
302

Chapter 6

Phase Estimation and its Applications

A decision problem is a problem in which it has only two possible outputs (yes or

no) on any input of n bits. An output “yes” in the decision problem is to the number of

solutions not to be zero and another output “no” in the decision problem is to the number

of solutions to be zero. An example of a decision problem is deciding whether a given

Boolean formula, F(x1, x2) = x1  x2, has solutions that satisfy F(x1, x2) to have a true

value or not, where the value of two Boolean variables x1 and x2 is either true (1) or

false (0) and “” is the AND operation of two operands. For the convenience of the

presentation, Boolean variable x1
0 is to represent the value 0 (zero) of Boolean variable

x1 and Boolean variable x1
1 is to represent the value 1 (one) of Boolean variable x1.

Boolean variable x2
0 is to represent the value 0 (zero) of Boolean variable x2 and

Boolean variable x2
1 is to represent the value 1 (one) of Boolean variable x2.

A decision procedure is in the form of an algorithm to solve a decision problem. A

decision procedure for the decision problem “a given Boolean formula, F(x1, x2) = x1 

x2, does it have solutions that satisfy F(x1, x2) to have a true value?” would implement

x1  x2 (the AND operation of two operands) of four times according to four different

inputs x1
0 x2

0, x1
0 x2

1, x1
1 x2

0 and x1
1 x2

1. After it executes each AND operation, it finds

the fourth input x1
1 x2

1 that satisfies F(x1, x2) to have a true value. Finally, it gives an

output “yes” to the decision problem. This implies that the number of solutions is not

equal to zero. If time complexity of a decision procedure to solve a decision problem

with the input of n bits is O(2n), then the decision problem is a NP-Complete problem.

We assume that a (2n  2n) unitary matrix (operator) U has a (2n  1) eigenvector

|u> with eigenvalue 𝑒√−1×2×𝜋×𝜃 such that U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>, where the

value of  is unknown and is real. The purpose of the phase estimate algorithm is to

estimate the value of . Deciding whether there exist solutions for a problem with the

input of n bits is equivalent to estimate the value of . In this chapter, we first describe

how the phase estimate algorithm works on quantum computers and various kinds of

real applications. We illustrate how to write quantum programs to compute and estimate

the value of  to that any given a (2n  2n) unitary matrix (operator) U has a (2n  1)

eigenvector |u> with eigenvalue (𝑒√−1×2×𝜋×𝜃). Next, we explain the reason of why

deciding whether there exist solutions for a problem with the input of n bits is equivalent

to estimate the value of . We also explain how the quantum-counting algorithm

303

determines the number of solutions for a decision problem with the input of n bits. Next,

we introduce how to write quantum algorithms to implement the quantum-counting

algorithm that is a real application of the phase estimate algorithm for computing the

number of solutions for various kinds of real applications with the input of n bits.

6.1 Phase Estimation

We use the quantum circuit shown in Figure 6.1 to implement the phase estimation

algorithm. It uses two quantum registers. At the left top in Figure 6.1, the first register

(⨂𝑘=𝑡
1 |𝑦𝑘

0⟩) contains t quantum bits initially in the state |0>. Quantum bit |yt
0> is the

most significant bit. Quantum bit |y1
0> is the least significant bit. The corresponding

decimal value of the first register is (|yt
0>  2t − 1) +  + (|y2

0>  22 − 1) + (|y1
0>  21 − 1).

How we select t that is dependent on two things. The first thing is to that the number of

bits of accuracy we wish to have in our estimation for the value of . The second thing

is to that with what probability we wish the phase estimation algorithm to be successful.

The dependence of t on these quantities appear naturally from the following analysis.

Figure 6.1: Quantum circuit of calculating the phase.

At the left bottom in Figure 6.1, the second register (⨂𝑗=1
𝑛 |𝑢𝑗

0⟩) contains n quantum

bits initially in the state |0>. Quantum bit |u1
0> is the most significant bit. Quantum bit

|un
0> is the least significant bit. The corresponding decimal value of the second register

is (|u1
0>  2n − 1) + (|u2

0>  2n − 2) +  + (|yn
0>  2n − n). How we select n that is dependent

304

on a thing. The thing is to the size of the input for various kinds of real applications.

This means that we select n that actually is to the number of bits of input for a problem.

For the convenience of the presentation, the following initial state vector is

|0> = (⨂𝑘=𝑡
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
𝑛 |𝑢𝑗

0⟩). (6.1)

6.1.1 Initialization of Phase Estimation

In Figure 6.1, the circuit begins by means of using a Hadamard transform on the

first register (⨂𝑘=𝑡
1 |𝑦𝑘

0⟩) and another Hadamard transform on the second register

(⨂𝑗=1
𝑛 |𝑢𝑗

0⟩). A superposition of the first register is (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩))). Another

superposition of the second register is (|𝑢⟩ =
1

√2𝑛
 (⊗𝑗=1

𝑛 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩))). This is to

say that the superposition of the second register begins in the new state vector (|𝑢⟩ =

1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩))), and consists of n quantum bits as is necessary to store (|𝑢⟩).

The new state vector (|𝑢⟩) is an eigenstate (eigenvector) of U. Therefore, this gives that

the following new state vector is

|1> = (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩)))

 = (
1

√2𝑡
 (⊗𝑘=𝑡

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩). (6.2)

6.1.2 Controlled-U Operations on the Superposition of the Second

Register to Phase Estimation

Next, in Figure 6.1, the circuit implements application of controlled-U operations

on the superposition of the second register that is the state (|𝑢⟩), with U raised to

successive powers of two. Because the effect of one application of unitary operator U

on its eigenvector (eigenstate) (|𝑢⟩) is (U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>), the effect of

repeated application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is

Ua |u> = Ua − 1 U |u> = Ua − 1(𝑒√−1×2×𝜋×𝜃  |u>) = 𝑒√−1×2×𝜋×𝜃  (Ua − 1|u>) =

𝑒√−1×2×𝜋×𝜃  𝑒√−1×2×𝜋×𝜃    𝑒√−1×2×𝜋×𝜃 |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u>. (6.3)

Implementing one controlled-U operation that has its eigenvector (eigenstate) (|𝑢⟩) and

305

its eigenvalue 𝑒√−1×2×𝜋×𝜃 is to that if the controlled quantum bit is the state |1>, then

it completes one application of unitary operator U, (U  |u> = 𝑒√−1×2×𝜋×𝜃  |u>).

Otherwise, it does not complete one application of unitary operator U.

Similarly, implementing repeated application of one controlled-U operation that

has its eigenvector (eigenstate) (|𝑢⟩) and its eigenvalue 𝑒√−1×2×𝜋×𝜃 is to that if the

controlled quantum bit is the state |1>, then it completes repeated application of unitary

operator U, (Ua  |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u>). Otherwise, it does not complete repeated

application of unitary operator U.

In the new state vector |1> in (6.2), each quantum bit in the first register is

currently in its superposition. A superposition (
1

√2
 (|y1

0> + |y1
1>)) at the weighted

position 20 is the controlled quantum bit of implementing controlled-𝑈20
 operations

on the superposition of the second register that is the state (|𝑢⟩). This gives that the

following new state vector is

|2> = (
1

√2𝑡
 (⊗𝑘=𝑡

2 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦1
0⟩|𝑢⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩|𝑢⟩)

 = (
1

√2𝑡
 (⊗𝑘=𝑡

2 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩)  (|𝑢⟩). (6.4)

Altering the phase of the state |y1
1> is from one (1) to become (𝑒√−1×2×𝜋×𝜃×20

). We

call it as phase kickback.

Next, in the new state vector |2> in (6.4), a superposition (
1

√2
 (|y2

0> + |y2
1>)) at

the weighted position 21 is the controlled quantum bit of implementing controlled-𝑈21

operations on the superposition of the second register that is the state (|𝑢⟩). This means

that the following new state vector is

|3> = (
1

√2𝑡
 (⊗𝑘=𝑡

3 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×𝜃×21

|𝑦2
1⟩)

 (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×𝜃×20

|𝑦1
1⟩)  (|𝑢⟩). (6.5)

Because of phase kickback, the phase of the state |y2
1> is from one (1) to become

(𝑒√−1×2×𝜋×𝜃×21
).

306

Next, in the new state vector |3> in (6.5), a superposition (
1

√2
 (|y3

0> + |y3
1>)) at

the weighted position 22 through a superposition (
1

√2
 (|yt

0> + |yt
1>)) at the weighted

position 2t − 1 are the controlled quantum bits of implementing controlled- 𝑈22

operations through controlled-𝑈2𝑡 − 1
 operations on the superposition of the second

register that is the state (|𝑢⟩). This gives that the following new state vector is

|4> = (
1

√2𝑡
 (|𝑦𝑡

0⟩ + 𝑒√−1×2×𝜋×𝜃×2𝑡−1
|𝑦𝑡

1⟩)  (|𝑦𝑡−1
0 ⟩ + 𝑒√−1×2×𝜋×𝜃×2𝑡−2

|𝑦𝑡−1
1 ⟩)  

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×𝜃×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×𝜃×20
|𝑦1

1⟩))  (|𝑢⟩)

 = (
1

√2𝑡
 (∑ 𝑒√−1×2×𝜋×𝜃×𝑌2𝑡−1

𝑌=0 |𝑌⟩))  (|𝑢⟩). (6.6)

Because of phase kickback, the phase of the state |Y> for 0  Y  2t − 1 is from one (1)

to become (𝑒√−1×2×𝜋×𝜃×𝑌). From this description above, the second quantum register

stays in the state (|u>) through the computation.

