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Chapter 2 

Boolean Algebra and its Applications  

 

From a field of mathematics called modern algebra, classical computers are 

designed and maintained. Over a hundred years, algebraists have studied for 

mathematical systems that are called boolean algebras. The name boolean algebra 

honors a fascinating English mathematician, George Boole because in 1854 he 

published a classic book, An Investigation of the Laws of Thought, on which Are 

Founded Mathematical Theories of Logic and Probabilities. Boole’s stated objective 

(intention) was to complete a mathematical analysis of logic. The calculus of 

propositions and algebra of sets were based on Boole’s investigation. In this book we 

designate the algebra now used in the design and maintenance of quantum logical 

circuitry as boolean algebra. 

 

There are several advantages in having a mathematical technique for the illustration 

of the internal workings of a quantum algorithm (circuit) for solving each different kind 

of applications in IBM’s quantum computers. The first advantage is to that it is often 

far more convenient to calculate with algebraic expressions used to describe the internal 

workings of a quantum algorithm (circuit) than it is to apply schematic or even logical 

diagrams. The second advantage is to that an ordinary algebraic expression that 

describes the internal workings of a quantum algorithm (circuit) may be reduced or 

simplified. This enables that the designer of quantum algorithms (circuits) achieves 

economy of construction and reliability of quantum operation. Boolean algebra also 

provides an economical and straightforward way of designing quantum algorithms 

(circuits) for solving each different kind of applications. In all, a knowledge of boolean 

algebra is indispensable in the computing field. In this chapter, we describe how to com- 
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Figure 2.1: Logic operations on bits. 

 

plete logic operations that appear in Figure 2.1 and include NOT, AND, NAND, OR, 

NOR, Exclusive-OR (XOR) and Exclusive-NOR (XNOR) with quantum logic gates 

in the backend ibmqx4 or a simulator in IBM’s quantum computers. We also illustrate 

how to complete several applications from boolean algebra. 

 

2.1 Illustration to NOT Operation 

 

The NOT operation acquires a single input and yields one single output. It inverts 

the value of a bit into the one’s complement of the bit. This is to say that the NOT 

operation for a bit provides the following result: 

 

NOT 1 = 0 

NOT 0 = 1                           (2.1) 

 

The value of a Boolean variable (a bit) is only zero (0) or one (1). Therefore, NOT of 

a Boolean variable (a bit) q[0], written as 𝑞[0]̅̅ ̅̅ ̅̅  is equal to one (1) if and only if q[0] is 

equal to zero (0). Similarly, 𝑞[0]̅̅ ̅̅ ̅̅  is equal to zero (0) if and only if q[0] is equal to one 

(1). The rules in (2.1) for the NOT operation may also be expressed in the form of a 

truth table that is shown in Table 2.1. 

 

Input Output 

q[0] 𝑞[0]̅̅ ̅̅ ̅̅  

0 1 

1 0 

Table 2.1: The truth table for the NOT operation. 

 

From (2.1) and Table 2.1, the NOT operation of a bit is to invert the value of the bit 

into its one’s complement. The NOT operation of n bits is to provide the corresponding 

one’s complement for each input in n inputs by means of implementing the NOT 

operation of a bit of n times. The following subsections will be used to illustrate how 

to design the quantum programs to complete the NOT operation of a bit and the NOT 

operation of two bits. 

 

2.1.1 Quantum Program to the One’s Complement of a Bit 

 

Consider that two values for unsigned integer of one bit are, respectively, 0 (010) 
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and 1(110), where 010 is the decimal representation of zero and 110 is the decimal 

representation of one. We want to simultaneously take the one’s complement of those 

two values.  

 

In Listing 2.1, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the first example of the second chapter in which we illustrate how 

to write a quantum program to invert 0 (010) and 1(110) into their one’s complement. 

Figure 2.2 is the corresponding quantum circuit of the program in Listing 2.1. The 

statement “OPENQASM 2.0;” on line one of Listing 2.1 is to indicate that the program 

is written with version 2.0 of Open QASM. Then, the statement “include "qelib1.inc";” 

on line two of Listing 2.1 is to continue parsing the file “qelib1.inc” as if  

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. x q[0]; 

7. measure q[0] -> c[0]; 

Listing 2.1: The program of taking the one’s complement to the input of a bit. 

 

the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. 

 

 

Figure 2.2: The corresponding quantum circuit of the program in Listing 2.1. 

 

Next, the statement “qreg q[5];” on line three of Listing 2.1 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.2, five quantum bits are 

subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set 



60 

 

to |0>. We use a quantum bit q[0] to encode the input of a bit that is unsigned integer of 

a bit. Next, the statement “creg c[5];” on line four of Listing 2.1 is to declare that there 

are five classical bits in the program. In the left bottom of Figure 2.2, five classical bits 

are respectively c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0.  

 

Next, the statement “h q[0];” on line five of Listing 2.1 actually completes 

(
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to say that the statement “h q[0];” on line five of Listing 2.1 is to apply the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition). 

In its superposition, |0> with the amplitude 
1

√2
 encodes the value 0 (zero) to the input 

of a bit and |1> with the amplitude 
1

√2
 encodes the value 1 (one) to the input of a bit. 

Next, the statement “x q[0];” on line six of Listing 2.1 actually completes (
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 (|1> + |0>). This indicates that the 

statement “x q[0];” on line six of Listing 2.1 inverts |0> with the amplitude 
1

√2
 (the 

input zero of a bit) into |1> with the amplitude 
1

√2
 (its corresponding one’s complement) 

and also inverts |1> with the amplitude 
1

√2
 (the input one of a bit) into |0> with the 

amplitude 
1

√2
  (its corresponding one’s complement). This also implies that two 

instructions (two NOT operations) of taking one’s complement to the input of a bit are 

completed by means of using one quantum instruction “x q[0];”. 

