) = log2(2 + (1 / (2  ))) and t 

= n + log2(2 + (1 / (2  ))). This is the result in (6.14). 

 

6.1.7 Assessment to Complexity of Phase Estimation 



310 
 

 

In the circuit of Figure 6.1, the number of quantum bits to the first register 

(⨂𝑘=𝑡
1 |𝑦𝑘

0⟩) is t quantum bits and the number of quantum bits to the second register 

(⨂𝑗=1
𝑛 |𝑢𝑗

0⟩) is n quantum bits. Therefore, space complexity of phase estimation is O(t 

+ n) quantum bits. The first stage in the circuit of Figure 6.1 is to implement (t + n) 

Hadamard gates. 

 

Next, the second stage in the circuit of Figure 6.1 is to implement application of 

controlled-U operations on the superposition of the second register that is the state (|𝑢⟩), 

with U raised to successive powers of two. The U1() gate is U1() = U1(lambda) = 

(
1 0

0 𝑒√−1×𝜆
) for that  (lambda) is a real value. If the value of  is equal to (2     

 2k − 1) to 1  k  t, then it can implement a controlled-𝑈2𝑘−1
 operation to 1  k  t. 

This is to say that a total cost of completing the second stage is to implement t U1() 

gates. 

 

Next, the third stage in the circuit of Figure 6.1 is to implement the inverse quantum 

Fourier transform on the superposition of the first register. A total cost of completing 

the inverse quantum Fourier transform is to implement O(t2) quantum gates. Finally, 

reading out the output state of the inverse quantum Fourier transform on the 

superposition of the first register is to implement one measurement. Because from the 

statements above a total cost of completing phase estimation is O(t2 + n) quantum gates, 

time complexity of phase estimation is to O(t2 + n) quantum gates. 

 

6.2 Computing Eigenvalue of a (22  22) Unitary Matrix U with a (22  

1) Eigenvector |u> in Phase Estimation 

 

We use the circuit in Figure 6.2 to compute eigenvalue of a (22  22) unitary matrix 
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Figure 6.2: Quantum circuit for calculating eigenvalue of a (22  22) unitary matrix U 

with a (22  1) eigenvector |u>. 

 

U with a (22  1) eigenvector |u>. It makes use of two quantum registers. At the left top 

in Figure 6.2, the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩) contains four quantum bits initially in the 

state |0>. Quantum bit |y4
0> is the most significant bit. Quantum bit |y1

0> is the least 

significant bit. The corresponding decimal value of the first register is (|y4
0>  24 − 1) + 

(|y3
0>  23 − 1) + (|y2

0>  22 − 1) + (|y1
0>  21 − 1). At the left bottom in Figure 6.2, the 

second register (⨂𝑗=1
2 |𝑢𝑗

0⟩) contains two quantum bits initially in the state |0>. Quantum 

bit |u1
0> is the most significant bit. Quantum bit |u2

0> is the least significant bit. The 

corresponding decimal value of the second register is (|u1
0>  22 − 1) + (|u2

0>  22 − 2). 

For the convenience of the presentation, the following initial state vector is 

 

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩).                (6.15) 

 

6.2.1 Initialize Quantum Registers to Calculate Eigenvalue of a (22  

22) Unitary Matrix U with a (22  1) Eigenvector |u> in Phase 

Estimation 

 

In Listing 6.1, the program is in the backend that is simulator of Open QASM with 

thirty-two quantum bits in IBM’s quantum computer. The program is to compute 

eigenvalue of a (22  22) unitary matrix U with a (22  1) eigenvector |u> in phase 

estimation. Figure 6.3 is the corresponding quantum circuit of the program in Listing 

6.1 and is to implement the quantum circuit of Figure 6.2 to compute eigenvalue of a 

(22  22) unitary matrix U with a (22  1) eigenvector |u> in phase estimation. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

 

3. qreg q[6]; 

4. creg c[4]; 

Listing 6.1: The program of computing eigenvalue of a (22  22) unitary matrix U with 

a (22  1) eigenvector |u> in phase estimation. 

 

The statement “OPENQASM 2.0;” on line one of Listing 6.1 is to point out that the 

program is written with version 2.0 of Open QASM. Next, the statement “include 

"qelib1.inc";” on line two of Listing 6.1 is to continue parsing the file “qelib1.inc” as if 

the contents of the file were pasted at the location of the include statement, where the 
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file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. 

 

 

Figure 6.3: Implementing quantum circuits of Figure 6.2 to compute eigenvalue of a 

(22  22) unitary matrix U with a (22  1) eigenvector |u> in phase estimation. 

 

Then, the statement “qreg q[6];” on line three of Listing 6.1 is to declare that in the 

program there are six quantum bits. In the left top of Figure 6.3, six quantum bits are 

subsequently q[0], q[1], q[2], q[3], q[4] and q[5]. The initial value of each quantum bit 

is set to state |0>. We make use of four quantum bits q[0], q[1], q[2] and q[3] to 

respectively encode four quantum bits |y4>, |y3>, |y2> and |y1> in Figure 6.2. We use two 

quantum bits q[4] and q[5] to respectively encode two quantum bits |u1> and |u2> in 

Figure 6.2. For the convenience of our explanation, q[k]0 for 0  k  5 is to represent 

the value 0 of q[k] and q[k]1 for 0  k  5 is to represent the value 1 of q[k]. Because 

quantum bit |y4
0> is the most significant bit and quantum bit |y1

0> is the least significant 

bit, quantum bit |q[0]0> is the most significant bit and quantum bit |q[3]0> is the least 

significant bit. The corresponding decimal value of the first register in Figure 6.3 is 

(|q[0]0>  24 − 1) + (|q[1]0>  23 − 1) + (|q[2]0>  22 − 1) + (|q[3]0>  21 − 1). 

 

Next, the statement “creg c[4];” on line four of Listing 6.1 is to declare that there 

are four classical bits in the program. In the left bottom of Figure 6.3, four classical bits 

are subsequently c[0], c[1], c[2] and c[3]. The initial value of each classical bit is set to 

zero (0). For the convenience of our explanation, c[k]0 for 0  k  3 is to represent the 

value 0 of c[k] and c[k]1 for 0  k  3 is to represent the value 1 of c[k]. The 

corresponding decimal value of the four initial classical bits c[3]0 c[2]0 c[1]0 c[0]0 is 23 

 c[3]0 + 22  c[2]0 + 21  c[1]0 + 20  c[0]0. This indicates that classical bit c[3]0 is the 

most significant bit and classical bit c[0]0 is the least significant bit. For the convenience 

of our explanation, we can rewrite the initial state vector |0> = ( ⨂𝑘=4
1 |𝑦𝑘

0⟩ )  

(⨂𝑗=1
2 |𝑢𝑗

0⟩) in (6.15) in Figure 6.2 as follows 
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|0> = |q[0]0> |q[1]0> |q[2]0> |q[3]0> |q[4]0> |q[5]0>.         (6.16) 

 

6.2.2 Superposition of Quantum Registers to Calculate Eigenvalue of 

a (22  22) Unitary Matrix U with a (22  1) Eigenvector |u> in 

Phase Estimation 

 

In Figure 6.2, the first stage of the circuit is to implement a Hadamard transform 

with four Hadamard gates on the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩ ) and another Hadamard 

transform with two Hadamrad gates on the second register ( ⨂𝑗=1
2 |𝑢𝑗

0⟩ ). The six 

statements “h q[0];”, “h q[1];”, “h q[2];”, “h q[3];”, “h q[4];” and “h q[5];” on line five 

of Listing 6.1 through line ten of Listing 6.1 is to implement six Hadamrad gates on the 

first register and the second register. They complete each Hadamrad gate in the first 

time slot of Figure 6.3 and perform the first stage of the circuit in Figure 6.2. 

 

Listing 6.1 continued… 

 

//Implement a Hadamard transform on two registers. 