6.1.3 Inverse Quantum Fourier Transform on the Superposition of the

First Register to Phase Estimation

Next, in Figure 6.1, the circuit implements the inverse Quantum Fourier

transform on the superposition of the first register. It takes the new state vector (|4>)

in (6.6) as its input state vector. The output state of the inverse Quantum Fourier

transform on the superposition of the first register is

|5> = (∑
1

√2𝑡
𝑒√−1×2×𝜋×𝜃×𝑌 1

√2𝑡

2𝑡−1
𝑌=0 ∑ 𝑒

−√−1×2×𝜋×
𝑖

2𝑡×𝑌|𝑖⟩2𝑡−1
𝑖=0)  (|𝑢⟩)

 = (
1

2𝑡
 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(𝜃−

𝑖

2𝑡)2𝑡−1
𝑖=0

2𝑡−1
𝑌=0 |𝑖⟩))  (|𝑢⟩)

 = (∑ ∑
1

2𝑡 (𝑒√−1×2×𝜋×(𝜃−
𝑖

2𝑡)2𝑡−1
𝑌=0

2𝑡−1
𝑖=0)𝑌|𝑖⟩)  (|𝑢⟩). (6.7)

From this description above, the second quantum register still stays in the state (|u>)

through the computation. From the new state vector (|5>) in (6.7), the probability

amplitude of |i> is

307

i =
1

2𝑡
  (∑ (𝑒√−1×2×𝜋×(𝜃−

𝑖

2𝑡)
)𝑌2𝑡−1

𝑌=0). (6.8)

6.1.4 Idealistic Phase Estimation

The probability amplitude of |i> is simply the sum of a geometrical sequence with

quotient q = (𝑒√−1×2×𝜋×(𝜃−
𝑖

2𝑡)
). On one hand if the value of  may be expressed in t

bits in the first quantum register, as  = 0.yt yt − 1  y2 y1 = (yt yt − 1  y2 y1 / 2
t). Then

the value of  actually is equal to (i / 2t) for 0  i  2t −1 and is an integer multiple of

(1 / 2t). This gives that the quotient q is 𝑒√−1×2×𝜋×(
𝑖

2𝑡 −
𝑖

2𝑡)
 = 𝑒√−1×2×𝜋×0 = 1, the

probability amplitude of |i> is
1

2𝑡  (∑ 1𝑌2𝑡−1
𝑌=0) =

1

2𝑡  (∑ 12𝑡−1
𝑌=0) =

1

2𝑡  2t = 1 and any

other probability amplitudes disappear. This is the ideal case of phase estimation.

Finally, in Figure 6.1, after a measurement on the output state of the inverse quantum

Fourier transform to the superposition of the first register is completed, we obtain the

computational basis state |i> with the successful probability 1 (100%). This indicates

that the value of  is equal to (i / 2t) with the successful probability 1 (100%). Therefore,

we obtain the eigenvalue (𝑒√−1×2×𝜋×
𝑖

2𝑡) with the successful probability 1 (100%).

6.1.5 Phase Estimation in Practical Cases

On the other hand if the value of  may not be expressed in t bits in the first

quantum register. This is to say that   0.yt yt − 1  y2 y1  (yt yt − 1  y2 y1 / 2
t). Then

the quotient q is 𝑒√−1×2×𝜋×(𝜃 −
𝑖

2𝑡)
  1 and we can rewrite the probability amplitude of

|i> in (6.8) as follows

i =
1

2𝑡 
1−𝑞2𝑡

1−𝑞
 =

1

2𝑡 
1−(𝑒

√−1×2×𝜋×(𝜃 −
𝑖

2𝑡)
)2𝑡

1−𝑒
√−1×2×𝜋×(𝜃 −

𝑖

2𝑡)
 =

1

2𝑡 
1−𝑒√−1×2×𝜋×(2𝑡×𝜃 − 𝑖)

1−𝑒
√−1×2×𝜋×(𝜃 −

𝑖

2𝑡)
. (6.9)

This gives another good explanation of uncertainty and thus appearing inaccuracy

when measuring the output of the inverse quantum Fourier transform in Figure 6.1.

The probability of measuring a suitable state |i> on the first register in Figure 6.1 is

308

|i|
2 =

1

22×𝑡 
|1−𝑒√−1×2×𝜋×(2𝑡×𝜃 − 𝑖)|2

|1−𝑒
√−1×2×𝜋×(𝜃 −

𝑖

2𝑡)
|2

. (6.10)

Because |1 − 𝑒√−1×𝛾|2 = 4  sin2( / 2), we can rewrite |i|
2 in (6.10) as follows

|i|
2 =

1

22×𝑡 
4×sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

4×sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

 =
1

22×𝑡 
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

. (6.11)

This is the practical case of phase estimation. Finally, in Figure 6.1, after a

measurement on the output state of the inverse quantum Fourier transform to the

superposition of the first register is completed, we obtain the computational basis state

|i> with the probability (
1

22×𝑡 
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

). Because (i / 2t) = (yt yt − 1  y2 y1 /

2t) = 0.yt yt − 1  y2 y1, (i / 2
t) is an estimated value to the value of  with the probability

(
1

22×𝑡 
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

). Hence, we only obtain an estimated eigenvalue

(𝑒√−1×2×𝜋×
𝑖

2𝑡) with the probability (
1

22×𝑡 
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

).

This is to say that if more than one |i|
2 differs from zero then there is a nonzero

probability of receiving different estimated phases (eigenvalues) after the measurement

when repeating to execute the circuit of phase estimation in Figure 6.1.

6.1.6 Performance and Requirement to Phase Estimation

The phase estimation algorithm allows one to estimate the value of the phase  to

an eigenvalue (𝑒√−1×2×𝜋×𝜃) of a unitary operator U with its eigenvector (|u>). From

the analysis in subsection 6.1.4, if the value of the phase  is to  = 0.yt yt − 1  y2 y1 =

(yt yt − 1  y2 y1 / 2
t) that is to a t bit binary expansion of the first quantum register, then

in the circuit of Figure 6.1 the outcome of the final measurement is |i> with the

probability 100%. Because |i> is a t bit binary expansion of the first quantum register,

we obtain that the value of the phase  is equal to (i / 2t) with the probability 100%.

This is the ideal case.

309

On the other hand, from the analysis in subsection 6.1.5, if the value of the phase

 is not a t bit binary expansion of the first quantum register, then the outcome of the

final measurement is |i> with the probability (
1

22×𝑡 
sin2(

2×𝜋×(2𝑡×𝜃 − 𝑖)

2
)

sin2(
2×𝜋×(𝜃 −

𝑖

2𝑡)

2
)

). Let Y be the

integer in the range 0 to 2t − 1 so that (Y / 2t) = (yt yt − 1  y2 y1 / 2
t) = (0.yt yt − 1  y2

y1) is the best t bit approximation to the value of the phase  and (Y / 2t) is less than the

value of the phase . This indicates that the difference  =  − (Y / 2t) between  and (Y

/ 2t) satisfies 0    (1 / 2t). We assume that the outcome of the final measurement in

the circuit of Figure 6.1 is |i>. We aim to bound the probability of obtaining a value of

i such that |i − Y| > , where  is a positive integer characterizing our desired tolerance

to error. The probability of measuring such a state |i> is

P(|i − Y| > ) 
1

2×(𝜀−1)
. (6.12)

We assume that we would like to approximate the value of the phase  to an

accuracy 2−t, that is, we select  = 2t − n −1. By means of using t = n + q quantum bits in

the circuit of Figure 6.1, we see from (6.12) that the probability of obtaining an

approximation correct to this accuracy is at least

P(|i − Y|  ) = 1 − P(|i − Y| > ) = 1 −
1

2×(𝜀−1)

= 1 −
1

2×(2𝑡−𝑛−1−1)
 = 1 −

1

2×(2𝑡−𝑛−2)
. (6.13)

Therefore to successfully obtain the value of the phase  accurate to t bits with

probability of success at least 1 −  = 1 −
1

2×(2𝑡−𝑛−2)
, we select

t = n + log2(2 + (1 / (2  ))). (6.14)

Because  =
1

2×(2𝑡−𝑛−2)
, we obtain   (2  (2t − n − 2)) = 1. This is to say that 2t − n − 2

= (1 / (2  )) and 2t − n = (1 / (2  )) + 2 and log2(2
t− n) = log2(2 + (1 / (2  ))) and t

= n + log2(2 + (1 / (2  ))). This is the result in (6.14).

6.1.7 Assessment to Complexity of Phase Estimation

310

In the circuit of Figure 6.1, the number of quantum bits to the first register

(⨂𝑘=𝑡
1 |𝑦𝑘

0⟩) is t quantum bits and the number of quantum bits to the second register

(⨂𝑗=1
𝑛 |𝑢𝑗

0⟩) is n quantum bits. Therefore, space complexity of phase estimation is O(t

+ n) quantum bits. The first stage in the circuit of Figure 6.1 is to implement (t + n)

Hadamard gates.

Next, the second stage in the circuit of Figure 6.1 is to implement application of

controlled-U operations on the superposition of the second register that is the state (|𝑢⟩),

with U raised to successive powers of two. The U1() gate is U1() = U1(lambda) =

(
1 0

0 𝑒√−1×𝜆
) for that  (lambda) is a real value. If the value of  is equal to (2    

 2k − 1) to 1  k  t, then it can implement a controlled-𝑈2𝑘−1
 operation to 1  k  t.

This is to say that a total cost of completing the second stage is to implement t U1()

gates.

Next, the third stage in the circuit of Figure 6.1 is to implement the inverse quantum

Fourier transform on the superposition of the first register. A total cost of completing

the inverse quantum Fourier transform is to implement O(t2) quantum gates. Finally,

reading out the output state of the inverse quantum Fourier transform on the

superposition of the first register is to implement one measurement. Because from the

statements above a total cost of completing phase estimation is O(t2 + n) quantum gates,

time complexity of phase estimation is to O(t2 + n) quantum gates.

6.2 Computing Eigenvalue of a (22  22) Unitary Matrix U with a (22 

1) Eigenvector |u> in Phase Estimation

We use the circuit in Figure 6.2 to compute eigenvalue of a (22  22) unitary matrix

311

Figure 6.2: Quantum circuit for calculating eigenvalue of a (22  22) unitary matrix U

with a (22  1) eigenvector |u>.