 

Next, the statement “measure q[0] -> c[0];” on line seven of Listing 2.1 is to 

measure the first quantum bit q[0] and to record the measurement outcome by 

overwriting the first classical bit c[0]. In the backend ibmqx4 with five quantum bits in 

IBM’s quantum computers, we use the command “simulate” to execute the program in 

Listing 2.1. The measured result is shown in Figure 2.3. From Figure 2.3, we obtain the 
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answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |1>) with the probability 0.530. This is to say that we obtain the one’s 

complement (q[0] = |1>) with the probability 0.530 to the input zero (0) of a bit. Or we 

obtain the answer 00000 with the probability 0.470 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, 

c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>). This is also to say that we 

obtain the one’s complement (q[0] = |0>) with the probability 0.470 to the input one (1) 

of a bit. 

 

 

Figure 2.3: After the measurement to the program in Listing 2.1 is completed, we obtain 

the answer 00001 with the probability 0.530 or the answer 00000 with the probability 

0.470. 

 

2.1.2 Quantum Program to the One’s Complement of Two Bits 

 

Consider that four values to unsigned integer of two bits are subsequently 00 (010), 

01 (110), 10 (210) and 11(310), where 010 is the decimal representation of zero, 110 is the 

decimal representation of one, 210 is the decimal representation of two and 310 is the 

decimal representation of three. We want to simultaneously take the one’s complement 

of those four values.  

 

In Listing 2.2, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the second example of the second chapter in which we describe 

how to write a quantum program to take the one’s complement of 00 (010), 01 (110), 10 

(210) and 11 (310). Figure 2.4 is the corresponding quantum circuit of the program in 

Listing 2.2. The statement “OPENQASM 2.0;” on line one of Listing 2.2 is to point to 

that the program is written with version 2.0 of Open QASM. Next, the statement 

“include "qelib1.inc";” on line two of Listing 2.2 is to continue parsing the file 

“qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. 

 

1. OPENQASM 2.0; 



62 

 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[0]; 

6. h q[1]; 

7. x q[0]; 

8. x q[1]; 

9. measure q[0] -> c[0]; 

10. measure q[1] -> c[1]; 

Listing 2.2: The program of taking the one’s complement to the input of two bits. 

 

Then, the statement “qreg q[5];” on line three of Listing 2.2 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.4, five quantum bits are 

subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set 

to |0>. We use two quantum bits q[0] and q[1] to encode the input of two bits that are 

unsigned integer of two bits. Next, the statement “creg c[5];” on line four of Listing 2.2 

is to declare that there are five classical bits in the program. In the left bottom of Figure 

2.4, five classical bits are respectively c[0], c[1], c[2], c[3] and c[4]. The initial value 

of each classical bit is set to 0.  

 

 

Figure 2.4: The corresponding quantum circuit of the program in Listing 2.2. 

 

Then, the statement “h q[0];” on line five of Listing 2.2 actually completes 
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indicates that the statement “h q[0];” on line five of Listing 2.2 is to apply the Hadamard 

gate to convert q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition). 
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Next, the statement “h q[1];” on line six of Listing 2.2 actually completes (
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statement “h q[1];” on line six of Listing 2.2 is to use the Hadamard gate to convert q[1] 

from one state |0> to another state 
1

√2
  (|0> + |1>) (its superposition). Hence, the 

superposition of the two quantum bits q[0] and q[1] is (
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1

2
 (|0> |0> + |0> |1> + |1> |0> + |1> |1>) = 

1

2
 (|00> + |01> + |10> + |11>). In the 

superposition, |00> with the amplitude 
1

2
 encodes the value 00 (zero) to the input of 

two bits, |01> with the amplitude 
1

2
 encodes the value 1 (one) to the input of two bits, 

|10> with the amplitude 
1

2
 encodes the value 2 (two) to the input of two bits and |11> 

with the amplitude 
1

2
 encodes the value 3 (three) to the input of two bits.  

 

Next, the statement “x q[0];” on line seven of Listing 2.2 actually completes 
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statement “x q[1];” on line eight of Listing 2.2 actually completes (
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statements “x q[0];” and “x q[1];” on line seven and line eight of Listing 2.2 inverts 

|00> with the amplitude 
1

2
 (the input zero of two bits) into |11> with the amplitude 

1

2
 

(its one’s complement), inverts |01> with the amplitude 
1

2
 (the input one of two bits) 

into |10> with the amplitude 
1

2
 (its one’s complement), inverts |10> with the amplitude 
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1

2
 (the input two of two bits) into |01> with the amplitude 

1

2
 (its one’s complement) 

and inverts |11> with the amplitude 
1

2
 (the input three of two bits) into |00> with the 

amplitude 
1

2
 (its one’s complement). This indicates that eight instructions (eight NOT 

operations) of taking one’s complement to the input of two bits are completed by means 

of applying two quantum operations “x q[0];” and “x q[1];”. 

 

Next, the two statements “measure q[0] -> c[0];” and “measure q[1] -> c[1];”on line 

nine and line ten of Listing 2.2 is to measure the first quantum bit q[0] and the second 

quantum bit q[1] and to record the measurement outcome by overwriting the first 

classical bit c[0] and the second classical bit c[1]. In the backend ibmqx4 with five 

quantum bits in IBM’s quantum computers, we apply the command “simulate” to 

execute the program in Listing 2.2. The measured result is shown in Figure 2.5. From 

Figure 2.5, we obtain the answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] 

= |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) with the probability 0.330. This is to say 

that we obtain the one’s complement (q[1] = |0> and q[0] = |1>) with the probability 

0.330 to the input two (10) of two bits. Or we obtain the answer 00010 (c[4] = q[4] = 

|0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with 

the probability 0.260. This indicates that we obtain the one’s complement (q[1] = |1> 

and q[0] = |0>) with the probability 0.260 to the input one (01) of two bits. Or we obtain 

the answer 00011 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = 

|1> and c[0] = q[0] = |1>) with the probability 0.210. This implies that we obtain the 

one’s complement (q[1] = |1> and q[0] = |1>) with the probability 0.210 to the input 

zero (00) of two bits. Or we obtain the answer 00000 (c[4] = q[4] = |0>, c[3] = q[3] = 

|0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.200. 