 

5. h q[0]; 

6. h q[1]; 

7. h q[2]; 

8. h q[3]; 

9. h q[4]; 

10. h q[5]; 

 

A superposition of the first register is (
1

√24
  ( ⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)) ) = (
1

√24
 

(⊗𝑎=0
3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩))). Another superposition of the second register is (|𝑢⟩ = 

1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)) = 
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))). This is to say that the 

superposition of the second register begins in the new state vector ( |𝑢⟩  = 
1

√22
 

(⊗𝑗=1
2 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩  = 

1

√22
  (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩)) ) and contains two quantum 

bits as is necessary to store ( |𝑢⟩ ). The new state vector ( |𝑢⟩ ) is an eigenstate 

(eigenvector) of U. Therefore, this gives that the following new state vector is 
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|1> = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩))) 

    = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩) 

  = (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))) 

= (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (|𝑢⟩).                   (6.17) 

 

6.2.3 Controlled-U Operations on the Superposition of the Second 

Register to Determine Eigenvalue of a (22  22) Unitary Matrix 

U with a (22  1) Eigenvector |u> in Phase Estimation 

 

In the new state vector |1> in (6.17), each quantum bit in the first register is 

currently in its superposition. The value of the first register is from state (⨂𝑘=4
1 |𝑦𝑘

0⟩) 

(zero) encoded by state (⨂𝑎=0
3 |𝑞[𝑎]0⟩) through state (⨂𝑘=4

1 |𝑦𝑘
1⟩) (fifteen) encoded by 

state (⨂𝑎=0
3 |𝑞[𝑎]1⟩). The circuit of Figure 6.2 can precisely estimate sixteen phases. 

This is to say that the first register with four quantum bits can precisely represent sixteen 

phases. Sixteen phases are subsequently (0 / 24), (1 / 24), (2 / 24), (3 / 24), (4 / 24), (5 / 

24), (6 / 24), (7 / 24), (8 / 24), (9 / 24), (10 / 24), (11 / 24), (12 / 24), (13 / 24), (14 / 24) and 

(15 / 24). The corresponding sixteen phase angles are subsequently (2    0 / 24), (2 

   1 / 24), (2    2 / 24), (2    3 / 24), (2    4 / 24), (2    5 / 24), (2    

6 / 24), (2    7 / 24), (2    8 / 24), (2    9 / 24), (2    10 / 24), (2    11 / 

24), (2    12 / 24), (2    13 / 24), (2    14 / 24) and (2    15 / 24). 

 

Say that we are trying to determine an eigenvalue of 90. This is to say that the 

effect of one application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is 

(U  |u> = 𝑒√−1×2×𝜋×𝜃   |u> = 𝑒√−1×2×𝜋×
4

24   |u>). So, the effect of repeated 

application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is 

 

Ua |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u> = 𝑒√−1×2×𝜋×
4

24×𝑎
  |u>.      (6.18) 

 

A superposition (
1

√2
 (|y1

0> + |y1
1>)) that is encoded by (

1

√2
 (|q[3]0> + |q[3]1>)) at 

the weighted position 20 is the controlled quantum bit of implementing controlled-𝑈20
 

operations on the superposition of the second register that is the state (|𝑢⟩). Similarly, 
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a superposition (
1

√2
 (|y2

0> + |y2
1>)) that is encoded by (

1

√2
 (|q[2]0> + |q[2]1>)) at the 

weighted position 21 is the controlled quantum bit of implementing controlled-𝑈21
 

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a 

superposition (
1

√2
  (|y3

0> + |y3
1>)) that is encoded by (

1

√2
  (|q[1]0> + |q[1]1>)) at the 

weighted position 22 is the controlled quantum bit of implementing controlled-𝑈22
 

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a 

superposition (
1

√2
  (|y4

0> + |y4
1>)) that is encoded by (

1

√2
  (|q[0]0> + |q[0]1>)) at the 

weighted position 23 is the controlled quantum bit of implementing controlled-𝑈23
 

operations on the superposition of the second register that is the state (|𝑢⟩). 

 

The four statements from line eleven through line fourteen in Listing 6.1 are 

“u1(2*pi*4/16*1) q[3];”, “u1(2*pi*4/16*2) q[2];”, “u1(2*pi*4/16*4) q[1];” and 

“u1(2*pi*4/16*8) q[0];”. They take the new state vector (|1>) in (6.17) as their input 

 

Listing 6.1 continued… 

 

//Implement controlled-U operations on the superposition of the second register. 

 

11. u1(2*pi*4/16*1) q[3]; 

12. u1(2*pi*4/16*2) q[2]; 

13. u1(2*pi*4/16*4) q[1]; 

14. u1(2*pi*4/16*8) q[0]; 

 

state vector and implement each controlled-U operation on the superposition of the 

second register in the second time slot of Figure 6.3 and in the second stage of Figure 

6.2. They alert the phase of the state |y1
1> (|q[3]1>) is from one (1) to become 

(𝑒√−1×2×𝜋×
4

16
×20

) = (𝑒√−1×2×𝜋×
4

16
×1

). They alert the phase of the state |y2
1> (|q[2]1>) is 

from one (1) to become (𝑒√−1×2×𝜋×
4

16
×21

) = (𝑒√−1×2×𝜋×
4

16
×2

). They alert the phase of 

the state |y3
1> (|q[1]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×22

) = (𝑒√−1×2×𝜋×
4

16
×4

) 

and alert the phase of the state |y4
1> (|q[0]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×23

) 
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= (𝑒√−1×2×𝜋×
4

16
×8

). This gives that the following new state vector is 

 

|2> = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×23

|𝑦4
1⟩)  (|𝑦3

0⟩ + 𝑒√−1×2×𝜋×
4

16
×22

|𝑦3
1⟩)  

          (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×
4

16
×20

|𝑦1
1⟩))  (|𝑢⟩) 

   = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×8|𝑦4

1⟩)  (|𝑦3
0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑦3

1⟩)  

          (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×2|𝑦2

1⟩)  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑦1

1⟩))  (|𝑢⟩) 

   = (
1

√24
 (|𝑞[0]0⟩ + 𝑒√−1×2×𝜋×

4

16
×8|𝑞[0]1⟩)  (|𝑞[1]0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑞[1]1⟩)  

     (|𝑞[2]0⟩ + 𝑒√−1×2×𝜋×
4

16
×2|𝑞[2]1⟩)  (|𝑞[3]0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑞[3]1⟩))  (|𝑢⟩) 

 

 = (
1

√24
 (∑ 𝑒√−1×2×𝜋×

4

16
×𝑌24−1

𝑌=0 |𝑌⟩))  (|𝑢⟩).                           (6.19) 

 

From this description above, the second quantum register stays in the state (|u>) 

through the computation. Because of phase kickback, the phase of the state |Y> for 0  

Y  24 − 1 is from one (1) to become (𝑒√−1×2×𝜋×
4

16
×𝑌

). In the state vector (|2>) in 

(6.19), it contains sixteen phase angles from state |0> through state |15>. The front eight 

phase angles are (90  0 = 0), (90  1 = 90), (90  2 = 180), (90  3 = 270), 

(90  4 = 360 = 0), (90  5 = 450 = 90), (90  6 = 540 = 180) and (90  7 = 

630 = 270). The last eight phase angles are (90  8 = 720 = 0), (90  9 = 810 = 

90), (90  10 = 900 = 180), (90  11 = 990 = 270), (90  12 = 1080 = 0), (90 

 13 = 1170 = 90), (90  14 = 1260 = 180) and (90  15 = 1350 = 270). The 

phase angle rotates back to its starting value 0 four times. 