U with a (22  1) eigenvector |u>. It makes use of two quantum registers. At the left top

in Figure 6.2, the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩) contains four quantum bits initially in the

state |0>. Quantum bit |y4
0> is the most significant bit. Quantum bit |y1

0> is the least

significant bit. The corresponding decimal value of the first register is (|y4
0>  24 − 1) +

(|y3
0>  23 − 1) + (|y2

0>  22 − 1) + (|y1
0>  21 − 1). At the left bottom in Figure 6.2, the

second register (⨂𝑗=1
2 |𝑢𝑗

0⟩) contains two quantum bits initially in the state |0>. Quantum

bit |u1
0> is the most significant bit. Quantum bit |u2

0> is the least significant bit. The

corresponding decimal value of the second register is (|u1
0>  22 − 1) + (|u2

0>  22 − 2).

For the convenience of the presentation, the following initial state vector is

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩). (6.15)

6.2.1 Initialize Quantum Registers to Calculate Eigenvalue of a (22 

22) Unitary Matrix U with a (22  1) Eigenvector |u> in Phase

Estimation

In Listing 6.1, the program is in the backend that is simulator of Open QASM with

thirty-two quantum bits in IBM’s quantum computer. The program is to compute

eigenvalue of a (22  22) unitary matrix U with a (22  1) eigenvector |u> in phase

estimation. Figure 6.3 is the corresponding quantum circuit of the program in Listing

6.1 and is to implement the quantum circuit of Figure 6.2 to compute eigenvalue of a

(22  22) unitary matrix U with a (22  1) eigenvector |u> in phase estimation.

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[6];

4. creg c[4];

Listing 6.1: The program of computing eigenvalue of a (22  22) unitary matrix U with

a (22  1) eigenvector |u> in phase estimation.

The statement “OPENQASM 2.0;” on line one of Listing 6.1 is to point out that the

program is written with version 2.0 of Open QASM. Next, the statement “include

"qelib1.inc";” on line two of Listing 6.1 is to continue parsing the file “qelib1.inc” as if

the contents of the file were pasted at the location of the include statement, where the

312

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is

specified relative to the current working directory.

Figure 6.3: Implementing quantum circuits of Figure 6.2 to compute eigenvalue of a

(22  22) unitary matrix U with a (22  1) eigenvector |u> in phase estimation.

Then, the statement “qreg q[6];” on line three of Listing 6.1 is to declare that in the

program there are six quantum bits. In the left top of Figure 6.3, six quantum bits are

subsequently q[0], q[1], q[2], q[3], q[4] and q[5]. The initial value of each quantum bit

is set to state |0>. We make use of four quantum bits q[0], q[1], q[2] and q[3] to

respectively encode four quantum bits |y4>, |y3>, |y2> and |y1> in Figure 6.2. We use two

quantum bits q[4] and q[5] to respectively encode two quantum bits |u1> and |u2> in

Figure 6.2. For the convenience of our explanation, q[k]0 for 0  k  5 is to represent

the value 0 of q[k] and q[k]1 for 0  k  5 is to represent the value 1 of q[k]. Because

quantum bit |y4
0> is the most significant bit and quantum bit |y1

0> is the least significant

bit, quantum bit |q[0]0> is the most significant bit and quantum bit |q[3]0> is the least

significant bit. The corresponding decimal value of the first register in Figure 6.3 is

(|q[0]0>  24 − 1) + (|q[1]0>  23 − 1) + (|q[2]0>  22 − 1) + (|q[3]0>  21 − 1).

Next, the statement “creg c[4];” on line four of Listing 6.1 is to declare that there

are four classical bits in the program. In the left bottom of Figure 6.3, four classical bits

are subsequently c[0], c[1], c[2] and c[3]. The initial value of each classical bit is set to

zero (0). For the convenience of our explanation, c[k]0 for 0  k  3 is to represent the

value 0 of c[k] and c[k]1 for 0  k  3 is to represent the value 1 of c[k]. The

corresponding decimal value of the four initial classical bits c[3]0 c[2]0 c[1]0 c[0]0 is 23

 c[3]0 + 22  c[2]0 + 21  c[1]0 + 20  c[0]0. This indicates that classical bit c[3]0 is the

most significant bit and classical bit c[0]0 is the least significant bit. For the convenience

of our explanation, we can rewrite the initial state vector |0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩) 

(⨂𝑗=1
2 |𝑢𝑗

0⟩) in (6.15) in Figure 6.2 as follows

313

|0> = |q[0]0> |q[1]0> |q[2]0> |q[3]0> |q[4]0> |q[5]0>. (6.16)

6.2.2 Superposition of Quantum Registers to Calculate Eigenvalue of

a (22  22) Unitary Matrix U with a (22  1) Eigenvector |u> in

Phase Estimation

In Figure 6.2, the first stage of the circuit is to implement a Hadamard transform

with four Hadamard gates on the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩) and another Hadamard

transform with two Hadamrad gates on the second register (⨂𝑗=1
2 |𝑢𝑗

0⟩). The six

statements “h q[0];”, “h q[1];”, “h q[2];”, “h q[3];”, “h q[4];” and “h q[5];” on line five

of Listing 6.1 through line ten of Listing 6.1 is to implement six Hadamrad gates on the

first register and the second register. They complete each Hadamrad gate in the first

time slot of Figure 6.3 and perform the first stage of the circuit in Figure 6.2.

Listing 6.1 continued…

//Implement a Hadamard transform on two registers.

5. h q[0];

6. h q[1];

7. h q[2];

8. h q[3];

9. h q[4];

10. h q[5];

A superposition of the first register is (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩))) = (
1

√24

(⊗𝑎=0
3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩))). Another superposition of the second register is (|𝑢⟩ =

1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)) =
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))). This is to say that the

superposition of the second register begins in the new state vector (|𝑢⟩ =
1

√22

(⊗𝑗=1
2 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩ =

1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))) and contains two quantum

bits as is necessary to store (|𝑢⟩). The new state vector (|𝑢⟩) is an eigenstate

(eigenvector) of U. Therefore, this gives that the following new state vector is

314

|1> = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)))

 = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩)

 = (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩)))

= (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (|𝑢⟩). (6.17)

6.2.3 Controlled-U Operations on the Superposition of the Second

Register to Determine Eigenvalue of a (22  22) Unitary Matrix

U with a (22  1) Eigenvector |u> in Phase Estimation

In the new state vector |1> in (6.17), each quantum bit in the first register is

currently in its superposition. The value of the first register is from state (⨂𝑘=4
1 |𝑦𝑘

0⟩)

(zero) encoded by state (⨂𝑎=0
3 |𝑞[𝑎]0⟩) through state (⨂𝑘=4

1 |𝑦𝑘
1⟩) (fifteen) encoded by

state (⨂𝑎=0
3 |𝑞[𝑎]1⟩). The circuit of Figure 6.2 can precisely estimate sixteen phases.

This is to say that the first register with four quantum bits can precisely represent sixteen

phases. Sixteen phases are subsequently (0 / 24), (1 / 24), (2 / 24), (3 / 24), (4 / 24), (5 /

24), (6 / 24), (7 / 24), (8 / 24), (9 / 24), (10 / 24), (11 / 24), (12 / 24), (13 / 24), (14 / 24) and

(15 / 24). The corresponding sixteen phase angles are subsequently (2    0 / 24), (2

   1 / 24), (2    2 / 24), (2    3 / 24), (2    4 / 24), (2    5 / 24), (2   

6 / 24), (2    7 / 24), (2    8 / 24), (2    9 / 24), (2    10 / 24), (2    11 /

24), (2    12 / 24), (2    13 / 24), (2    14 / 24) and (2    15 / 24).

Say that we are trying to determine an eigenvalue of 90. This is to say that the

effect of one application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is

(U  |u> = 𝑒√−1×2×𝜋×𝜃  |u> = 𝑒√−1×2×𝜋×
4

24  |u>). So, the effect of repeated

application of unitary operator U on its eigenvector (eigenstate) (|𝑢⟩) is

Ua |u> = 𝑒√−1×2×𝜋×𝜃×𝑎 |u> = 𝑒√−1×2×𝜋×
4

24×𝑎
  |u>. (6.18)

A superposition (
1

√2
 (|y1

0> + |y1
1>)) that is encoded by (

1

√2
 (|q[3]0> + |q[3]1>)) at

the weighted position 20 is the controlled quantum bit of implementing controlled-𝑈20

operations on the superposition of the second register that is the state (|𝑢⟩). Similarly,

315

a superposition (
1

√2
 (|y2

0> + |y2
1>)) that is encoded by (

1

√2
 (|q[2]0> + |q[2]1>)) at the

weighted position 21 is the controlled quantum bit of implementing controlled-𝑈21

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a

superposition (
1

√2
 (|y3

0> + |y3
1>)) that is encoded by (

1

√2
 (|q[1]0> + |q[1]1>)) at the

weighted position 22 is the controlled quantum bit of implementing controlled-𝑈22

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a

superposition (
1

√2
 (|y4

0> + |y4
1>)) that is encoded by (

1

√2
 (|q[0]0> + |q[0]1>)) at the

weighted position 23 is the controlled quantum bit of implementing controlled-𝑈23

operations on the superposition of the second register that is the state (|𝑢⟩).

The four statements from line eleven through line fourteen in Listing 6.1 are

“u1(2*pi*4/16*1) q[3];”, “u1(2*pi*4/16*2) q[2];”, “u1(2*pi*4/16*4) q[1];” and

“u1(2*pi*4/16*8) q[0];”. They take the new state vector (|1>) in (6.17) as their input

Listing 6.1 continued…

//Implement controlled-U operations on the superposition of the second register.