This is to say that we obtain the one’s complement (q[1] = |0> and q[0] = |0>) with the 

probability 0.200 to the input three (11) of two bits.  

 

 

Figure 2.5: After the measurement to the program in Listing 2.2 is completed, we obtain 

the answer 00001 with the probability 0.330, the answer 00010 with the probability 

0.260, the answer 00011 with the probability 0.210 or the answer 00000 with the 

probability 0.200. 
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2.2 The Toffoli Gate of Three Quantum Bits 

 

The Toffoli gate that is also known as the controlled-controlled-NOT or CCNOT 

gate of three quantum bits is 

 

UCCN = 

(
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.           (2.2) 

 

It is assumed that UCCN
+ is the conjugate-transpose matrix of UCCN and is equal to 

((UCCN)*)t = 

(
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, where the * is the complex conjugation 

and the t is the transpose operation. Because UCCN  ((UCCN)*)t = 
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, UCCN is a unitary matrix or a unitary operator. This 

indicates that the controlled-controlled-NOT or CCNOT gate (the Toffoli gate) UCCN 

is one of quantum gates with three quantum bits. If the quantum state l0 |000> + l1 |001> 

+ l2 |010> + l3 |011> + l4 |100> + l5 |101> + l6 |110> + l7 |111> is written in a vector 

notation as 
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,                             (2.3) 

 

with the first entry l0 is the amplitude for |000>, the second entry l1 is the amplitude for 

|001>, the third entry l2 is the amplitude for |010>, the fourth entry l3 is the amplitude 

for |011>, the fifth entry l4 is the amplitude for |100>, the sixth entry l5 is the amplitude 

for |101>, the seventh entry l6 is the amplitude for |110> and the eighth entry l7 is the 

amplitude for |111>, then the corresponding output from the CCNOT gate UCCN is 
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  = l0 |000> + l1 |001> + l2 |010> + l3 |011> + l4 |100> + l5 |101> + l7 |110> + 
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l6 |111>.                                                          (2.4) 

 

This is to say that the CCNOT gate UCCN converts three quantum bits from one state 

l0 |000> + l1 |001> + l2 |010> + l3 |011> + l4 |100> + l5 |101> + l6 |110> + l7 |111> to 

another state l0 |000> + l1 |001> + l2 |010> + l3 |011> + l4 |100> + l5 |101> + l7 |110> + 

l6 |111>. This implies that in the CCNOT gate UCCN if the two control quantum bits (the 

first quantum bit and the second quantum bit) is set to 0, then the target quantum bit 

(the third quantum bit) is left alone. If the two control quantum bits (the first quantum 

bit and the second quantum bit) is both set to 1, then the target quantum bit (the third 

quantum bit) is flipped. The probability of measuring a |000>, |001>, |010>, |011>, 

|100> or |101> is unchanged, the probability of measuring a |110>  is |l7|
2 and the 

probability of measuring a |111>  is |l6|
2 after using the CCNOT gate UCCN. Since 

(UCCN)2 = UCCN  UCCN =  
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 , using the 

CCNOT gate UCCN twice to a state is equivalent to do nothing to it. The graphical 

representation of the CCNOT gate UCCN is shown in Figure 2.6. In Figure 2.6, the left 

top two wires are control bits that are unchanged by the action of the CCNOT gate. The 

bottom wire is a target bit that is flipped if both control bits are set to 1, and otherwise 

is left alone, where  is addition modulo two. 

 

 

Figure 2.6: The circuit representation of the CCNOT gate. 
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2.2.1 Implementing the Toffoli Gate of Three Quantum Bits 

 

The Toffoli gate has three input bits and three output bits. Its truth table is shown in 

 

Input Output 

C1 C2 T C1 C2 T 

0 0 0 0 0 0 

0 1 0 0 1 0 

1 0 0 1 0 0 

1 1 0 1 1 1 

0 0 1 0 0 1 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 

Table 2.2: The truth table for the Toffoli gate with three input bits and three output bits. 

 

Table 2.2. In IBM Q Experience, it does not provide one quantum instruction (operation) 

of implementing the CCNOT gate (the Toffoli gate) with three quantum bits. We 

decompose CCNOT gate into six CNOT gates and nine gates of one quantum bits that 

are shown in Figure 2.7. In Figure 2.7, H is the Hadamard gate, T = [
1 0

0 𝑒√−1×
𝜋

4
] and 

T+ = [
1 0

0 𝑒−1×√−1×
𝜋

4
]. In IBM Q Experience, the available gates are that CNOT is the 

only gate with two quantum bits and the other gates act on single quantum bit and they 

are introduced in the previous chapter. In the backend ibmqx4 with five quantum bits, 

there are only six pairs of quantum bits to which a CNOT gate can be applied. 

Connectivity of the CNOT gate in the backend ibmqx4 with five quantum bits is shown 

in Figure 1.21 in Subsection 1.11.1. 

 

 

Figure 2.7: Decomposing CCNOT gate into six CNOT gates and nine gates of one bit. 
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In Listing 2.3, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the third example of the second chapter in which we illustrate 

how to write a quantum program to implement a Toffoli gate (a CCNOT gate) of three 

quantum bits. Figure 2.8 is the corresponding quantum circuit of the program in Listing 

2.3. The statement “OPENQASM 2.0;” on line one of Listing 2.3 is to indicate that the 

program is written with version 2.0 of Open QASM. Next, the statement “include 

"qelib1.inc";” on line two of Listing 2.3 is to continue parsing the file “qelib1.inc” as if 

the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[1]; 

6. h q[2]; 

7. h q[0]; 

8. cx q[1],q[0]; 

9. tdg q[0]; 

10. cx q[2],q[0]; 

11. t q[0]; 

12. cx q[1],q[0]; 

13. tdg q[0]; 