 

6.2.4 The Inverse Quantum Fourier Transform on the Superposition 

of the First Register to Compute Eigenvalue of a (22  22) Unitary 

Matrix U with a (22  1) Eigenvector |u> in Phase Estimation 

 

Hidden patterns and information stored in the state vector (|2>) in (6.19) are to that 

its phase angle rotates back to its starting value 0 four times. This implies that the 

number of the period per sixteen phase angles is four and the frequency is equal to four 
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(16 / 4). The twelve statements from line fifteen through line twenty-six in Listing 6.1  

 

Listing 6.1 continued… 

 

//Implement one inverse quantum Fourier transform on the superposition of the first 

// register. 

 

15. h q[0]; 

16. cu1(-2*pi*1/4) q[1],q[0]; 

17. cu1(-2*pi*1/8) q[2],q[0]; 

18. cu1(-2*pi*1/16) q[3],q[0]; 

 

19. h q[1]; 

20. cu1(-2*pi*1/4) q[2],q[1]; 

21. cu1(-2*pi*1/8) q[3],q[1]; 

 

22. h q[2]; 

23. cu1(-2*pi*1/4) q[3],q[2]; 

 

24. h q[3]; 

 

25. swap q[0],q[3]; 

26. swap q[1],q[2]; 

 

implement each quantum operation from the third time slot through the fourteenth time 

slot in Figure 6.3. They actually implement each quantum operation of completing an 

inverse quantum Fourier transform on the superposition of the first register in Figure 

6.2. They take the state vector (|2>) in (6.19) as their input state vector. Because the 

inverse quantum Fourier transform effectively transforms the state of the first 

register into a superposition of the periodic signal’s component frequencies, they 

produce the following state vector 

 

|3> = (∑
1

√24
𝑒√−1×2×𝜋×

4

24×𝑌 1

√24
24−1
𝑌=0  ∑ 𝑒

−√−1×2×𝜋×
𝑖

24×𝑌|𝑖⟩24−1
𝑖=0 )  (|𝑢⟩) 

          = (
1

24 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(
4

24−
𝑖

24)24−1
𝑖=0

24−1
𝑌=0 |𝑖⟩))  (|𝑢⟩) 

          = (∑ ∑
1

24
(𝑒√−1×2×𝜋×(

4

24−
𝑖

24)24−1
𝑌=0

24−1
𝑖=0 )𝑌|𝑖⟩))  (|𝑢⟩).              (6.20) 
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6.2.5 Read the Quantum Result to Figure out Eigenvalue of a (22  22) 

Unitary Matrix U with a (22  1) Eigenvector |u> in Phase 

Estimation 

 

Finally, the four statements “measure q[0] -> c[3];”, “measure q[1] -> c[2];”, 

“measure q[2] -> c[1];” and “measure q[3] -> c[0];” from line twenty-seven through 

line thirty in Listing 6.1 implement a measurement. They measure the output state of 

the inverse quantum Fourier transform to the superposition of the first register in Figure 

6.3 and in Figure 6.2. This is to say that they measure four quantum bits q[0], q[1], q[2] 

and q[3] of the first register and record the measurement outcome by overwriting four 

classical bits c[3], c[2], c[1] and c[0]. 

 

Listing 6.1 continued… 

 

//Complete a measurement on the first register. 

 

27. measure q[0] -> c[3]; 

28. measure q[1] -> c[2]; 

29. measure q[2] -> c[1]; 

30. measure q[3] -> c[0]; 

 

In the backend simulator with thirty-two quantum bits in IBM’s quantum 

computers, we use the command “run” to execute the program in Listing 6.1. Figure 

6.4 shows the measured result. From Figure 6.4, we obtain that a computational basis 

state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> and c[0] = 

0 = q[3] = |0>) has the probability 100%. This is to say that the value of  is equal to (4 

/ 16). Therefore, we obtain that eigenvalue of a (22  22) unitary matrix U with a (22  

1) eigenvector |u> is equal to (𝑒√−1×2×𝜋×
4

24) with the probability 100%. 
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Figure 6.4: A computational basis state 0100 has the probability 100%. 

 

6.3 Quantum Counting to a Decision Problem with Any Input of n Bits 

in Real Applications of Phase Estimation 

 

A decision problem is a problem in which it has only two possible outputs (yes or 

no) on any input of n bits. An output “yes” in the decision problem is to the number of 

solutions not to be zero and another output “no” in the decision problem is to the number 

of solutions to be zero. Solving a decision problem with any input of n bits is equivalent 

to solve one interesting problem with any input of n bits that is to from an unsorted 

database including 2n items with each item has n bits how many items satisfy any given 

condition and we would like to find the number of solutions. If the number of solutions 

is not equal to zero, then there is an output “yes” in the decision problem with any input 

of n bits. Otherwise, there is an output “no” in the decision problem with any input of 

n bits. 

 

 A common formulation of a decision problem with any input of n bits is as follows. 

For any given oracular function Of: {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} → 

{0, 1}, its domain is {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} and its range is {0, 

1}. The decision problem with any input of n bits is asking to how many elements from 

its domain satisfy the condition Of(u1 u2  un − 1 un) = 1. If the number of elements from 

its domain that satisfy Of(u1 u2  un − 1 un) to have a true value (1) is not equal to zero, 

then an output is “yes” to the decision problem with any input of n bits. Otherwise, an 

output is “no” for the decision problem with any input of n bits. 

 

6.3.1 Binary Search Trees for Representing the Domain of a Decision 

Problem with Any Input of n Bits 

 

A tree is a finite set of one or more nodes such that there is a specially designated 

node called the root and the remaining nodes are partitioned into v  0 disjoint sets T1, 

, Tv, where each of these sets is a tree. T1, , Tv are called the subtrees of the root. A 

binary tree is a finite set of nodes that is either empty or contains a root and two disjoint 

binary trees called the left subtree and the right subtree. 

 

For any given oracular function Of: {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} 

→ {0, 1}, its domain is {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} and its range is 

{0, 1}. A decision problem with any input of n bits is asking to how many elements 

from its domain satisfy the condition Of(u1 u2  un − 1 un) to have a true value (1). We 
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make use of a binary tree in Figure 6.5 to represent the structure of the domain that is 

{u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. In the binary tree in Figure 6.5, a node 

stands for a bit of one element in {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. The 

root of the binary tree in Figure 6.5 is u1. The value of the left branch of each node 

represents that the value of the corresponding bit is equal to zero (0) and the value of 

the right branch of each node stands for that the value of the corresponding bit is equal 

to one (1). Since the value of the left branch of each node is less than the value of the 

right branch of each node, we regard the binary tree in Figure 6.5 as a binary search 

tree. 

 

 

Figure 6.5: A binary search tree for representing the domain of a decision problem with 

any input of n bits. 

 

The binary search tree in Figure 6.5 includes 2n subtrees and each subtree encodes 

one element in {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. For example, the first 

subtree (u1)--
0--(u2)--

0--  (un-1)--
0--(un)--

0-- encodes the first element {u1
0 u2

0  un − 

1
0 un

0}. The second subtree (u1)--
0--(u2)--

0--  (un-1)--
0--(un)--

1-- encodes the second 

element {u1
0 u2

0  un − 1
0 un

1}. The last subtree (u1)--
1--(u2)--

1--  (un-1)--
1--(un)--

1-- 

encodes the last element {u1
1 u2

1  un − 1
1 un

1}. 

 

6.3.2 Flowchart of Solving a Decision Problem with Any Input of n Bits 

 

Figure 6.6 is flowchart of solving a decision problem with any input of n bits. On 

the execution of the first statement, S1, it sets the initial value of u1 u2  un − 1 un to zero 
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(0). Next, on the execution of the second statement, S2, it judges whether Of(u1 u2  un 

− 1 un) has a true value (1) or not. If it returns a true value, then on the execution of the 

third statement, S3, it generates that an output is “yes”. Next, on the execution of the 

fourth statement, S4, it executes one “End” instruction to terminate the processing of 

solving a decision problem with any input of n bits. Otherwise, on the execution the 

fifth statement, S5, it increases the value of u1 u2  un − 1 un. Next, on the execution of 

the sixth statement, S6, it judges whether the value of u1 u2  un − 1 un is greater than 2n 

or not. If it returns a true value, then on the execution of the seventh statement, S7, it 

produces that an output is “no”. Next, on the execution of the eighth statement, S8, it 

executes one “End” instruction to terminate the processing of solving a decision 

problem with any input of n bits. Otherwise, it goes to statement S2 and continues to 

execute statement S2. 