11. u1(2*pi*4/16*1) q[3];

12. u1(2*pi*4/16*2) q[2];

13. u1(2*pi*4/16*4) q[1];

14. u1(2*pi*4/16*8) q[0];

state vector and implement each controlled-U operation on the superposition of the

second register in the second time slot of Figure 6.3 and in the second stage of Figure

6.2. They alert the phase of the state |y1
1> (|q[3]1>) is from one (1) to become

(𝑒√−1×2×𝜋×
4

16
×20

) = (𝑒√−1×2×𝜋×
4

16
×1

). They alert the phase of the state |y2
1> (|q[2]1>) is

from one (1) to become (𝑒√−1×2×𝜋×
4

16
×21

) = (𝑒√−1×2×𝜋×
4

16
×2

). They alert the phase of

the state |y3
1> (|q[1]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×22

) = (𝑒√−1×2×𝜋×
4

16
×4

)

and alert the phase of the state |y4
1> (|q[0]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×23

)

316

= (𝑒√−1×2×𝜋×
4

16
×8

). This gives that the following new state vector is

|2> = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×23

|𝑦4
1⟩)  (|𝑦3

0⟩ + 𝑒√−1×2×𝜋×
4

16
×22

|𝑦3
1⟩) 

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×
4

16
×20

|𝑦1
1⟩))  (|𝑢⟩)

 = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×8|𝑦4

1⟩)  (|𝑦3
0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑦3

1⟩) 

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×2|𝑦2

1⟩)  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑦1

1⟩))  (|𝑢⟩)

 = (
1

√24
 (|𝑞[0]0⟩ + 𝑒√−1×2×𝜋×

4

16
×8|𝑞[0]1⟩)  (|𝑞[1]0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑞[1]1⟩) 

 (|𝑞[2]0⟩ + 𝑒√−1×2×𝜋×
4

16
×2|𝑞[2]1⟩)  (|𝑞[3]0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑞[3]1⟩))  (|𝑢⟩)

 = (
1

√24
 (∑ 𝑒√−1×2×𝜋×

4

16
×𝑌24−1

𝑌=0 |𝑌⟩))  (|𝑢⟩). (6.19)

From this description above, the second quantum register stays in the state (|u>)

through the computation. Because of phase kickback, the phase of the state |Y> for 0 

Y  24 − 1 is from one (1) to become (𝑒√−1×2×𝜋×
4

16
×𝑌

). In the state vector (|2>) in

(6.19), it contains sixteen phase angles from state |0> through state |15>. The front eight

phase angles are (90  0 = 0), (90  1 = 90), (90  2 = 180), (90  3 = 270),

(90  4 = 360 = 0), (90  5 = 450 = 90), (90  6 = 540 = 180) and (90  7 =

630 = 270). The last eight phase angles are (90  8 = 720 = 0), (90  9 = 810 =

90), (90  10 = 900 = 180), (90  11 = 990 = 270), (90  12 = 1080 = 0), (90

 13 = 1170 = 90), (90  14 = 1260 = 180) and (90  15 = 1350 = 270). The

phase angle rotates back to its starting value 0 four times.

6.2.4 The Inverse Quantum Fourier Transform on the Superposition

of the First Register to Compute Eigenvalue of a (22  22) Unitary

Matrix U with a (22  1) Eigenvector |u> in Phase Estimation

Hidden patterns and information stored in the state vector (|2>) in (6.19) are to that

its phase angle rotates back to its starting value 0 four times. This implies that the

number of the period per sixteen phase angles is four and the frequency is equal to four

317

(16 / 4). The twelve statements from line fifteen through line twenty-six in Listing 6.1

Listing 6.1 continued…

//Implement one inverse quantum Fourier transform on the superposition of the first

// register.

15. h q[0];

16. cu1(-2*pi*1/4) q[1],q[0];

17. cu1(-2*pi*1/8) q[2],q[0];

18. cu1(-2*pi*1/16) q[3],q[0];

19. h q[1];

20. cu1(-2*pi*1/4) q[2],q[1];

21. cu1(-2*pi*1/8) q[3],q[1];

22. h q[2];

23. cu1(-2*pi*1/4) q[3],q[2];

24. h q[3];

25. swap q[0],q[3];

26. swap q[1],q[2];

implement each quantum operation from the third time slot through the fourteenth time

slot in Figure 6.3. They actually implement each quantum operation of completing an

inverse quantum Fourier transform on the superposition of the first register in Figure

6.2. They take the state vector (|2>) in (6.19) as their input state vector. Because the

inverse quantum Fourier transform effectively transforms the state of the first

register into a superposition of the periodic signal’s component frequencies, they

produce the following state vector

|3> = (∑
1

√24
𝑒√−1×2×𝜋×

4

24×𝑌 1

√24
24−1
𝑌=0 ∑ 𝑒

−√−1×2×𝜋×
𝑖

24×𝑌|𝑖⟩24−1
𝑖=0)  (|𝑢⟩)

 = (
1

24 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(
4

24−
𝑖

24)24−1
𝑖=0

24−1
𝑌=0 |𝑖⟩))  (|𝑢⟩)

 = (∑ ∑
1

24
(𝑒√−1×2×𝜋×(

4

24−
𝑖

24)24−1
𝑌=0

24−1
𝑖=0)𝑌|𝑖⟩))  (|𝑢⟩). (6.20)

318

6.2.5 Read the Quantum Result to Figure out Eigenvalue of a (22  22)

Unitary Matrix U with a (22  1) Eigenvector |u> in Phase

Estimation

Finally, the four statements “measure q[0] -> c[3];”, “measure q[1] -> c[2];”,

“measure q[2] -> c[1];” and “measure q[3] -> c[0];” from line twenty-seven through

line thirty in Listing 6.1 implement a measurement. They measure the output state of

the inverse quantum Fourier transform to the superposition of the first register in Figure

6.3 and in Figure 6.2. This is to say that they measure four quantum bits q[0], q[1], q[2]

and q[3] of the first register and record the measurement outcome by overwriting four

classical bits c[3], c[2], c[1] and c[0].

Listing 6.1 continued…

//Complete a measurement on the first register.

27. measure q[0] -> c[3];

28. measure q[1] -> c[2];

29. measure q[2] -> c[1];

30. measure q[3] -> c[0];

In the backend simulator with thirty-two quantum bits in IBM’s quantum

computers, we use the command “run” to execute the program in Listing 6.1. Figure

6.4 shows the measured result. From Figure 6.4, we obtain that a computational basis

state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> and c[0] =

0 = q[3] = |0>) has the probability 100%. This is to say that the value of  is equal to (4

/ 16). Therefore, we obtain that eigenvalue of a (22  22) unitary matrix U with a (22 

1) eigenvector |u> is equal to (𝑒√−1×2×𝜋×
4

24) with the probability 100%.

319

Figure 6.4: A computational basis state 0100 has the probability 100%.

6.3 Quantum Counting to a Decision Problem with Any Input of n Bits

in Real Applications of Phase Estimation

A decision problem is a problem in which it has only two possible outputs (yes or

no) on any input of n bits. An output “yes” in the decision problem is to the number of

solutions not to be zero and another output “no” in the decision problem is to the number

of solutions to be zero. Solving a decision problem with any input of n bits is equivalent

to solve one interesting problem with any input of n bits that is to from an unsorted

database including 2n items with each item has n bits how many items satisfy any given

condition and we would like to find the number of solutions. If the number of solutions

is not equal to zero, then there is an output “yes” in the decision problem with any input

of n bits. Otherwise, there is an output “no” in the decision problem with any input of

n bits.

 A common formulation of a decision problem with any input of n bits is as follows.

For any given oracular function Of: {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} →

{0, 1}, its domain is {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} and its range is {0,

1}. The decision problem with any input of n bits is asking to how many elements from

its domain satisfy the condition Of(u1 u2  un − 1 un) = 1. If the number of elements from

its domain that satisfy Of(u1 u2  un − 1 un) to have a true value (1) is not equal to zero,

then an output is “yes” to the decision problem with any input of n bits. Otherwise, an

output is “no” for the decision problem with any input of n bits.

6.3.1 Binary Search Trees for Representing the Domain of a Decision

Problem with Any Input of n Bits

A tree is a finite set of one or more nodes such that there is a specially designated

node called the root and the remaining nodes are partitioned into v  0 disjoint sets T1,

, Tv, where each of these sets is a tree. T1, , Tv are called the subtrees of the root. A

binary tree is a finite set of nodes that is either empty or contains a root and two disjoint

binary trees called the left subtree and the right subtree.

For any given oracular function Of: {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}

→ {0, 1}, its domain is {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} and its range is

{0, 1}. A decision problem with any input of n bits is asking to how many elements

from its domain satisfy the condition Of(u1 u2  un − 1 un) to have a true value (1). We

320

make use of a binary tree in Figure 6.5 to represent the structure of the domain that is

{u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. In the binary tree in Figure 6.5, a node

stands for a bit of one element in {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. The

root of the binary tree in Figure 6.5 is u1. The value of the left branch of each node

represents that the value of the corresponding bit is equal to zero (0) and the value of

the right branch of each node stands for that the value of the corresponding bit is equal

to one (1). Since the value of the left branch of each node is less than the value of the

right branch of each node, we regard the binary tree in Figure 6.5 as a binary search

tree.

Figure 6.5: A binary search tree for representing the domain of a decision problem with

any input of n bits.

The binary search tree in Figure 6.5 includes 2n subtrees and each subtree encodes

one element in {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. For example, the first

subtree (u1)--
0--(u2)--

0--  (un-1)--
0--(un)--

0-- encodes the first element {u1
0 u2

0  un −

1
0 un

0}. The second subtree (u1)--
0--(u2)--

0--  (un-1)--
0--(un)--

1-- encodes the second

element {u1
0 u2

0  un − 1
0 un

1}. The last subtree (u1)--
1--(u2)--

1--  (un-1)--
1--(un)--

1--

encodes the last element {u1
1 u2

1  un − 1
1 un

1}.