14. cx q[2],q[0]; 

15. t q[0]; 

16. t q[1]; 

17. h q[0]; 

18. cx q[2],q[1]; 

19. tdg q[1]; 

20. t q[2]; 

21. cx q[2],q[1]; 

22. measure q[0] -> c[0]; 

23. measure q[1] -> c[1]; 

24. measure q[2] -> c[2]; 

Listing 2.3: The program of implementing a CCNOT gate of three quantum bits. 
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Next, the statement “qreg q[5];” on line three of Listing 2.3 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.8, five quantum bits are 

subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is set 

to |0>. We apply three quantum bits q[2], q[1] and q[0] to subsequently encode the first 

control bit, the second control bit and the target bit. For the convenience of our 

explanation, q[k]0 for 0  k  4 is to represent the value 0 of q[k] and q[k]1 for 0  k  

4 is to represent the value 1 of q[k]. Similarly, for the convenience of our explanation, 

an initial state vector of implementing a Toffoli gate is as follows: 

 

|0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>. 

 

Then, the statement “creg c[5];” on line four of Listing 2.3 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.8, five classical bits are 

respectively c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is set 

to 0. 

 

 

Figure 2.8: The corresponding quantum circuit of the program in Listing 2.3. 

 

Next, the two statements “h q[1];” and “h q[2];”on line five and line six of Listing 

2.3 implement two Hadamard gates of the first time slot of the quantum circuit in Figure 

2.8 and both actually complete (

1

√2

1

√2
1

√2
−

1

√2

)   (
1
0
)  = (

1

√2
1

√2

)  = 
1

√2
  (
1
1
)  = 

1

√2
  ((
1
0
) 

+ (
0
1
) ) = 

1

√2
  (|0> + |1>). This is to say that converting q[1] from one state |0> to 

another state 
1

√2
 (|0> + |1>) (its superposition) and converting q[2] from one state |0> 

to another state 
1

√2
  (|0> + |1>) (its superposition) are completed. Thus, the 

superposition of the two quantum bits q[2] and q[1] is (
1

√2
 (|0> + |1>)) (

1

√2
 (|0> + |1>)) 
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= 
1

2
 (|0> |0> + |0> |1> + |1> |0> + |1> |1>) = 

1

2
 (|00> + |01> + |10> + |11>). Because in 

the first time slot of the quantum circuit in Figure 2.8 there is no quantum gate to act 

on the quantum bit q[0], its state |0> is not changed. Therefore, after two Hadamard 

gates in the first time slot of the quantum circuit in Figure 2.8 are implemented by 

means of using the two statements “h q[1];” and “h q[2];”on line five and line six of 

Listing 2.3, the following new state vector is obtained: 

 

|1> = 
1

2
 (|0> |0> |0> + |0> |1> |0> + |1> |0> |0> + |1> |1> |0>) 

= 
1

2
 (|000> + |010> + |100> + |110>). 

 

The next 12 time slots in the quantum circuit of Figure 2.8 implement a Toffoli gate. 

Next, the statement “h q[0];” on line seven of Listing 2.3 takes the new state vector 

|1> = 
1

2
 (|000> + |010> + |100> + |110>) as its input and completes one Hadamard 

gate for q[0] in the second time slot. This is to say that the statement “h q[0];” converts 

q[0] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition). Because there 

is no other quantum gate in the second time slot to act on quantum bits q[2] and q[1], 

their states are not changed. Therefore, after one Hadamard gate for q[0] in the second 

time slot is completed by the statement “h q[0];” on line seven of Listing 2.3, the 

following new state vector is obtained: 

 

|2> = 
1

2
 (|0> |0> 

1

√2
 (|0> + |1>) + |0> |1> 

1

√2
 (|0> + |1>) + |1> |0> 

1

√2
 (|0> + |1>) + 

|1> |1> 
1

√2
 (|0> + |1>)) = 

1

2√2
 (|000> + |001> + |010> + |011> + |100> + |101> + |110> 

+ |111>). 

 

Next, the statement “cx q[1],q[0];” on line eight of Listing 2.3 takes the new state 

vector |2> = 
1

2√2
 (|000> + |001> + |010> + |011> + |100> + |101> + |110> + |111>) as 

its input and completes one CNOT gate for q[1] and q[0] in the third time slot. If the 

value of the control bit q[1] is equal to one, then the value of the target bit q[0] is flipped. 

Otherwise, it is not changed. Because there is no other quantum gate in the third time 

slot to act on quantum bit q[2], its state is not changed. Hence, after one CNOT gate for 
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q[1] and q[0] in the third time slot is completed by the statement “cx q[1],q[0];” on line 

eight of Listing 2.3, the following new state vector is obtained: 

 

|3> = 
1

2√2
 (|000> + |001> + |011> + |010> + |100> + |101> + |111> + |110>). 

 

Next, the statement “tdg q[0];” on line nine of Listing 2.3 takes the new state vector 

|3> = 
1

2√2
 (|000> + |001> + |011> + |010> + |100> + |101> + |111> + |110>) as its 

input and completes one T+ gate for q[0] in the fourth time slot. If the value of q[0] is 

equal to one, then its phase is changed as 𝑒−1×√−1×
𝜋

4 . Otherwise, its phase is not 

changed. There is no other quantum gate in the fourth time slot to act on quantum bits 

q[2] and q[1], so their states are not changed. Thus, after one T+ gate for q[0] in the 

fourth time slot is completed by the statement “tdg q[0];” on line nine of Listing 2.3, 

the following new state vector is obtained: 

 

|4> = 
1

2√2
 (|000> + 𝑒−1×√−1×

𝜋

4  |001> + 𝑒−1×√−1×
𝜋

4 |011> + |010> + |100> + 

𝑒−1×√−1×
𝜋

4 |101> + 𝑒−1×√−1×
𝜋

4 |111> + |110>). 