 

 

Figure 6.6: Logical flowchart of solving a decision problem with any input of n bits. 

 

6.3.3 Geometrical Interpretation to Solve a Decision Problem with Any 

Input of n Bits 
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Binary search trees in Figure 6.5 encode {u1 u2  un − 1 un   uj  {0, 1} for 1  j 

 n} that is the domain of a decision problem with any input of n bits. We assume that 

an initial state vector (|𝜙0⟩ ) is (𝑗=1
𝑛 |𝑢𝑗

0⟩ ). We begin to make use of a Hadamard 

transform (𝑗=1
𝑛 𝐻) on the initial state vector (|𝜙0⟩) that is the register (𝑗=1

𝑛 |𝑢𝑗
0⟩). A 

superposition of the register is 

 

|𝜙1⟩ = 
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩)).            (6.21) 

 

The new state vector (|𝜙1⟩) encodes each subtree in Figure 6.5 with that the amplitude 

of each subtree is (
1

√2𝑛
). This is to say that it encodes each element of the domain to a 

decision problem with any input of n bits. 

 

In the state vector (|𝜙1⟩) in (6.21), subtrees (elements) that satisfy Of(u1 u2  un − 1 

un) to have a true value (1) are referred as marked states and ones that do not result in a 

solution are referred as unmarked states. We assume that N is equal to 2n. We also 

assume that in the state vector (|𝜙1⟩) in (6.21), S stands for the number of solution(s) 

and (N − S) stands for the number of non-solution(s) to a decision problem with any 

input of n bits. We build two superpositions comprising uniformly distributed 

computational basis states 

|𝜑⟩ = 
1

√𝑁−𝑆
 (∑ |𝑢1 𝑢2  ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=0 ),      (6.22) 

|𝜆⟩ = 
1

√𝑆
 (∑ |𝑢1 𝑢2  ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=1 ).         (6.23) 

 

Because the inner product of |𝜑⟩ and |𝜆⟩ is equal to zero and the length of |𝜑⟩ and 

|𝜆⟩  is equal to one, |𝜑⟩  and |𝜆⟩  form an orthonormal basis of a two-dimensional 

Hilbert space which is depicted in Figure 6.7. In Figure 6.7, Point D is the original point 

of the two-dimensional Hilbert space and its coordinate is (0, 0). 

 

The state vector (|𝜙1⟩) in 6.21 can be expressed as a linear combination of (|𝜑⟩) 

and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7 in the following way 

 

|𝜙1⟩ = 
1

√𝑁
 (∑ |𝑢1 𝑢2  ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=0  + ∑ |𝑢1 𝑢2  ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=1 ) 
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= (
√𝑁−𝑆

√𝑁
|𝜑⟩ +

√𝑆

√𝑁
|𝜆⟩).                                           (6.24) 

 

From (6.24), coordinate of (|𝜙1⟩) in a two-dimensional Hilbert space of Figure 6.7 is 

(
√𝑁−𝑆

√𝑁
, 

√𝑆

√𝑁
) and is strictly related to the angle between (|𝜙1⟩) and (|𝜑⟩) denoted by (

𝜃

2
) 

which is depicted in Figure 6.7. Point B is coordinate point of (|𝜙1⟩). 

 

 

Figure 6.7: Geometrical interpretation of solving a decision problem with any input of 

n bits in a two-dimensional Hilbert space spanned by (|𝜑⟩) and (|𝜆⟩). 

 

In the quantum search algorithm introduced in the third Chapter, the Oracle O 

multiplies the probability amplitude of the answer(s) by −1 and leaves any other 

amplitude unchanged. We use the Oracle O to operate on the state vector (|𝜙1⟩) in (6.21) 

and obtain the new state vector |𝜙2⟩  = O(|𝜙1⟩ ) that can be expressed as a linear 

combination of (|𝜑⟩) and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7 in the 

following way 
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                      |𝜙2⟩ = (
√𝑁−𝑆

√𝑁
|𝜑⟩ +(−

√𝑆

√𝑁
|𝜆⟩)).                 (6.25) 

 

From (6.25), coordinate of (|𝜙2⟩) in a two-dimensional Hilbert space of Figure 6.7 is 

(
√𝑁−𝑆

√𝑁
, −

√𝑆

√𝑁
) and is depicted in Figure 6.7. Point C is coordinate point of (|𝜙2⟩). The 

angle between (|𝜙2⟩) and (|𝜑⟩) is actually equal to (
𝜃

2
) that is depicted in Figure 6.7. 

The Oracle O is equivalent to a reflection about axis |𝜑⟩  in the two-dimensional 

geometrical interpretation of Figure 6.7. Because in Figure 6.7 point Z is the 

intersection of line 𝐵𝐶̅̅ ̅̅  and axis |𝜑⟩ in which they are vertical each other, we obtain 

its coordinate to be (
√𝑁−𝑆

√𝑁
, 0). 

 

In the quantum search algorithm introduced in the third Chapter, the unitary 

operator U is the inversion about the average. The Grover operator G consists of two 

transformations on the index register that are U and O. We apply the unitary operator U 

to operate on the state vector (|𝜙2⟩) in (6.25) and get the new state vector |𝜙3⟩ = U 

(|𝜙2⟩) = (U)(O) (|𝜙1⟩) = G (|𝜙1⟩). The new state vector (|𝜙3⟩) can be expressed as a 

linear combination of (|𝜑⟩) and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7 

in the following way 

 

              |𝜙3⟩ =  (
√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
) |𝜑⟩ + 

√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
) |𝜆⟩).      (6.26) 

 

From (6.26), coordinate of (|𝜙3⟩) in a two-dimensional Hilbert space of Figure 6.7 is 

(
√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
), 

√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
)) and is depicted in Figure 6.7. Point E is coordinate 

point of (|𝜙3⟩). The angle between (|𝜙3⟩) and (|𝜙1⟩) is actually equal to ( ) that is 

depicted in Figure 6.7. The unitary operator U (the inversion about the average) in 

Figure 6.7 reflects its input state (|𝜙2⟩) over (|𝜙1⟩) to (|𝜙3⟩) in the two-dimensional 

geometrical interpretation of Figure 6.7. In Figure 6.7, point F is the intersection of line 

𝐸𝐶̅̅ ̅̅  and line 𝐷𝐵̅̅ ̅̅  in which they are vertical each other and point H is the intersection 

of line 𝐸𝐻̅̅ ̅̅  and axis |𝜑⟩ in which they are vertical each other. 

 

6.3.4 Determine the Matrix of the Grover Operator in Geometrical 

Interpretation to Solve a Decision Problem with Any Input of n 

Bits 
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From Figure 6.7, point B is (
√𝑁−𝑆

√𝑁
, 

√𝑆

√𝑁
), point D is (0, 0) and point Z is (

√𝑁−𝑆

√𝑁
, 0). 

The length of line 𝐷𝐵̅̅ ̅̅  is one (1), the length of line 𝐷𝑍̅̅ ̅̅  is (√
𝑁−𝑆

𝑁
) and the length of 

line 𝐵𝑍̅̅ ̅̅  is (√
𝑆

𝑁
 ). Therefore, we obtain that sin( / 2) = (√

𝑆

𝑁
 / 1) = (√

𝑆

𝑁
 ) and cos( / 

2) = (√
𝑁−𝑆

𝑁
 / 1) = (√

𝑁−𝑆

𝑁
 ). Because coordinate of (|𝜙1⟩) in Figure 6.7 is (

√𝑁−𝑆

√𝑁
, 

√𝑆

√𝑁
), 

its coordinate is also equal to (cos( / 2), sin( / 2)) in the basis of (|𝜑⟩) and (|𝜆⟩). 