6.3.2 Flowchart of Solving a Decision Problem with Any Input of n Bits

Figure 6.6 is flowchart of solving a decision problem with any input of n bits. On

the execution of the first statement, S1, it sets the initial value of u1 u2  un − 1 un to zero

321

(0). Next, on the execution of the second statement, S2, it judges whether Of(u1 u2  un

− 1 un) has a true value (1) or not. If it returns a true value, then on the execution of the

third statement, S3, it generates that an output is “yes”. Next, on the execution of the

fourth statement, S4, it executes one “End” instruction to terminate the processing of

solving a decision problem with any input of n bits. Otherwise, on the execution the

fifth statement, S5, it increases the value of u1 u2  un − 1 un. Next, on the execution of

the sixth statement, S6, it judges whether the value of u1 u2  un − 1 un is greater than 2n

or not. If it returns a true value, then on the execution of the seventh statement, S7, it

produces that an output is “no”. Next, on the execution of the eighth statement, S8, it

executes one “End” instruction to terminate the processing of solving a decision

problem with any input of n bits. Otherwise, it goes to statement S2 and continues to

execute statement S2.

Figure 6.6: Logical flowchart of solving a decision problem with any input of n bits.

6.3.3 Geometrical Interpretation to Solve a Decision Problem with Any

Input of n Bits

322

Binary search trees in Figure 6.5 encode {u1 u2  un − 1 un   uj  {0, 1} for 1  j

 n} that is the domain of a decision problem with any input of n bits. We assume that

an initial state vector (|𝜙0⟩) is (𝑗=1
𝑛 |𝑢𝑗

0⟩). We begin to make use of a Hadamard

transform (𝑗=1
𝑛 𝐻) on the initial state vector (|𝜙0⟩) that is the register (𝑗=1

𝑛 |𝑢𝑗
0⟩). A

superposition of the register is

|𝜙1⟩ =
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩)). (6.21)

The new state vector (|𝜙1⟩) encodes each subtree in Figure 6.5 with that the amplitude

of each subtree is (
1

√2𝑛
). This is to say that it encodes each element of the domain to a

decision problem with any input of n bits.

In the state vector (|𝜙1⟩) in (6.21), subtrees (elements) that satisfy Of(u1 u2  un − 1

un) to have a true value (1) are referred as marked states and ones that do not result in a

solution are referred as unmarked states. We assume that N is equal to 2n. We also

assume that in the state vector (|𝜙1⟩) in (6.21), S stands for the number of solution(s)

and (N − S) stands for the number of non-solution(s) to a decision problem with any

input of n bits. We build two superpositions comprising uniformly distributed

computational basis states

|𝜑⟩ =
1

√𝑁−𝑆
 (∑ |𝑢1 𝑢2 ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=0), (6.22)

|𝜆⟩ =
1

√𝑆
 (∑ |𝑢1 𝑢2 ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=1). (6.23)

Because the inner product of |𝜑⟩ and |𝜆⟩ is equal to zero and the length of |𝜑⟩ and

|𝜆⟩ is equal to one, |𝜑⟩ and |𝜆⟩ form an orthonormal basis of a two-dimensional

Hilbert space which is depicted in Figure 6.7. In Figure 6.7, Point D is the original point

of the two-dimensional Hilbert space and its coordinate is (0, 0).

The state vector (|𝜙1⟩) in 6.21 can be expressed as a linear combination of (|𝜑⟩)

and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7 in the following way

|𝜙1⟩ =
1

√𝑁
 (∑ |𝑢1 𝑢2 ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=0 + ∑ |𝑢1 𝑢2 ⋯ 𝑢𝑛⟩𝑂𝑓(𝑢1 𝑢2 ⋯ 𝑢𝑛)=1)

323

= (
√𝑁−𝑆

√𝑁
|𝜑⟩ +

√𝑆

√𝑁
|𝜆⟩). (6.24)

From (6.24), coordinate of (|𝜙1⟩) in a two-dimensional Hilbert space of Figure 6.7 is

(
√𝑁−𝑆

√𝑁
,

√𝑆

√𝑁
) and is strictly related to the angle between (|𝜙1⟩) and (|𝜑⟩) denoted by (

𝜃

2
)

which is depicted in Figure 6.7. Point B is coordinate point of (|𝜙1⟩).

Figure 6.7: Geometrical interpretation of solving a decision problem with any input of

n bits in a two-dimensional Hilbert space spanned by (|𝜑⟩) and (|𝜆⟩).

In the quantum search algorithm introduced in the third Chapter, the Oracle O

multiplies the probability amplitude of the answer(s) by −1 and leaves any other

amplitude unchanged. We use the Oracle O to operate on the state vector (|𝜙1⟩) in (6.21)

and obtain the new state vector |𝜙2⟩ = O(|𝜙1⟩) that can be expressed as a linear

combination of (|𝜑⟩) and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7 in the

following way

324

 |𝜙2⟩ = (
√𝑁−𝑆

√𝑁
|𝜑⟩ +(−

√𝑆

√𝑁
|𝜆⟩)). (6.25)

From (6.25), coordinate of (|𝜙2⟩) in a two-dimensional Hilbert space of Figure 6.7 is

(
√𝑁−𝑆

√𝑁
, −

√𝑆

√𝑁
) and is depicted in Figure 6.7. Point C is coordinate point of (|𝜙2⟩). The

angle between (|𝜙2⟩) and (|𝜑⟩) is actually equal to (
𝜃

2
) that is depicted in Figure 6.7.

The Oracle O is equivalent to a reflection about axis |𝜑⟩ in the two-dimensional

geometrical interpretation of Figure 6.7. Because in Figure 6.7 point Z is the

intersection of line 𝐵𝐶̅̅ ̅̅ and axis |𝜑⟩ in which they are vertical each other, we obtain

its coordinate to be (
√𝑁−𝑆

√𝑁
, 0).

In the quantum search algorithm introduced in the third Chapter, the unitary

operator U is the inversion about the average. The Grover operator G consists of two

transformations on the index register that are U and O. We apply the unitary operator U

to operate on the state vector (|𝜙2⟩) in (6.25) and get the new state vector |𝜙3⟩ = U

(|𝜙2⟩) = (U)(O) (|𝜙1⟩) = G (|𝜙1⟩). The new state vector (|𝜙3⟩) can be expressed as a

linear combination of (|𝜑⟩) and (|𝜆⟩) in a two-dimensional Hilbert space of Figure 6.7

in the following way

 |𝜙3⟩ = (
√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
) |𝜑⟩ +

√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
) |𝜆⟩). (6.26)

From (6.26), coordinate of (|𝜙3⟩) in a two-dimensional Hilbert space of Figure 6.7 is

(
√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
),

√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
)) and is depicted in Figure 6.7. Point E is coordinate

point of (|𝜙3⟩). The angle between (|𝜙3⟩) and (|𝜙1⟩) is actually equal to () that is

depicted in Figure 6.7. The unitary operator U (the inversion about the average) in

Figure 6.7 reflects its input state (|𝜙2⟩) over (|𝜙1⟩) to (|𝜙3⟩) in the two-dimensional

geometrical interpretation of Figure 6.7. In Figure 6.7, point F is the intersection of line

𝐸𝐶̅̅ ̅̅ and line 𝐷𝐵̅̅ ̅̅ in which they are vertical each other and point H is the intersection

of line 𝐸𝐻̅̅ ̅̅ and axis |𝜑⟩ in which they are vertical each other.

6.3.4 Determine the Matrix of the Grover Operator in Geometrical

Interpretation to Solve a Decision Problem with Any Input of n

Bits

325

From Figure 6.7, point B is (
√𝑁−𝑆

√𝑁
,

√𝑆

√𝑁
), point D is (0, 0) and point Z is (

√𝑁−𝑆

√𝑁
, 0).

The length of line 𝐷𝐵̅̅ ̅̅ is one (1), the length of line 𝐷𝑍̅̅ ̅̅ is (√
𝑁−𝑆

𝑁
) and the length of

line 𝐵𝑍̅̅ ̅̅ is (√
𝑆

𝑁
). Therefore, we obtain that sin( / 2) = (√

𝑆

𝑁
 / 1) = (√

𝑆

𝑁
) and cos( /

2) = (√
𝑁−𝑆

𝑁
 / 1) = (√

𝑁−𝑆

𝑁
). Because coordinate of (|𝜙1⟩) in Figure 6.7 is (

√𝑁−𝑆

√𝑁
,

√𝑆

√𝑁
),

its coordinate is also equal to (cos( / 2), sin( / 2)) in the basis of (|𝜑⟩) and (|𝜆⟩).

From Figure 6.7, sin( + ( / 2)) = (
√𝑆

√𝑁
  (

3×𝑁−4×𝑆

𝑁
)) and cos( + ( / 2)) = (

√𝑁−𝑆

√𝑁
 

(
𝑁−4×𝑆

𝑁
)) are obtained. Since coordinate of |𝜙3⟩ in Figure 6.7 is (

√𝑁−𝑆

√𝑁
  (

𝑁−4×𝑆

𝑁
),

√𝑆

√𝑁

 (
3×𝑁−4×𝑆

𝑁
)), its coordinate is also equal to (cos( + ( / 2)), sin( + ( / 2))) in the basis

of (|𝜑⟩) and (|𝜆⟩). From Figure 6.7, the matrix of the Grover operator G in the basis

of (|𝜑⟩) and (|𝜆⟩) is

G = [
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
]

2×2

 . (6.27)

The matrix of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) is a unitary matrix

(a unitary operator) because of ([
cos(𝜃) − sin(𝜃)

sin(𝜃) cos(𝜃)
]

2×2

 [
cos(𝜃) sin(𝜃)

−sin(𝜃) cos(𝜃)
]

2×2

 =

[
cos(𝜃) sin(𝜃)

−sin(𝜃) cos(𝜃)
]

2×2

  [
cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃)

]
2×2

 = [
1 0
0 1

]
2×2

) . The eigenvalues

of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) are

(𝑒√−1×𝜃) and (𝑒−√−1×𝜃). (6.28)

The value of  is a real. The corresponding eigenvectors of the Grover operator G in

the basis of (|𝜑⟩) and (|𝜆⟩) are

|𝑉1⟩ =
𝑒√−1×𝛾

√2
[√−1

1
]

2×1

 and |𝑉2⟩ =
𝑒√−1×𝛾

√2
[−√−1

1
]

2×1

. (6.29)

The value of  is a real.