 

Next, the statement “cx q[2],q[0];” on line ten of Listing 2.3 takes the new state 

vector |4> = 
1

2√2
 (|000> + 𝑒−1×√−1×

𝜋

4  |001> + 𝑒−1×√−1×
𝜋

4 |011> + |010> + |100> + 

𝑒−1×√−1×
𝜋

4 |101> + 𝑒−1×√−1×
𝜋

4 |111> + |110>) as its input and completes one CNOT 

gate for q[2] and q[0] in the fifth time slot. If the value of the control bit q[2] is equal to 

one, then the value of the target bit q[0] is flipped. Otherwise, it is not changed. Because 

there is no other quantum gate in the fifth time slot to act on quantum bit q[1], its state 

is not changed. Thus, after one CNOT gate for q[2] and q[0] in the fifth time slot is 

completed by the statement “cx q[2],q[0];” on line ten of Listing 2.3, the following new 

state vector is obtained: 

 

|5> = 
1

2√2
 (|000> + 𝑒−1×√−1×

𝜋

4  |001> + 𝑒−1×√−1×
𝜋

4 |011> + |010> + |101> + 

𝑒−1×√−1×
𝜋

4 |100> + 𝑒−1×√−1×
𝜋

4 |110> + |111>). 
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Next, the statement “t q[0];” on line eleven of Listing 2.3 takes the new state vector 

|5> = 
1

2√2
  (|000> + 𝑒−1×√−1×

𝜋

4   |001> + 𝑒−1×√−1×
𝜋

4  |011> + |010> + |101> + 

𝑒−1×√−1×
𝜋

4 |100> + 𝑒−1×√−1×
𝜋

4 |110> + |111>) as its input and completes one T gate 

for q[0] in the sixth time slot. If the value of q[0] is equal to one, then its phase is 

changed as 𝑒1×√−1×
𝜋

4 . Otherwise, its phase is not changed. Since there is no other 

quantum gate in the sixth time slot to act on quantum bits q[2] and q[1], their states are 

not changed. Hence, after one T gate for q[0] in the sixth time slot is completed by the 

statement “t q[0];” on line eleven of Listing 2.3, the following new state vector is 

obtained: 

 

|6> = 
1

2√2
  (|000> + (𝑒1×√−1×

𝜋

4   𝑒−1×√−1×
𝜋

4   ) |001> + (𝑒1×√−1×
𝜋

4   𝑒−1×√−1×
𝜋

4 ) 

|011> + |010> + 𝑒1×√−1×
𝜋

4   |101> + 𝑒−1×√−1×
𝜋

4  |100> + 𝑒−1×√−1×
𝜋

4  |110> + 

𝑒1×√−1×
𝜋

4  |111> = 
1

2√2
  (|000> + |001> + |011> + |010> + 𝑒1×√−1×

𝜋

4   |101> + 

𝑒−1×√−1×
𝜋

4 |100> + 𝑒−1×√−1×
𝜋

4 |110> + 𝑒1×√−1×
𝜋

4 |111>). 

 

Next, the statement “cx q[1],q[0];” on line twelve of Listing 2.3 takes the new state 

vector |6> =  
1

2√2
 (|000> + |001> + |011> + |010> + 𝑒1×√−1×

𝜋

4  |101> + 𝑒−1×√−1×
𝜋

4 

|100> + 𝑒−1×√−1×
𝜋

4 |110> + 𝑒1×√−1×
𝜋

4 |111>) as its input and performs one CNOT 

gate for q[1] and q[0] in the seventh time slot. If the value of the control bit q[1] is equal 

to one, then the value of the target bit q[0] is flipped. Otherwise, it is not changed. There 

is no other quantum gate in the seventh time slot to act on quantum bit q[2], so its state 

is not changed. Therefore, after one CNOT gate for q[1] and q[0] in the seventh time 

slot is implemented by the statement “cx q[1],q[0];” on line twelve of Listing 2.3, the 

following new state vector is obtained: 

 

|7> = 
1

2√2
 (|000> + |001> + |010> + |011> + 𝑒1×√−1×

𝜋

4 |101> + 𝑒−1×√−1×
𝜋

4 |100> + 

𝑒−1×√−1×
𝜋

4 |111> + 𝑒1×√−1×
𝜋

4 |110>). 
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Next, the statement “tdg q[0];” on line thirteen of Listing 2.3 takes the new state 

vector |7> = 
1

2√2
 (|000> + |001> + |010> + |011> + 𝑒1×√−1×

𝜋

4 |101> + 𝑒−1×√−1×
𝜋

4 

|100> + 𝑒−1×√−1×
𝜋

4 |111> + 𝑒1×√−1×
𝜋

4 |110>) as its input and finish one T+ gate for 

q[0] in the eighth time slot. If the value of q[0] is equal to one, then its phase is changed 

as 𝑒−1×√−1×
𝜋

4. Otherwise, its phase is not changed. Because there is no other quantum 

gate in the eighth time slot to act on quantum bits q[2] and q[1], their states are not 

changed. Hence, after one T+ gate for q[0] in the eighth time slot is completed by the 

statement “tdg q[0];” on line thirteen of Listing 2.3, the following new state vector is 

obtained: 

 

|8> = 
1

2√2
 (|000> + 𝑒−1×√−1×

𝜋

4 |001> + |010> + 𝑒−1×√−1×
𝜋

4 |011> + (𝑒−1×√−1×
𝜋

4  

𝑒1×√−1×
𝜋

4  ) |101> + 𝑒−1×√−1×
𝜋

4  |100> + ( 𝑒−1×√−1×
𝜋

4   𝑒−1×√−1×
𝜋

4  ) |111> + 

𝑒1×√−1×
𝜋

4 |110>). 