From Figure 6.7, sin( + ( / 2)) = (
√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
)) and cos( + ( / 2)) = (

√𝑁−𝑆

√𝑁
  

(
𝑁−4×𝑆

𝑁
)) are obtained. Since coordinate of |𝜙3⟩ in Figure 6.7 is (

√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
), 

√𝑆

√𝑁
 

 (
3×𝑁−4×𝑆

𝑁
)), its coordinate is also equal to (cos( + ( / 2)), sin( + ( / 2))) in the basis 

of (|𝜑⟩) and (|𝜆⟩). From Figure 6.7, the matrix of the Grover operator G in the basis 

of (|𝜑⟩) and (|𝜆⟩) is 

 

G = [
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
]

2×2

 .                 (6.27) 

 

The matrix of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) is a unitary matrix 

(a unitary operator) because of ([
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
]

2×2

 [
cos(𝜃) sin(𝜃)

−sin(𝜃) cos(𝜃)
]

2×2

 = 

[
cos(𝜃) sin(𝜃)

−sin(𝜃) cos(𝜃)
]

2×2

    [
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]
2×2

  = [
1 0
0 1

]
2×2

) . The eigenvalues 

of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) are 

 

(𝑒√−1×𝜃) and (𝑒−√−1×𝜃).                   (6.28) 

 

The value of  is a real. The corresponding eigenvectors of the Grover operator G in 

the basis of (|𝜑⟩) and (|𝜆⟩) are 

 

|𝑉1⟩ = 
𝑒√−1×𝛾

√2
[√−1

1
]

2×1

 and |𝑉2⟩ = 
𝑒√−1×𝛾

√2
[−√−1

1
]

2×1

.      (6.29) 

 

The value of  is a real. 
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6.3.5 Quantum Counting Circuit to Solve a Decision Problem with Any 

Input of n Bits 

 

From Figure 6.7, we can figure out the projection of |𝜙1⟩ onto axis |> that is sin( 

/ 2) = (√
𝑆

𝑁
 / 1) = (√

𝑆

𝑁
 ). The value of S is to the number of solutions that is how many 

elements in the domain {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} satisfy Of(u1 u2 

 un − 1 un) to have a true value. Because S = (sin( / 2))2  N and the value of N is 

known, if we can determine the value of , then we can compute the value of S that is 

the number of solutions. If the value of S is not equal to zero, then an output is “yes” to 

a decision problem with any input of n bits. Otherwise, an output is “no” to the decision 

problem with any input of n bits. 

 

Figure 6.8 is quantum-counting circuits that are a real application of phase 

estimation. In Figure 6.8, if an eigenvalue generated from controlled Grover operations 

 

 

Figure 6.8: Quantum counting circuits to calculate the number of solutions to a decision 

problem with the input of n bits. 

 

is (𝑒√−1×𝜃), then we use controlled Grover operations followed by inverse quantum 

Fourier transform to find the best approximation of t bits to the value of  . Otherwise, 

we use controlled Grover operations followed by quantum Fourier transform to find 
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the best approximation of t bits to the value of  . In Figure 6.8, a superposition of the 

second register is the state vector |u>. The state vector |u> is a superposition of (|𝜑⟩) in 

(6.22) and (|𝜆⟩) in (6.23). Because |𝑉1⟩ and |𝑉2⟩ in (6.29) form an orthonormal basis 

of the space spanned by (|𝜑⟩) in (6.22) and (|𝜆⟩) in (6.23), the state vector |u> in Figure 

6.8 can be expressed as a linear combination of |𝑉1⟩ and |𝑉2⟩ in (6.29). 

 

6.4 Determine the Number of Solutions to the Independent-set 

Problem in a Graph with Two Vertices and One Edge in Phase 

Estimation 

 

We assume that graph G has is a set V of vertices and a set E of edges. We also 

suppose that V is {v1, …, vn} in which each element vj for 1  j  n is a vertex in graph 

G. We assume that E is {(va, vb)| va  V and vb  V}. We use G = (V, E) to represent it. 

We assume that |V| is the number of vertices in V and |E| is the number of edges in E. 

We also suppose that |V| is equal to n and |E| is equal to m. The value of m is at most 

equal to ((n  (n − 1)) / 2). For graph G = (V, E), its complementary graph is 𝐺̅ = (V, 

𝐸̅) in which each edge in 𝐸̅ is out of E. This is to say that 𝐸̅ is {(vc, vd)| vc  V and vd 

 V and (vc, vd)  E}. We assume that |𝐸̅| is the number of edges in 𝐸̅. The number of 

edges in 𝐸̅ is (((n  (n − 1)) / 2) − m). An independent-set of graph G with n vertices 

and m edges is a subset V1  V of vertices such that for all vc, vd  V1, the edge (vc, vd) 

is not in E. The independent-set problem of graph G with n vertices and m edges is to 

find a maximum-sized independent set in G. 

 

Consider that in Figure 6.9, a graph G1 contains two vertices {v1, v2} and one edge 

 

 

Figure 6.9: A graph G1 has two vertices and one edge. 

 

{(v1, v2)} and its complementary graph 𝐺1̅̅̅̅  includes the same vertices and zero edge. 

This is an example of a decision problem that is deciding whether a graph G1 in Figure 

6.9 has a maximum-sized independent set or not. All of the subsets of vertex are {} that 

is an empty set, {v1}, {v2} and {v1, v2}. Because in {v1, v2}, the edge (v1, v2) is one edge 

of graph G1, {v1, v2} does not satisfy definition of an independent set. For other three 

subsets of vertex that are {} that is an empty set, {v1} and {v2}, there is no edge in them 
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to connect to other distinct vertex. Therefore, they satisfy definition of an independent 

set. So, all of the independent sets in graph G1 are {} that is an empty set, {v1} and {v2}. 

Since the number of vertex in them are subsequently zero, one and one, the maximum-

sized independent set for graph G1 is {v1} and {v2}. Finally, for the decision problem 

“a graph G1 in Figure 6.9, does it have a maximum-sized independent set?” it gives an 

output “yes”. 

 

For any graph G with n vertices and m edges, all possible independent sets are 2n 

possible choices consisting of legal and illegal independent sets in G. Each possible 

choice corresponds to a subset of vertices in G. Hence, we assume that Y is a set of 2n 

possible choices and Y is equal to {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. This 

indicates that the length of each element in Y is n bits and each element represents one 

of 2n possible choices. For the sake of presentation, we suppose that uj
0 is that the value 

of uj is zero and uj
1 is that the value of uj is one. If an element u1 u2  un − 1 un in Y is a 

legal independent set and the value of uj for 1  j  n is one, then uj
1 represents that the 

jth vertex is within the legal independent set. If an element u1 u2  un − 1 un in Y is a 

legal independent set and the value of uj for 1  j  n is zero, then uj
0 represents that the 

jth vertex is not within the legal independent set. We use superposition of a register with 

n quantum bits (
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩))) to encode a set of 2n possible choices, Y = 

{u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. 

 

Deciding whether a graph G1 with two vertices and one edge in Figure 6.9 has a 

maximum-sized independent set or not is equivalent to compute the number of solution 

to the same problem. Therefore, we make use of the circuit in Figure 6.10 to determine 

 

 

Figure 6.10: Quantum circuit for deciding whether a graph G1 with two vertices and 

one edge in Figure 6.9 has a maximum-sized independent set or not. 
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the number of solution to the independent set problem in a graph G1 with two vertices 

and one edge in Figure 6.9. It uses two quantum registers. At the left top in Figure 6.10, 

the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩ ) includes four quantum bits initially in the state |0>. 