326

6.3.5 Quantum Counting Circuit to Solve a Decision Problem with Any

Input of n Bits

From Figure 6.7, we can figure out the projection of |𝜙1⟩ onto axis |> that is sin(

/ 2) = (√
𝑆

𝑁
 / 1) = (√

𝑆

𝑁
). The value of S is to the number of solutions that is how many

elements in the domain {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n} satisfy Of(u1 u2

 un − 1 un) to have a true value. Because S = (sin( / 2))2  N and the value of N is

known, if we can determine the value of , then we can compute the value of S that is

the number of solutions. If the value of S is not equal to zero, then an output is “yes” to

a decision problem with any input of n bits. Otherwise, an output is “no” to the decision

problem with any input of n bits.

Figure 6.8 is quantum-counting circuits that are a real application of phase

estimation. In Figure 6.8, if an eigenvalue generated from controlled Grover operations

Figure 6.8: Quantum counting circuits to calculate the number of solutions to a decision

problem with the input of n bits.

is (𝑒√−1×𝜃), then we use controlled Grover operations followed by inverse quantum

Fourier transform to find the best approximation of t bits to the value of  . Otherwise,

we use controlled Grover operations followed by quantum Fourier transform to find

327

the best approximation of t bits to the value of  . In Figure 6.8, a superposition of the

second register is the state vector |u>. The state vector |u> is a superposition of (|𝜑⟩) in

(6.22) and (|𝜆⟩) in (6.23). Because |𝑉1⟩ and |𝑉2⟩ in (6.29) form an orthonormal basis

of the space spanned by (|𝜑⟩) in (6.22) and (|𝜆⟩) in (6.23), the state vector |u> in Figure

6.8 can be expressed as a linear combination of |𝑉1⟩ and |𝑉2⟩ in (6.29).

6.4 Determine the Number of Solutions to the Independent-set

Problem in a Graph with Two Vertices and One Edge in Phase

Estimation

We assume that graph G has is a set V of vertices and a set E of edges. We also

suppose that V is {v1, …, vn} in which each element vj for 1  j  n is a vertex in graph

G. We assume that E is {(va, vb)| va  V and vb  V}. We use G = (V, E) to represent it.

We assume that |V| is the number of vertices in V and |E| is the number of edges in E.

We also suppose that |V| is equal to n and |E| is equal to m. The value of m is at most

equal to ((n  (n − 1)) / 2). For graph G = (V, E), its complementary graph is 𝐺̅ = (V,

𝐸̅) in which each edge in 𝐸̅ is out of E. This is to say that 𝐸̅ is {(vc, vd)| vc  V and vd

 V and (vc, vd)  E}. We assume that |𝐸̅| is the number of edges in 𝐸̅. The number of

edges in 𝐸̅ is (((n  (n − 1)) / 2) − m). An independent-set of graph G with n vertices

and m edges is a subset V1  V of vertices such that for all vc, vd  V1, the edge (vc, vd)

is not in E. The independent-set problem of graph G with n vertices and m edges is to

find a maximum-sized independent set in G.

Consider that in Figure 6.9, a graph G1 contains two vertices {v1, v2} and one edge

Figure 6.9: A graph G1 has two vertices and one edge.

{(v1, v2)} and its complementary graph 𝐺1̅̅̅̅ includes the same vertices and zero edge.

This is an example of a decision problem that is deciding whether a graph G1 in Figure

6.9 has a maximum-sized independent set or not. All of the subsets of vertex are {} that

is an empty set, {v1}, {v2} and {v1, v2}. Because in {v1, v2}, the edge (v1, v2) is one edge

of graph G1, {v1, v2} does not satisfy definition of an independent set. For other three

subsets of vertex that are {} that is an empty set, {v1} and {v2}, there is no edge in them

328

to connect to other distinct vertex. Therefore, they satisfy definition of an independent

set. So, all of the independent sets in graph G1 are {} that is an empty set, {v1} and {v2}.

Since the number of vertex in them are subsequently zero, one and one, the maximum-

sized independent set for graph G1 is {v1} and {v2}. Finally, for the decision problem

“a graph G1 in Figure 6.9, does it have a maximum-sized independent set?” it gives an

output “yes”.

For any graph G with n vertices and m edges, all possible independent sets are 2n

possible choices consisting of legal and illegal independent sets in G. Each possible

choice corresponds to a subset of vertices in G. Hence, we assume that Y is a set of 2n

possible choices and Y is equal to {u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}. This

indicates that the length of each element in Y is n bits and each element represents one

of 2n possible choices. For the sake of presentation, we suppose that uj
0 is that the value

of uj is zero and uj
1 is that the value of uj is one. If an element u1 u2  un − 1 un in Y is a

legal independent set and the value of uj for 1  j  n is one, then uj
1 represents that the

jth vertex is within the legal independent set. If an element u1 u2  un − 1 un in Y is a

legal independent set and the value of uj for 1  j  n is zero, then uj
0 represents that the

jth vertex is not within the legal independent set. We use superposition of a register with

n quantum bits (
1

√2𝑛 (⊗𝑗=1
𝑛 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩))) to encode a set of 2n possible choices, Y =

{u1 u2  un − 1 un   uj  {0, 1} for 1  j  n}.

Deciding whether a graph G1 with two vertices and one edge in Figure 6.9 has a

maximum-sized independent set or not is equivalent to compute the number of solution

to the same problem. Therefore, we make use of the circuit in Figure 6.10 to determine

Figure 6.10: Quantum circuit for deciding whether a graph G1 with two vertices and

one edge in Figure 6.9 has a maximum-sized independent set or not.

329

the number of solution to the independent set problem in a graph G1 with two vertices

and one edge in Figure 6.9. It uses two quantum registers. At the left top in Figure 6.10,

the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩) includes four quantum bits initially in the state |0>.

Quantum bit |y4
0> is the most significant bit. Quantum bit |y1

0> is the least significant

bit. The corresponding decimal value of the first register is (|y4
0>  24 − 1) + (|y3

0>  23

− 1) + (|y2
0>  22 − 1) + (|y1

0>  21 − 1). At the left bottom in Figure 6.10, the second register

(⨂𝑗=1
2 |𝑢𝑗

0⟩) contains two quantum bits initially in the state |0>. Quantum bit |u1>

encodes the first vertex v1 in graph G1 in Figure 6.9 and is the most significant bit.

Quantum bit |u2> encodes the second vertex v2 in graph G1 in Figure 6.9 and is the least

significant bit. Quantum bits |u1
1> |u2

1> encodes {v1, v2} that is a subset of two vertices.

Quantum bits |u1
1> |u2

0> encodes {v1} that is a subset of one vertex. Quantum bits |u1
0>

|u2
1> encodes {v2} that is a subset of one vertex. Quantum bits |u1

0> |u2
0> encodes {}

that is an empty subset without any vertex. Of course, the corresponding decimal value

of the second register is (|u1
0>  22 − 1) + (|u2

0>  22 − 2). For the convenience of the

presentation, the following initial state vector is

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩). (6.30)

6.4.1 Initialize Quantum Registers to Calculate the Number of

Solutions to the Independent-set Problem in a Graph with Two

Vertices and One Edge in Phase Estimation

In Listing 6.2, the program is in the backend that is simulator of Open QASM with

thirty-two quantum bits in IBM’s quantum computer. The program is to calculate the

number of solutions to the independent-set problem in graph G1 with two vertices and

one edge in Figure 6.9. Figure 6.11 is the corresponding quantum circuit of the program

in Listing 6.2 and is to implement the quantum circuit of Figure 6.10 to calculate the

number of solutions to the independent-set problem in graph G1 with two vertices and

one edge in Figure 6.9.

1. OPENQASM 2.0;

2. include "qelib1.inc";

3. qreg q[6];

4. creg c[4];

Listing 6.2: The program of computing the number of solutions to the independent-set

problem in graph G1 with two vertices and one edge in Figure 6.9.

330

The statement “OPENQASM 2.0;” on line one of Listing 6.2 is to indicate that the

program is written with version 2.0 of Open QASM. Then, the statement “include

"qelib1.inc";” on line two of Listing 6.2 is to continue parsing the file “qelib1.inc” as if

the contents of the file were pasted at the location of the include statement, where the

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is

specified relative to the current working directory.

Figure 6.11: Implementing quantum circuits of Figure 6.10 to compute the number of

solutions to the independent-set problem in graph G1 with two vertices and one edge in

Figure 6.9.

Next, the statement “qreg q[6];” on line three of Listing 6.2 is to declare that in the

program there are six quantum bits. In the left top of Figure 6.11, six quantum bits are

respectively q[0], q[1], q[2], q[3], q[4] and q[5]. The initial value of each quantum bit

is set to state |0>. We use four quantum bits q[0], q[1], q[2] and q[3] to subsequently

encode four quantum bits |y4>, |y3>, |y2> and |y1> in Figure 6.10. We apply two quantum

bits q[4] and q[5] to respectively encode two quantum bits |u1> and |u2> in Figure 6.10.

For the convenience of our explanation, q[k]0 for 0  k  5 is to represent the value 0 of

q[k] and q[k]1 for 0  k  5 is to represent the value 1 of q[k]. Since quantum bit |y4
0>

is the most significant bit and quantum bit |y1
0> is the least significant bit, quantum bit

|q[0]0> is the most significant bit and quantum bit |q[3]0> is the least significant bit. The

corresponding decimal value of the first register in Figure 6.11 is (|q[0]0>  24 − 1) +

(|q[1]0>  23 − 1) + (|q[2]0>  22 − 1) + (|q[3]0>  21 − 1).