 

Next, the statement “cx q[2],q[0];” on line fourteen of Listing 2.3 takes the new 

state vector |8> = 
1

2√2
  (|000> + 𝑒−1×√−1×

𝜋

4  |001> + |010> + 𝑒−1×√−1×
𝜋

4  |011> + 

(𝑒−1×√−1×
𝜋

4  𝑒1×√−1×
𝜋

4 ) |101> + 𝑒−1×√−1×
𝜋

4 |100> + (𝑒−1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4 ) 

|111> + 𝑒1×√−1×
𝜋

4 |110>) as its input and completes one CNOT gate for q[2] and q[0] 

in the ninth time slot. If the value of the control bit q[2] is equal to one, then the value 

of the target bit q[0] is flipped. Otherwise, it is not changed. Since there is no other 

quantum gate in the ninth time slot to act on quantum bit q[1], its state is not changed 

Thus, after one CNOT gate for q[2] and q[0] in the ninth time slot is completed by the 

statement “cx q[2],q[0];” on line fourteen of Listing 2.3, the following new state vector 

is obtained: 

 

|9> = 
1

2√2
 (|000> + 𝑒−1×√−1×

𝜋

4 |001> + |010> + 𝑒−1×√−1×
𝜋

4 |011> + |100> +  

𝑒−1×√−1×
𝜋

4 |101> + (𝑒−1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4 ) |110> + 𝑒1×√−1×
𝜋

4  |111>). 
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Next, the statement “t q[0];” on line fifteen of Listing 2.3 takes the new state vector 

|9> = 
1

2√2
  (|000> + 𝑒−1×√−1×

𝜋

4  |001> + |010> + 𝑒−1×√−1×
𝜋

4  |011> + |100> +  

𝑒−1×√−1×
𝜋

4 |101> + (𝑒−1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4 ) |110> + 𝑒1×√−1×
𝜋

4 |111>) as its input 

and performs one T gate for q[0] in the tenth time slot. If the value of q[0] is equal to 

one, then its phase is changed as 𝑒1×√−1×
𝜋

4. Otherwise, its phase is not changed. There 

is no other quantum gate in the tenth time slot to act on quantum bit q[2], so its state is 

not changed. Hence, after one T gate for q[0] in the tenth time slot is completed by the 

statement “t q[0];” on line fifteen of Listing 2.3, the following new state vector is 

obtained: 

 

|10> = 
1

2√2
  (|000> + (𝑒1×√−1×

𝜋

4   𝑒−1×√−1×
𝜋

4  ) |001> + |010> + (𝑒1×√−1×
𝜋

4   

𝑒−1×√−1×
𝜋

4 ) |011> + |100> + ( 𝑒1×√−1×
𝜋

4   𝑒−1×√−1×
𝜋

4 ) |101> + ( 𝑒−1×√−1×
𝜋

4   

𝑒−1×√−1×
𝜋

4) |110> + (𝑒1×√−1×
𝜋

4  𝑒1×√−1×
𝜋

4) |111>) = 
1

2√2
 (|000> + |001> + |010> + 

|011> + |100> + |101> + (𝑒−1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4) |110> + (𝑒1×√−1×
𝜋

4  𝑒1×√−1×
𝜋

4) 

|111>).  

 

Next, the statement “t q[1];” on line sixteen of Listing 2.3 takes the new state vector 

|10> = 
1

2√2
  (|000> + |001> + |010> + |011> + |100> + |101> + (𝑒−1×√−1×

𝜋

4   

𝑒−1×√−1×
𝜋

4) |110> + (𝑒1×√−1×
𝜋

4  𝑒1×√−1×
𝜋

4) |111>) as its input and completes one T 

gate for q[1] in the tenth time slot. If the value of q[1] is equal to one, then its phase is 

changed as 𝑒1×√−1×
𝜋

4. Otherwise, its phase is not changed. Because there is no other 

quantum gate in the tenth time slot to act on quantum bit q[2], so its state is not changed. 

Therefore, after one T gate for q[1] in the tenth time slot is completed by the statement 

“t q[1];” on line sixteen of Listing 2.3, the following new state vector is obtained: 

 

|11> = 
1

2√2
 (|000> + |001> + 𝑒1×√−1×

𝜋

4 |010> + 𝑒1×√−1×
𝜋

4 |011> + |100> + |101> + 
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(𝑒1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4  𝑒−1×√−1×
𝜋

4) |110> + (𝑒1×√−1×
𝜋

4  𝑒1×√−1×
𝜋

4   𝑒1×√−1×
𝜋

4) 

|111>). 

 

Next, the statement “h q[0];” on line seventeen of Listing 2.3 takes the new state 

vector |11> = 
1

2√2
 (|000> + |001> + 𝑒1×√−1×

𝜋

4 |010> + 𝑒1×√−1×
𝜋

4 |011> + |100> + 

|101> + (𝑒1×√−1×
𝜋

4   𝑒−1×√−1×
𝜋

4   𝑒−1×√−1×
𝜋

4 ) |110> + (𝑒1×√−1×
𝜋

4   𝑒1×√−1×
𝜋

4   

𝑒1×√−1×
𝜋

4) |111>) as its input and completes one Hadamard gate for q[0] in the eleventh 

time slot. If the value of q[0] is equal to one, then its state is changed as 
1

√2
 (|0> − |1>). 

Otherwise, its state is changed as 
1

√2
 (|0> + |1>). Hence, after one Hadamard gate for 

q[0] in the eleventh time slot is completed by the statement “h q[0];” on line seventeen 

of Listing 2.3, the following new state vector is obtained: 

 

|12> = 
1

2√2
  (

2

√2
  |000> + (

2

√2
   𝑒1×√−1×

𝜋

4 ) |010> + 
2

√2
  |100> + (𝑒−1×√−1×

𝜋

4   
2

√2
 ) 

|111>) = 
1

2
 (|000> + 𝑒1×√−1×

𝜋

4 |010> + |100> + 𝑒−1×√−1×
𝜋

4 |111>). 

 

Next, the statement “cx q[2],q[1];” on line eighteen of Listing 2.3 takes the new 

state vector |12> = 
1

2
 (|000> + 𝑒1×√−1×

𝜋

4 |010> + |100> + 𝑒−1×√−1×
𝜋

4 |111>) as its 

input and performs one CNOT gate for q[2] and q[1] in the eleventh time slot. If the 

value of the control bit q[2] is equal to one, then the value of the target bit q[1] is flipped. 