Quantum bit |y4
0> is the most significant bit. Quantum bit |y1

0> is the least significant 

bit. The corresponding decimal value of the first register is (|y4
0>  24 − 1) + (|y3

0>  23 

− 1) + (|y2
0>  22 − 1) + (|y1

0>  21 − 1). At the left bottom in Figure 6.10, the second register 

(⨂𝑗=1
2 |𝑢𝑗

0⟩ ) contains two quantum bits initially in the state |0>. Quantum bit |u1> 

encodes the first vertex v1 in graph G1 in Figure 6.9 and is the most significant bit. 

Quantum bit |u2> encodes the second vertex v2 in graph G1 in Figure 6.9 and is the least 

significant bit. Quantum bits |u1
1> |u2

1> encodes {v1, v2} that is a subset of two vertices. 

Quantum bits |u1
1> |u2

0> encodes {v1} that is a subset of one vertex. Quantum bits |u1
0> 

|u2
1> encodes {v2} that is a subset of one vertex. Quantum bits |u1

0> |u2
0> encodes {} 

that is an empty subset without any vertex. Of course, the corresponding decimal value 

of the second register is (|u1
0>  22 − 1) + (|u2

0>  22 − 2). For the convenience of the 

presentation, the following initial state vector is 

 

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩).                (6.30) 

 

6.4.1 Initialize Quantum Registers to Calculate the Number of 

Solutions to the Independent-set Problem in a Graph with Two 

Vertices and One Edge in Phase Estimation 

 

In Listing 6.2, the program is in the backend that is simulator of Open QASM with 

thirty-two quantum bits in IBM’s quantum computer. The program is to calculate the 

number of solutions to the independent-set problem in graph G1 with two vertices and 

one edge in Figure 6.9. Figure 6.11 is the corresponding quantum circuit of the program 

in Listing 6.2 and is to implement the quantum circuit of Figure 6.10 to calculate the 

number of solutions to the independent-set problem in graph G1 with two vertices and 

one edge in Figure 6.9. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

 

3. qreg q[6]; 

4. creg c[4]; 

Listing 6.2: The program of computing the number of solutions to the independent-set 

problem in graph G1 with two vertices and one edge in Figure 6.9. 
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The statement “OPENQASM 2.0;” on line one of Listing 6.2 is to indicate that the 

program is written with version 2.0 of Open QASM. Then, the statement “include 

"qelib1.inc";” on line two of Listing 6.2 is to continue parsing the file “qelib1.inc” as if 

the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. 

 

 

Figure 6.11: Implementing quantum circuits of Figure 6.10 to compute the number of 

solutions to the independent-set problem in graph G1 with two vertices and one edge in 

Figure 6.9. 

 

Next, the statement “qreg q[6];” on line three of Listing 6.2 is to declare that in the 

program there are six quantum bits. In the left top of Figure 6.11, six quantum bits are 

respectively q[0], q[1], q[2], q[3], q[4] and q[5]. The initial value of each quantum bit 

is set to state |0>. We use four quantum bits q[0], q[1], q[2] and q[3] to subsequently 

encode four quantum bits |y4>, |y3>, |y2> and |y1> in Figure 6.10. We apply two quantum 

bits q[4] and q[5] to respectively encode two quantum bits |u1> and |u2> in Figure 6.10. 

For the convenience of our explanation, q[k]0 for 0  k  5 is to represent the value 0 of 

q[k] and q[k]1 for 0  k  5 is to represent the value 1 of q[k]. Since quantum bit |y4
0> 

is the most significant bit and quantum bit |y1
0> is the least significant bit, quantum bit 

|q[0]0> is the most significant bit and quantum bit |q[3]0> is the least significant bit. The 

corresponding decimal value of the first register in Figure 6.11 is (|q[0]0>  24 − 1) + 

(|q[1]0>  23 − 1) + (|q[2]0>  22 − 1) + (|q[3]0>  21 − 1). 

 

Then, the statement “creg c[4];” on line four of Listing 6.2 is to declare that there 

are four classical bits in the program. In the left bottom of Figure 6.11, four classical 

bits are respectively c[0], c[1], c[2] and c[3]. The initial value of each classical bit is set 

to zero (0). For the convenience of our explanation, c[k]0 for 0  k  3 is to represent 

the value 0 of c[k] and c[k]1 for 0  k  3 is to represent the value 1 of c[k]. The 

corresponding decimal value of the four initial classical bits c[3]0 c[2]0 c[1]0 c[0]0 is 23 
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 c[3]0 + 22  c[2]0 + 21  c[1]0 + 20  c[0]0. This is to say that classical bit c[3]0 is the 

most significant bit and classical bit c[0]0 is the least significant bit. For the convenience 

of our explanation, we can rewrite the initial state vector |0> = ( ⨂𝑘=4
1 |𝑦𝑘

0⟩ )  

(⨂𝑗=1
2 |𝑢𝑗

0⟩) in (6.30) in Figure 6.10 as follows 

 

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩) = |q[0]0> |q[1]0> |q[2]0> |q[3]0> |q[4]0> |q[5]0>. (6.31) 

 

6.4.2 Superposition of Quantum Registers to Compute the Number of 

Solutions to the Independent-set Problem in a Graph with Two 

Vertices and One Edge in Phase Estimation 

 

In Figure 6.10, the first stage of the circuit is to implement a Hadamard transform 

with four Hadamard gates on the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩ ) and another Hadamard 

transform with two Hadamrad gates on the second register ( ⨂𝑗=1
2 |𝑢𝑗

0⟩ ). The six 

statements “h q[0];”, “h q[1];”, “h q[2];”, “h q[3];”, “h q[4];” and “h q[5];” on line five 

of Listing 6.2 through line ten of Listing 6.2 is to implement six Hadamrad gates on the 

first register and the second register. They perform each Hadamrad gate in the first time 

slot of Figure 6.11 and complete the first stage of the circuit in Figure 6.10. 

 

Listing 6.2 continued… 

 

//Implement a Hadamard transform on two registers. 

 

5. h q[0]; 

6. h q[1]; 

7. h q[2]; 

8. h q[3]; 

9. h q[4]; 

10. h q[5]; 

 

A superposition of the first register is (
1

√24
  ( ⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)) ) = (
1

√24
 

(⊗𝑎=0
3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩))). Another superposition of the second register is (|𝑢⟩ = 

1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)) = 
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))). This implies that the 

superposition of the second register begins in the new state vector ( |𝑢⟩  = 
1

√22
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(⊗𝑗=1
2 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩)) = 

1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))) and contains two quantum 

bits as is necessary to store (|𝑢⟩). In superposition of the second register (|𝑢⟩), state 

(|𝑢1
1⟩|𝑢2

1⟩) that is encoded by state (|𝑞[4]1⟩|𝑞[5]1⟩) with the amplitude (1/2) encodes 

{v1, v2} that is a subset of two vertices. State (|𝑢1
1⟩|𝑢2

0⟩ ) that is encoded by state 

(|𝑞[4]1⟩|𝑞[5]0⟩) with the amplitude (1/2) encodes {v1} that is a subset of one vertex. 