Then, the statement “creg c[4];” on line four of Listing 6.2 is to declare that there

are four classical bits in the program. In the left bottom of Figure 6.11, four classical

bits are respectively c[0], c[1], c[2] and c[3]. The initial value of each classical bit is set

to zero (0). For the convenience of our explanation, c[k]0 for 0  k  3 is to represent

the value 0 of c[k] and c[k]1 for 0  k  3 is to represent the value 1 of c[k]. The

corresponding decimal value of the four initial classical bits c[3]0 c[2]0 c[1]0 c[0]0 is 23

331

 c[3]0 + 22  c[2]0 + 21  c[1]0 + 20  c[0]0. This is to say that classical bit c[3]0 is the

most significant bit and classical bit c[0]0 is the least significant bit. For the convenience

of our explanation, we can rewrite the initial state vector |0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩) 

(⨂𝑗=1
2 |𝑢𝑗

0⟩) in (6.30) in Figure 6.10 as follows

|0> = (⨂𝑘=4
1 |𝑦𝑘

0⟩)  (⨂𝑗=1
2 |𝑢𝑗

0⟩) = |q[0]0> |q[1]0> |q[2]0> |q[3]0> |q[4]0> |q[5]0>. (6.31)

6.4.2 Superposition of Quantum Registers to Compute the Number of

Solutions to the Independent-set Problem in a Graph with Two

Vertices and One Edge in Phase Estimation

In Figure 6.10, the first stage of the circuit is to implement a Hadamard transform

with four Hadamard gates on the first register (⨂𝑘=4
1 |𝑦𝑘

0⟩) and another Hadamard

transform with two Hadamrad gates on the second register (⨂𝑗=1
2 |𝑢𝑗

0⟩). The six

statements “h q[0];”, “h q[1];”, “h q[2];”, “h q[3];”, “h q[4];” and “h q[5];” on line five

of Listing 6.2 through line ten of Listing 6.2 is to implement six Hadamrad gates on the

first register and the second register. They perform each Hadamrad gate in the first time

slot of Figure 6.11 and complete the first stage of the circuit in Figure 6.10.

Listing 6.2 continued…

//Implement a Hadamard transform on two registers.

5. h q[0];

6. h q[1];

7. h q[2];

8. h q[3];

9. h q[4];

10. h q[5];

A superposition of the first register is (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩))) = (
1

√24

(⊗𝑎=0
3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩))). Another superposition of the second register is (|𝑢⟩ =

1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)) =
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))). This implies that the

superposition of the second register begins in the new state vector (|𝑢⟩ =
1

√22

332

(⊗𝑗=1
2 (|𝑢𝑗

0⟩ + |𝑢𝑗
1⟩)) =

1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩))) and contains two quantum

bits as is necessary to store (|𝑢⟩). In superposition of the second register (|𝑢⟩), state

(|𝑢1
1⟩|𝑢2

1⟩) that is encoded by state (|𝑞[4]1⟩|𝑞[5]1⟩) with the amplitude (1/2) encodes

{v1, v2} that is a subset of two vertices. State (|𝑢1
1⟩|𝑢2

0⟩) that is encoded by state

(|𝑞[4]1⟩|𝑞[5]0⟩) with the amplitude (1/2) encodes {v1} that is a subset of one vertex.

State (|𝑢1
0⟩|𝑢2

1⟩) that is encoded by state (|𝑞[4]0⟩|𝑞[5]1⟩) with the amplitude (1/2)

encodes {v2} that is a subset of one vertex. State (|𝑢1
0⟩|𝑢2

0⟩) that is encoded by state

(|𝑞[4]0⟩|𝑞[5]0⟩) with the amplitude (1/2) encodes {} that is an empty subset without

vertex. The new state vector (|𝑢⟩) is an eigenstate (eigenvector) of G that is the Grover

operator and is a unitary operator. Thus, this gives that the following new state vector

is

|1> = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (
1

√22
 (⊗𝑗=1

2 (|𝑢𝑗
0⟩ + |𝑢𝑗

1⟩)))

 = (
1

√24
 (⊗𝑘=4

1 (|𝑦𝑘
0⟩ + |𝑦𝑘

1⟩)))  (|𝑢⟩)

 = (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (
1

√22
 (⊗𝑏=4

5 (|𝑞[𝑏]0⟩ + |𝑞[𝑏]1⟩)))

= (
1

√24
 (⊗𝑎=0

3 (|𝑞[𝑎]0⟩ + |𝑞[𝑎]1⟩)))  (|𝑢⟩). (6.32)

6.4.3 Controlled-G Operations on the Superposition of the Second

Register to Determine the Number of Solutions to the

Independent-set Problem in a Graph with Two Vertices and One

Edge in Phase Estimation

In the new state vector |1> in (6.32), each quantum bit in the first register is

currently in its superposition. The value of the first register is from state (⨂𝑘=4
1 |𝑦𝑘

0⟩)

(zero) encoded by state (⨂𝑎=0
3 |𝑞[𝑎]0⟩) through state (⨂𝑘=4

1 |𝑦𝑘
1⟩) (fifteen) encoded by

state (⨂𝑎=0
3 |𝑞[𝑎]1⟩) with that the amplitude of each state is (1 / 4). The circuit of Figure

6.10 can precisely estimate sixteen phases. This indicates that the first register with four

quantum bits can precisely represent sixteen phases. Sixteen phases are respectively (0

/ 24), (1 / 24), (2 / 24), (3 / 24), (4 / 24), (5 / 24), (6 / 24), (7 / 24), (8 / 24), (9 / 24), (10 / 24),

(11 / 24), (12 / 24), (13 / 24), (14 / 24) and (15 / 24). The corresponding sixteen phase

angles are respectively (2    0 / 24), (2    1 / 24), (2    2 / 24), (2    3 / 24),

(2    4 / 24), (2    5 / 24), (2    6 / 24), (2    7 / 24), (2    8 / 24), (2  

 9 / 24), (2    10 / 24), (2    11 / 24), (2    12 / 24), (2    13 / 24), (2   

333

14 / 24) and (2    15 / 24).

Say that we are trying to compute an eigenvalue of 90. The number of solutions

for the independent-set problem in a graph G1 with two vertices and one edge in Figure

6.9 is S = N  (sin( / 2))2 = 4  (sin(90 / 2))2 = 4  (1 /2) = 2. This gives that the

answer is two for determining the number of solutions for the independent-set problem

in a graph G1 with two vertices and one edge in Figure 6.9. Therefore, the effect of one

application of the Grover operator G on its eigenvector (eigenstate) (|𝑢⟩) is (G  |u> =

𝑒±√−1×2×𝜋×𝜃  |u> = 𝑒
±√−1×2×𝜋×

4

24  |u>). So, the effect of repeated application of

the Grover operator G on its eigenvector (eigenstate) (|𝑢⟩) is

Ga |u> = 𝑒±√−1×2×𝜋×𝜃×𝑎 |u> = 𝑒
±√−1×2×𝜋×

4

24×𝑎
  |u>. (6.33)

A superposition (
1

√2
 (|y1

0> + |y1
1>)) that is encoded by (

1

√2
 (|q[3]0> + |q[3]1>)) at

the weighted position 20 is the controlled quantum bit of implementing controlled-𝐺20

operations on the superposition of the second register that is the state (|𝑢⟩). Similarly,

a superposition (
1

√2
 (|y2

0> + |y2
1>)) that is encoded by (

1

√2
 (|q[2]0> + |q[2]1>)) at the

weighted position 21 is the controlled quantum bit of implementing controlled-𝐺21

operations on the superposition of the second register that is the state (|𝑢⟩). Then, a

superposition (
1

√2
 (|y3

0> + |y3
1>)) that is encoded by (

1

√2
 (|q[1]0> + |q[1]1>)) at the

weighted position 22 is the controlled quantum bit of implementing controlled-𝐺22

operations on the superposition of the second register that is the state (|𝑢⟩). Next, a

superposition (
1

√2
 (|y4

0> + |y4
1>)) that is encoded by (

1

√2
 (|q[0]0> + |q[0]1>)) at the

weighted position 23 is the controlled quantum bit of implementing controlled-𝐺23

operations on the superposition of the second register that is the state (|𝑢⟩).

The Grover operator G has two eigenvalues (𝑒√−1×2×𝜋×𝜃) and (𝑒−√−1×2×𝜋×𝜃). We

assume that it generates the eigenvalue (𝑒√−1×2×𝜋×𝜃) = (𝑒√−1×2×𝜋×
4

24). The four

statements from line eleven through line fourteen in Listing 6.2 are “u1(2*pi*4/16*1)

q[3];”, “u1(2*pi*4/16*2) q[2];”, “u1(2*pi*4/16*4) q[1];” and “u1(2*pi*4/16*8) q[0];”.

334

Listing 6.2 continued…

//Implement controlled-G operations on the superposition of the second register.

11. u1(2*pi*4/16*1) q[3];

12. u1(2*pi*4/16*2) q[2];

13. u1(2*pi*4/16*4) q[1];

14. u1(2*pi*4/16*8) q[0];

They take the new state vector (|1>) in (6.32) as their input state vector and implement

each controlled-G operation on the superposition of the second register in the second

time slot of Figure 6.11 and in the second stage of Figure 6.10. They alert the phase of

the state |y1
1> (|q[3]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×20

) = (𝑒√−1×2×𝜋×
4

16
×1

).

They alert the phase of the state |y2
1> (|q[2]1>) is from one (1) to become

(𝑒√−1×2×𝜋×
4

16
×21

) = (𝑒√−1×2×𝜋×
4

16
×2

). They alert the phase of the state |y3
1> (|q[1]1>) is

from one (1) to become (𝑒√−1×2×𝜋×
4

16
×22

) = (𝑒√−1×2×𝜋×
4

16
×4

) and alert the phase of the

state |y4
1> (|q[0]1>) is from one (1) to become (𝑒√−1×2×𝜋×

4

16
×23

) = (𝑒√−1×2×𝜋×
4

16
×8

).