Otherwise, its value is not changed. Hence, after one CNOT gate for q[2] and q[1] in 

the eleventh time slot is completed by the statement “cx q[2],q[1];” on line eighteen of 

Listing 2.3, the following new state vector is obtained: 

 

|13> = 
1

2
 (|000> + 𝑒1×√−1×

𝜋

4 |010> + |110> + 𝑒−1×√−1×
𝜋

4 |101>). 

 

Next, the statement “tdg q[1];” on line nineteen of Listing 2.3 takes the new state 

vector |13> = 
1

2
 (|000> + 𝑒1×√−1×

𝜋

4 |010> + |110> + 𝑒−1×√−1×
𝜋

4 |101>) as its input 
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and completes one T+ gate for q[1] in the twelfth time slot. If the value of q[1] is equal 

to one, then its phase is changed as 𝑒−1×√−1×
𝜋

4. Otherwise, its phase is not changed. 

There is no other quantum gate in the twelfth time slot to act on quantum bit q[0], so its 

state is not changed. Hence, after one T+ gate for q[1] in the twelfth time slot is 

completed by the statement “tdg q[1];” on line nineteen of Listing 2.3, the following 

new state vector is obtained: 

 

|14> = 
1

2
 (|000> + (𝑒−1×√−1×

𝜋

4  𝑒1×√−1×
𝜋

4) |010> + 𝑒−1×√−1×
𝜋

4 |110> + 𝑒−1×√−1×
𝜋

4 

|101>). 

 

Next, the statement “t q[2];” on line twenty of Listing 2.3 takes the new state vector 

|14> = 
1

2
 (|000> + (𝑒−1×√−1×

𝜋

4  𝑒1×√−1×
𝜋

4) |010> + 𝑒−1×√−1×
𝜋

4 |110> + 𝑒−1×√−1×
𝜋

4 

|101>) as its input and completes one T gate for q[2] in the twelfth time slot. If the value 

of q[2] is equal to one, then its phase is changed as 𝑒1×√−1×
𝜋

4. Otherwise, its phase is 

not changed. There is no other quantum gate in the twelfth time slot to act on quantum 

bit q[0], so its state is not changed. Hence, after one T gate for q[2] in the twelfth time 

slot is completed by the statement “t q[2];” on line twenty of Listing 2.3, the following 

new state vector is obtained: 

 

|15> = 
1

2
  (|000> + |010> + ( 𝑒1×√−1×

𝜋

4   𝑒−1×√−1×
𝜋

4 ) |110> + ( 𝑒1×√−1×
𝜋

4   

𝑒−1×√−1×
𝜋

4) |101>) = 
1

2
 (|000> + |010> + |110> + |101>). 

 

Next, the statement “cx q[2],q[1];” on line twenty-one of Listing 2.3 takes the new 

state vector |15> = 
1

2
 (|000> + |010> + |110> + |101>) as its input and performs one 

CNOT gate for q[2] and q[1] in the thirteenth time slot. If the value of the control bit 

q[2] is equal to one, then the value of the target bit q[1] is flipped. Otherwise, its value 

is not changed. Because there is no other quantum gate in the thirteenth time slot to act 

on quantum bit q[0], its state is not changed. Thus, after one CNOT gate for q[2] and 

q[1] in the thirteenth time slot is completed by the statement “cx q[2],q[1];” on line 

twenty-one of Listing 2.3, the following new state vector is obtained: 
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|16> = 
1

2
 (|000> + |010> + |100> + |111>). 

 

Next, the three statements “measure q[0] -> c[0];”, “measure q[1] -> c[1];” and 

“measure q[2] -> c[2];” on line twenty-two through line twenty-four of Listing 2.3 is to 

measure the first quantum bit q[0], the second quantum bit q[1] and the third quantum 

bit q[2] and to record the measurement outcome by overwriting the first classical bit 

c[0], the second classical bit c[1] and the third classical bit c[2]. In the backend ibmqx4 

with five quantum bits in IBM’s quantum computers, we use the command “simulate” 

to execute the program in Listing 2.3. The measured result is shown in Figure 2.9. From 

 

 

Figure 2.9: After the measurement to the program in Listing 2.3 is completed, we obtain 

the answer 00100 with the probability 0.260, the answer 00010 with the probability 

0.250, the answer 00111 with the probability 0.250 or the answer 00000 with the 

probability 0.240. 

 

Figure 2.9, we obtain the answer 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] 

= |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.260. Because the 

value of the first control bit q[2] is equal to one and the value of the second control bit 

q[1] is equal to zero, the value of the target bit q[0] is not changed and is equal to zero 

with the probability 0.260. 

  

Or we obtain the answer 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.250. The value of the 

first control bit q[2] is equal to zero and the value of the second control bit q[1] is equal 

to one, so the value of the target bit q[0] is not changed and is equal to zero with the 

probability 0.250. Or we obtain the answer 00111 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, 

c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |1>) with the probability 0.250. 

Since the value of the first control bit q[2] is equal to one and the value of the second 

control bit q[1] is also equal to one, the value of the target bit q[0] is flipped and is equal 

to one with the probability 0.250. Or we obtain the answer 00000 (c[4] = q[4] = |0>, 

c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the 

probability 0.240. Because the value of the first control bit q[2] is equal to zero and the 

value of the second control bit q[1] is also equal to zero, the value of the target bit q[0] 
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is not changed and is equal to zero with the probability 0.240.        