State (|𝑢1
0⟩|𝑢2

1⟩ ) that is encoded by state (|𝑞[4]0⟩|𝑞[5]1⟩ ) with the amplitude (1/2) 

encodes {v2} that is a subset of one vertex. State (|𝑢1
0⟩|𝑢2

0⟩) that is encoded by state 

(|𝑞[4]0⟩|𝑞[5]0⟩) with the amplitude (1/2) encodes {} that is an empty subset without 

vertex. The new state vector (|𝑢⟩) is an eigenstate (eigenvector) of G that is the Grover 

operator and is a unitary operator. Thus, this gives that the following new state vector 

is 

 

|1> = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩))) 

    = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩) 

  = (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))) 

= (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (|𝑢⟩).                   (6.32) 

 

6.4.3 Controlled-G Operations on the Superposition of the Second 

Register to Determine the Number of Solutions to the 

Independent-set Problem in a Graph with Two Vertices and One 

Edge in Phase Estimation 

 

In the new state vector |1> in (6.32), each quantum bit in the first register is 

currently in its superposition. The value of the first register is from state (⨂𝑘=4
1 |𝑦𝑘

0⟩) 

(zero) encoded by state (⨂𝑎=0
3 |𝑞[𝑎]0⟩) through state (⨂𝑘=4

1 |𝑦𝑘
1⟩) (fifteen) encoded by 

state (⨂𝑎=0
3 |𝑞[𝑎]1⟩) with that the amplitude of each state is (1 / 4). The circuit of Figure 

6.10 can precisely estimate sixteen phases. This indicates that the first register with four 

quantum bits can precisely represent sixteen phases. Sixteen phases are respectively (0 

/ 24), (1 / 24), (2 / 24), (3 / 24), (4 / 24), (5 / 24), (6 / 24), (7 / 24), (8 / 24), (9 / 24), (10 / 24), 

(11 / 24), (12 / 24), (13 / 24), (14 / 24) and (15 / 24). The corresponding sixteen phase 

angles are respectively (2    0 / 24), (2    1 / 24), (2    2 / 24), (2    3 / 24), 

(2    4 / 24), (2    5 / 24), (2    6 / 24), (2    7 / 24), (2    8 / 24), (2   

 9 / 24), (2    10 / 24), (2    11 / 24), (2    12 / 24), (2    13 / 24), (2    
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14 / 24) and (2    15 / 24). 

 

Say that we are trying to compute an eigenvalue of 90. The number of solutions 

for the independent-set problem in a graph G1 with two vertices and one edge in Figure 

6.9 is S = N  (sin( / 2))2 = 4  (sin(90 / 2))2 = 4  (1 /2) = 2. This gives that the 

answer is two for determining the number of solutions for the independent-set problem 

in a graph G1 with two vertices and one edge in Figure 6.9. Therefore, the effect of one 

application of the Grover operator G on its eigenvector (eigenstate) (|𝑢⟩) is (G  |u> = 

𝑒±√−1×2×𝜋×𝜃  |u> = 𝑒
±√−1×2×𝜋×

4

24  |u>). So, the effect of repeated application of 

the Grover operator G on its eigenvector (eigenstate) (|𝑢⟩) is 

 

Ga |u> = 𝑒±√−1×2×𝜋×𝜃×𝑎 |u> = 𝑒
±√−1×2×𝜋×

4

24×𝑎
  |u>.    (6.33) 

 

A superposition (
1

√2
 (|y1

0> + |y1
1>)) that is encoded by (

1

√2
 (|q[3]0> + |q[3]1>)) at 

the weighted position 20 is the controlled quantum bit of implementing controlled-𝐺20
 

operations on the superposition of the second register that is the state (|𝑢⟩). Similarly, 

a superposition (
1

√2
 (|y2

0> + |y2
1>)) that is encoded by (

1

√2
 (|q[2]0> + |q[2]1>)) at the 

weighted position 21 is the controlled quantum bit of implementing controlled-𝐺21
 

operations on the superposition of the second register that is the state (|𝑢⟩). Then, a 

superposition (
1

√2
  (|y3

0> + |y3
1>)) that is encoded by (

1

√2
  (|q[1]0> + |q[1]1>)) at the 

weighted position 22 is the controlled quantum bit of implementing controlled-𝐺22
 

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a 

superposition (
1

√2
  (|y4

0> + |y4
1>)) that is encoded by (

1

√2
  (|q[0]0> + |q[0]1>)) at the 

weighted position 23 is the controlled quantum bit of implementing controlled-𝐺23
 

operations on the superposition of the second register that is the state (|𝑢⟩). 

 

The Grover operator G has two eigenvalues (𝑒√−1×2×𝜋×𝜃) and (𝑒−√−1×2×𝜋×𝜃). We 

assume that it generates the eigenvalue (𝑒√−1×2×𝜋×𝜃 ) = (𝑒√−1×2×𝜋×
4

24 ). The four 

statements from line eleven through line fourteen in Listing 6.2 are “u1(2*pi*4/16*1) 

q[3];”, “u1(2*pi*4/16*2) q[2];”, “u1(2*pi*4/16*4) q[1];” and “u1(2*pi*4/16*8) q[0];”. 
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Listing 6.2 continued… 

 

//Implement controlled-G operations on the superposition of the second register. 

 

11. u1(2*pi*4/16*1) q[3]; 

12. u1(2*pi*4/16*2) q[2]; 

13. u1(2*pi*4/16*4) q[1]; 

14. u1(2*pi*4/16*8) q[0]; 

 

They take the new state vector (|1>) in (6.32) as their input state vector and implement 

each controlled-G operation on the superposition of the second register in the second 

time slot of Figure 6.11 and in the second stage of Figure 6.10. They alert the phase of 

the state |y1
1> (|q[3]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×20

) = (𝑒√−1×2×𝜋×
4

16
×1

). 

They alert the phase of the state |y2
1> (|q[2]1>) is from one (1) to become 

(𝑒√−1×2×𝜋×
4

16
×21

) = (𝑒√−1×2×𝜋×
4

16
×2

). They alert the phase of the state |y3
1> (|q[1]1>) is 

from one (1) to become (𝑒√−1×2×𝜋×
4

16
×22

) = (𝑒√−1×2×𝜋×
4

16
×4

) and alert the phase of the 

state |y4
1> (|q[0]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×23

) = (𝑒√−1×2×𝜋×
4

16
×8

). 

This gives that the following new state vector is 

 

|2> = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×23

|𝑦4
1⟩)  (|𝑦3

0⟩ + 𝑒√−1×2×𝜋×
4

16
×22

|𝑦3
1⟩)  

          (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×
4

16
×20

|𝑦1
1⟩))  (|𝑢⟩) 

   = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×8|𝑦4

1⟩)  (|𝑦3
0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑦3

1⟩)  

          (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×2|𝑦2

1⟩)  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑦1

1⟩))  (|𝑢⟩) 

   = (
1

√24
 (|𝑞[0]0⟩ + 𝑒√−1×2×𝜋×

4

16
×8|𝑞[0]1⟩)  (|𝑞[1]0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑞[1]1⟩)  

     (|𝑞[2]0⟩ + 𝑒√−1×2×𝜋×
4

16
×2|𝑞[2]1⟩)  (|𝑞[3]0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑞[3]1⟩))  (|𝑢⟩) 

 

 = (
1

√24
 (∑ 𝑒√−1×2×𝜋×

4

16
×𝑌24−1

𝑌=0 |𝑌⟩))  (|𝑢⟩).                           (6.34) 
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From this description above, the second quantum register stays in the state (|u>) 

through the computation. Because of phase kickback, the phase of the state |Y> for 0  

Y  24 − 1 is from one (1) to become (𝑒√−1×2×𝜋×
4

16
×𝑌

). In the state vector (|2>) in 

(6.34), it includes sixteen phase angles from state |0> through state |15>. The front eight 

phase angles are (90  0 = 0), (90  1 = 90), (90  2 = 180), (90  3 = 270), 

(90  4 = 360 = 0), (90  5 = 450 = 90), (90  6 = 540 = 180) and (90  7 = 

630 = 270). The last eight phase angles are (90  8 = 720 = 0), (90  9 = 810 = 

90), (90  10 = 900 = 180), (90  11 = 990 = 270), (90  12 = 1080 = 0), (90 

 13 = 1170 = 90), (90  14 = 1260 = 180) and (90  15 = 1350 = 270). The 

phase angle rotates back to its starting value 0 four times. 