This gives that the following new state vector is

|2> = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×23

|𝑦4
1⟩)  (|𝑦3

0⟩ + 𝑒√−1×2×𝜋×
4

16
×22

|𝑦3
1⟩) 

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×21

|𝑦2
1⟩)  (|𝑦1

0⟩ + 𝑒√−1×2×𝜋×
4

16
×20

|𝑦1
1⟩))  (|𝑢⟩)

 = (
1

√24
 (|𝑦4

0⟩ + 𝑒√−1×2×𝜋×
4

16
×8|𝑦4

1⟩)  (|𝑦3
0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑦3

1⟩) 

 (|𝑦2
0⟩ + 𝑒√−1×2×𝜋×

4

16
×2|𝑦2

1⟩)  (|𝑦1
0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑦1

1⟩))  (|𝑢⟩)

 = (
1

√24
 (|𝑞[0]0⟩ + 𝑒√−1×2×𝜋×

4

16
×8|𝑞[0]1⟩)  (|𝑞[1]0⟩ + 𝑒√−1×2×𝜋×

4

16
×4|𝑞[1]1⟩) 

 (|𝑞[2]0⟩ + 𝑒√−1×2×𝜋×
4

16
×2|𝑞[2]1⟩)  (|𝑞[3]0⟩ + 𝑒√−1×2×𝜋×

4

16
×1|𝑞[3]1⟩))  (|𝑢⟩)

 = (
1

√24
 (∑ 𝑒√−1×2×𝜋×

4

16
×𝑌24−1

𝑌=0 |𝑌⟩))  (|𝑢⟩). (6.34)

335

From this description above, the second quantum register stays in the state (|u>)

through the computation. Because of phase kickback, the phase of the state |Y> for 0 

Y  24 − 1 is from one (1) to become (𝑒√−1×2×𝜋×
4

16
×𝑌

). In the state vector (|2>) in

(6.34), it includes sixteen phase angles from state |0> through state |15>. The front eight

phase angles are (90  0 = 0), (90  1 = 90), (90  2 = 180), (90  3 = 270),

(90  4 = 360 = 0), (90  5 = 450 = 90), (90  6 = 540 = 180) and (90  7 =

630 = 270). The last eight phase angles are (90  8 = 720 = 0), (90  9 = 810 =

90), (90  10 = 900 = 180), (90  11 = 990 = 270), (90  12 = 1080 = 0), (90

 13 = 1170 = 90), (90  14 = 1260 = 180) and (90  15 = 1350 = 270). The

phase angle rotates back to its starting value 0 four times.

6.4.4 The Inverse Quantum Fourier Transform on the Superposition

of the First Register to Compute the Number of Solutions to the

Independent-set Problem in a Graph with Two Vertices and One

Edge in Phase Estimation

Hidden patterns and information stored in the state vector (|2>) in (6.34) are to that

its phase angle rotates back to its starting value 0 four times. This is to say that the

number of the period per sixteen phase angles is four and the frequency is equal to four

(16 / 4). The twelve statements from line fifteen through line twenty-six in Listing 6.2

Listing 6.2 continued…

//Implement one inverse quantum Fourier transform on the superposition of the first

// register.

15. h q[0];

16. cu1(-2*pi*1/4) q[1],q[0];

17. cu1(-2*pi*1/8) q[2],q[0];

18. cu1(-2*pi*1/16) q[3],q[0];

19. h q[1];

20. cu1(-2*pi*1/4) q[2],q[1];

21. cu1(-2*pi*1/8) q[3],q[1];

22. h q[2];

336

23. cu1(-2*pi*1/4) q[3],q[2];

24. h q[3];

25. swap q[0],q[3];

26. swap q[1],q[2];

complete each quantum operation from the third time slot through the fourteenth time

slot in Figure 6.11. They actually implement each quantum operation of performing an

inverse quantum Fourier transform on the superposition of the first register in Figure

6.10. They take the state vector (|2>) in (6.34) as their input state vector. Since the

inverse quantum Fourier transform effectively transforms the state of the first

register into a superposition of the periodic signal’s component frequencies, they

generate the following state vector

|3> = (∑
1

√24
𝑒√−1×2×𝜋×

4

24×𝑌 1

√24
24−1
𝑌=0 ∑ 𝑒

−√−1×2×𝜋×
𝑖

24×𝑌|𝑖⟩24−1
𝑖=0)  (|𝑢⟩)

 = (
1

24 (∑ ∑ 𝑒√−1×2×𝜋×𝑌×(
4

24−
𝑖

24)24−1
𝑖=0

24−1
𝑌=0 |𝑖⟩))  (|𝑢⟩)

 = (∑ ∑
1

24 (𝑒√−1×2×𝜋×(
4

24−
𝑖

24)24−1
𝑌=0

24−1
𝑖=0)𝑌|𝑖⟩))  (|𝑢⟩). (6.35)

6.4.5 Read the Quantum Result to Figure out the Number of Solutions

to the Independent-set Problem in a Graph with Two Vertices

and One Edge in Phase Estimation

Finally, the four statements “measure q[0] -> c[3];”, “measure q[1] -> c[2];”,

“measure q[2] -> c[1];” and “measure q[3] -> c[0];” from line twenty-seven through

line thirty in Listing 6.2 implement a measurement. They measure the output state of

the inverse quantum Fourier transform to the superposition of the first register in Figure

6.11 and in Figure 6.10. This is to say that they measure four quantum bits q[0], q[1],

q[2] and q[3] of the first register and record the measurement outcome by overwriting

four classical bits c[3], c[2], c[1] and c[0].

Listing 6.2 continued…

//Complete a measurement on the first register.

337

27. measure q[0] -> c[3];

28. measure q[1] -> c[2];

29. measure q[2] -> c[1];

30. measure q[3] -> c[0];

In the backend simulator with thirty-two quantum bits in IBM’s quantum

computers, we use the command “run” to execute the program in Listing 6.2. Figure

6.12 shows the measured result. From Figure 6.12, we get that a computational basis

state 0100 (c[3] = 0 = q[0] = |0>, c[2] = 1 = q[1] = |1>, c[1] = 0 = q[2] = |0> and c[0] =

0 = q[3] = |0>) has the probability 100%. This indicates that the phase angle is  = 2 

  (4 / 16) = 90 with the probability 100%. Hence, The number of solutions for the

independent-set problem in a graph G1 with two vertices and one edge in Figure 6.9 is

S = N  (sin( / 2))2 = 4  (sin(90 / 2))2 = 4  (1 /2) = 2. This is to say that the answer

with the probability 100% is two for computing the number of solutions for the

independent-set problem in a graph G1 with two vertices and one edge in Figure 6.9.

Therefore, an output is “yes” to a decision problem that is deciding whether a graph G1

in Figure 6.9 has a maximum-sized independent set or not.

Figure 6.12: A computational basis state 0100 has the probability 100%.

6.5 Summary

In this chapter, we illustrated that a decision problem is a problem in which it has

only two possible outputs (yes or no) on any input of n bits. An output “yes” in the

decision problem on any input of n bits is to the number of solutions not to be zero and

another output “no” in the decision problem on any input of n bits is to the number of

solutions to be zero. Next, we described that a (2n  2n) unitary matrix (operator) U has

a (2n  1) eigenvector |u> with eigenvalue 𝑒√−1×2×𝜋×𝜃 such that U  |u> =

𝑒√−1×2×𝜋×𝜃  |u>, where the value of  is unknown and is real. We then illustrated how

the phase estimate algorithm with the what possibility estimates the value of . We also

338

described time complexity, space complexity and performance of the phase estimate

algorithm. Next, we introduced how to design quantum circuits and write quantum

programs for computing eigenvalue of a (22  22) unitary matrix U with a (22  1)

eigenvector |u>. Next, we described how the quantum-counting algorithm determines

the number of solutions for a decision problem with the input of n bits. We also

illustrated time complexity, space complexity and performance of the quantum-

counting algorithm. We then introduced how to design quantum circuits and write

quantum programs to determine the number of solution to the independent set problem

in a graph G1 with two vertices and one edge.

6.6 Bibliographical Notes

In this chapter for more details about an introduction of the phase estimation

algorithm, the recommended books are [Nielsen and Chuang 2000; Imre and Balazs

2005; Lipton and Regan 2014; Silva 2018; Johnston et al 2019]. For a more detailed

description to binary search trees, the recommended book is [Horowitz et al 2003]. For

a more detailed introduction to the discrete Fourier transform and the inverse discrete

Fourier transform, the recommended books are [Cormen et al 2009; Nielsen and

Chuang 2000; Imre and Balazs 2005; Lipton and Regan 2014; Silva 2018; Johnston et

al 2019]. The two famous articles [Coppersmith 1994; Shor 1994] gave the original

version of the Quantum Fourier transform and the inverse quantum Fourier transform.

A good illustration for the product state decomposition of the quantum Fourier

transform and the inverse quantum Fourier transform is the two famous articles in

[Griffiths and Niu 1996; Cleve et al 1998]. For a more detailed description to the

quantum-counting algorithm, the recommended article and books are [Brassard et al

1998; Nielsen and Chuang 2000; Imre and Balazs 2005; Lipton and Regan 2014; Silva

2018; Johnston et al 2019]. A good introduction to the instructions of Open QASM is

the famous article in [Cross et al 2017].

6.7 Exercises

6.1 Prove that the transformation of the Oracle is O = 𝐼2𝑛,2𝑛 − 2  |x0> <x0|, where x0

is one element in the domain of the Oracle and x0 satisfies O(x0) = 1.

6.2 Determine the matrix of the Oracle that is O = 𝐼22,22 − 2  |x0> <x0|, where x0 = 2

and x0 satisfies O(x0) = 1.

6.3 Show that the unitary operator U (inversion about the average) is equivalent to

339

reflect its input state |𝜙2⟩ over |𝜙1⟩ to |𝜙3⟩ that is a reflection about |𝜙1⟩ in the

two-dimensional geometrical interpretation of Figure 6-7.

6.4 Compute the matrix of the Grover operator G in the basis of (|𝜑⟩) and (|𝜆⟩) in

Figure 6.7.

6.5 Calculate the eigenvalues and corresponding eigenvectors of the Grover operator G

in the basis of (|𝜑⟩) and (|𝜆⟩) in Figure 6.7.