 

6.4.4 The Inverse Quantum Fourier Transform on the Superposition 

of the First Register to Compute the Number of Solutions to the 

Independent-set Problem in a Graph with Two Vertices and One 

Edge in Phase Estimation 

 

Hidden patterns and information stored in the state vector (|2>) in (6.34) are to that 

its phase angle rotates back to its starting value 0 four times. This is to say that the 

number of the period per sixteen phase angles is four and the frequency is equal to four 

(16 / 4). The twelve statements from line fifteen through line twenty-six in Listing 6.2 

 

Listing 6.2 continued… 

 

//Implement one inverse quantum Fourier transform on the superposition of the first 

// register. 

 

15. h q[0]; 

16. cu1(-2*pi*1/4) q[1],q[0]; 

17. cu1(-2*pi*1/8) q[2],q[0]; 

18. cu1(-2*pi*1/16) q[3],q[0]; 

 

19. h q[1]; 

20. cu1(-2*pi*1/4) q[2],q[1]; 

21. cu1(-2*pi*1/8) q[3],q[1]; 

 

22. h q[2]; 
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23. cu1(-2*pi*1/4) q[3],q[2]; 

 

24. h q[3]; 

 

25. swap q[0],q[3]; 

26. swap q[1],q[2]; 

 

complete each quantum operation from the third time slot through the fourteenth time 

slot in Figure 6.11. They actually implement each quantum operation of performing an 

inverse quantum Fourier transform on the superposition of the first register in Figure 

6.10. They take the state vector (|2>) in (6.34) as their input state vector. Since the 

inverse quantum Fourier transform effectively transforms the state of the first 

register into a superposition of the periodic signal’s component frequencies, they 

generate the following state vector 

 

|3> = (∑
1

√24
𝑒√−1×2×𝜋×

4

24×𝑌 1

√24
24−1
𝑌=0  ∑ 𝑒

−√−1×2×𝜋×
𝑖

24×𝑌|𝑖⟩24−1
𝑖=0 )  (|𝑢⟩) 

          = (
1

24 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(
4

24−
𝑖

24)24−1
𝑖=0

24−1
𝑌=0 |𝑖⟩))  (|𝑢⟩) 

          = (∑ ∑
1

24 (𝑒√−1×2×𝜋×(
4

24−
𝑖

24)24−1
𝑌=0

24−1
𝑖=0 )𝑌|𝑖⟩))  (|𝑢⟩).              (6.35) 

 

6.4.5 Read the Quantum Result to Figure out the Number of Solutions 

to the Independent-set Problem in a Graph with Two Vertices 

and One Edge in Phase Estimation 

 

Finally, the four statements “measure q[0] -> c[3];”, “measure q[1] -> c[2];”, 

“measure q[2] -> c[1];” and “measure q[3] -> c[0];” from line twenty-seven through 

line thirty in Listing 6.2 implement a measurement. They measure the output state of 

the inverse quantum Fourier transform to the superposition of the first register in Figure 

6.11 and in Figure 6.10. This is to say that they measure four quantum bits q[0], q[1], 

q[2] and q[3] of the first register and record the measurement outcome by overwriting 

four classical bits c[3], c[2], c[1] and c[0]. 

 

Listing 6.2 continued… 

 

//Complete a measurement on the first register. 
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27. measure q[0] -> c[3]; 

28. measure q[1] -> c[2]; 

29. measure q[2] -> c[1]; 

30. measure q[3] -> c[0]; 

 

In the backend simulator with thirty-two quantum bits in IBM’s quantum 

computers, we use the command “run” to execute the program in Listing 6.2. Figure 

6.12 shows the measured result. From Figure 6.12, we get that a computational basis 

state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> and c[0] = 

0 = q[3] = |0>) has the probability 100%. This indicates that the phase angle is  = 2  

  (4 / 16) = 90 with the probability 100%. Hence, The number of solutions for the 

independent-set problem in a graph G1 with two vertices and one edge in Figure 6.9 is 

S = N  (sin( / 2))2 = 4  (sin(90 / 2))2 = 4  (1 /2) = 2. This is to say that the answer 

with the probability 100% is two for computing the number of solutions for the 

independent-set problem in a graph G1 with two vertices and one edge in Figure 6.9. 

Therefore, an output is “yes” to a decision problem that is deciding whether a graph G1 

in Figure 6.9 has a maximum-sized independent set or not. 

 

 

Figure 6.12: A computational basis state 0100 has the probability 100%. 

 

6.5 Summary 

 

In this chapter, we illustrated that a decision problem is a problem in which it has 

only two possible outputs (yes or no) on any input of n bits. An output “yes” in the 

decision problem on any input of n bits is to the number of solutions not to be zero and 

another output “no” in the decision problem on any input of n bits is to the number of 

solutions to be zero. Next, we described that a (2n  2n) unitary matrix (operator) U has 

a (2n  1) eigenvector |u> with eigenvalue 𝑒√−1×2×𝜋×𝜃  such that U  |u> = 

𝑒√−1×2×𝜋×𝜃  |u>, where the value of  is unknown and is real. We then illustrated how 

the phase estimate algorithm with the what possibility estimates the value of . We also 
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described time complexity, space complexity and performance of the phase estimate 

algorithm. Next, we introduced how to design quantum circuits and write quantum 

programs for computing eigenvalue of a (22  22) unitary matrix U with a (22  1) 

eigenvector |u>. Next, we described how the quantum-counting algorithm determines 

the number of solutions for a decision problem with the input of n bits. We also 

illustrated time complexity, space complexity and performance of the quantum-

counting algorithm. We then introduced how to design quantum circuits and write 

quantum programs to determine the number of solution to the independent set problem 

in a graph G1 with two vertices and one edge. 

 

6.6 Bibliographical Notes 

 

In this chapter for more details about an introduction of the phase estimation 

algorithm, the recommended books are [Nielsen and Chuang 2000; Imre and Balazs 

2005; Lipton and Regan 2014; Silva 2018; Johnston et al 2019]. For a more detailed 

description to binary search trees, the recommended book is [Horowitz et al 2003]. For 

a more detailed introduction to the discrete Fourier transform and the inverse discrete 

Fourier transform, the recommended books are [Cormen et al 2009; Nielsen and 

Chuang 2000; Imre and Balazs 2005; Lipton and Regan 2014; Silva 2018; Johnston et 

al 2019]. The two famous articles [Coppersmith 1994; Shor 1994] gave the original 

version of the Quantum Fourier transform and the inverse quantum Fourier transform. 

A good illustration for the product state decomposition of the quantum Fourier 

transform and the inverse quantum Fourier transform is the two famous articles in 

[Griffiths and Niu 1996; Cleve et al 1998]. For a more detailed description to the 

quantum-counting algorithm, the recommended article and books are [Brassard et al 

1998; Nielsen and Chuang 2000; Imre and Balazs 2005; Lipton and Regan 2014; Silva 

2018; Johnston et al 2019]. A good introduction to the instructions of Open QASM is 

the famous article in [Cross et al 2017]. 

 

6.7 Exercises 

 

6.1 Prove that the transformation of the Oracle is O = 𝐼2𝑛,2𝑛 − 2  |x0> <x0|, where x0 

is one element in the domain of the Oracle and x0 satisfies O(x0) = 1. 

 

6.2 Determine the matrix of the Oracle that is O = 𝐼22,22 − 2  |x0> <x0|, where x0 = 2 

and x0 satisfies O(x0) = 1. 

 

6.3 Show that the unitary operator U (inversion about the average) is equivalent to 
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reflect its input state |𝜙2⟩ over |𝜙1⟩ to |𝜙3⟩ that is a reflection about |𝜙1⟩ in the 

two-dimensional geometrical interpretation of Figure 6-7. 

 

6.4 Compute the matrix of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) in 

Figure 6.7. 

 

6.5 Calculate the eigenvalues and corresponding eigenvectors of the Grover operator G 

in the basis of (|𝜑⟩) and (|𝜆⟩) in Figure 6.7. 