 

2.3 Introduction to AND Operation 

 

The AND operation of a bit obtains two inputs of a bit and produces one single 

output of a bit. If the value of the first input is 1 (one) and the value of the second input 

is also 1 (one), then it generates a result (output) of 1 (one). Otherwise, the result is 0 

(zero). A symbol “” is used to represent the AND operation. Therefore, the AND 

operation of a bit that has two inputs of a bit is the following four possible 

combinational results: 

 

0  0 = 0 

0  1 = 0 

1  0 = 0 

1  1 = 1                           (2.5) 

 

The value of a Boolean variable (a bit) is only 0 (zero) or 1 (one). Thus, AND of two 

Boolean variables (two inputs of a bit) q[2] and q[1], written as q[2]  q[1] is equal to 

1 (one) if and only if q[2] and q[1] are both 1 (one). Similarly, q[2]  q[1] is equal to 0 

(zero) if and only if either q[2] or q[1], or both, are 0 (zero). A truth table is often used 

with logic operation to represent all possible combinations of inputs and the 

corresponding outputs. Hence, the rules in (2.5) for the AND operation of a bit that has 

two inputs of a bit and generates one output of a bit may also be expressed in the form 

of a truth table that is shown in Table 2.3. 

 

Input Output 

q[2] q[1] q[2]  q[1] 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Table 2.3: The truth table for the AND operation of a bit that has two inputs of a bit and 

generates one output of a bit. 

 

2.3.1 Quantum Program of Implementing AND Operation 

 

We use one CCNOT gate that has three quantum input bits and three quantum output 
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bits to implement AND operation of a classical bit that has two inputs of a classical bit 

and generates one output of a classical bit. We use the two control bits C1 and C2 of the 

CCNOT gate to encode two inputs q[2] and q[1] of a classical bit in AND operation of 

a classical bit and apply the target bit T of the CCNOT gate to store one output q[2]  

q[1] of a classical bit in AND operation of a classical bit. The rule of using one CCNOT 

gate to implement AND operation may also be expressed in the form of a truth table 

that is shown in Table 2.4. Its graph representation is shown in Figure 2.10. The initial 

state of the target bit in the CCNOT gate in Figure 2.10 is set to |0>. 

 

Input Output 

C1 C2 T C1 C2 T = q[2]  q[1] 

0 0 0 0 0 0 

0 1 0 0 1 0 

1 0 0 1 0 0 

1 1 0 1 1 1 

Table 2.4: The truth table of using one CCNOT gate to implement AND operation. 

 

 

Figure 2.10: The quantum circuit of implementing AND operation of a classical bit. 

 

In Listing 2.4, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the fourth example of the second chapter in which we describe 

how to write a quantum program to implement AND operation of a classical bit by 

means of using one CCNOT gate of three quantum bits. Figure 2.11 is the 

corresponding quantum circuit of the program in Listing 2.4. The statement 

“OPENQASM 2.0;” on line one of Listing 2.4 is to point out that the program is written 

with version 2.0 of Open QASM. Next, the statement “include "qelib1.inc";” on line 

two of Listing 2.4 is to continue parsing the file “qelib1.inc” as if the contents of the 

file were pasted at the location of the include statement, where the file “qelib1.inc” is 

Quantum Experience (QE) Standard Header and the path is specified relative to the 
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current working directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[1]; 

6. h q[2]; 

7. h q[0]; 

8. cx q[1],q[0]; 

9. tdg q[0]; 

10. cx q[2],q[0]; 

11. t q[0]; 

12. cx q[1],q[0]; 

13. tdg q[0]; 

14. cx q[2],q[0]; 

15. t q[0]; 

16. t q[1]; 

17. h q[0]; 

18. cx q[2],q[1]; 

19. tdg q[1]; 

20. t q[2]; 

21. cx q[2],q[1]; 

22. measure q[0] -> c[0]; 

23. measure q[1] -> c[1]; 

24. measure q[2] -> c[2]; 

Listing 2.4: The program of using one CCNOT gate to implement AND operation. 

 

Then, the statement “qreg q[5];” on line three of Listing 2.4 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.11, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We use three quantum bits q[2], q[1] and q[0] to respectively encode the first 

control bit, the second control bit and the target bit. This is to say that we apply quantum 

bits q[2] and q[1] to encode two inputs of a classical bit in AND operation of a classical 

bit and use quantum bit q[0] to store the result of AND operation of a classical bit. For 

the convenience of our explanation, q[k]0 for 0  k  4 is to represent the value of q[k] 

to be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] to be one (1). 

Similarly, for the convenience of our explanation, an initial state vector of 
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implementing AND operation of a classical bit is as follows: 

 

|A0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>. 

 

 

Figure 2.11: The corresponding quantum circuit of the program in Listing 2.4. 

 

Next, the statement “creg c[5];” on line four of Listing 2.4 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.11, five classical bits 

are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Next, the two statements “h q[1];” and “h q[2];”on line five and line six of Listing 

2.4 implement two Hadamard gates of the first time slot of the quantum circuit in Figure 

2.11. This implies that the statement “h q[1];” converts q[1] from one state |0> to 

another state 
1

√2
 (|0> + |1>) (its superposition) and the statement “h q[2];” converts q[2] 

from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition). In the first time 

slot of the quantum circuit in Figure 2.11 there is no quantum gate to act on the quantum 

bit q[0], so its state |0> is not changed. Thus, after two Hadamard gates in the first time 

slot of the quantum circuit in Figure 2.11 are implemented by means of using the two 

statements “h q[1];” and “h q[2];”on line five and line six of Listing 2.4, the following 

new state vector is obtained: 

 

|A1> = 
1

2
 (|0> |0> |0> + |0> |1> |0> + |1> |0> |0> + |1> |1> |0>) 

= 
1

2
 (|000> + |010> + |100> + |110>). 

 

In the new state vector |A1>, four combinational states of quantum bits q[2] and q[1] 

with that the amplitude of each combinational state is 
1

2
  encode all of the possible 
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inputs for AND operation of a classical bit. The initial state of quantum bit q[0] in four 

combinational states of quantum bits q[2] and q[1] is |0> and it stores the result for 

AND operation of a classical bit. 

 

The next 12 time slots in the quantum circuit of Figure 2.11 implement AND 

operation of a classical bit by means of implementing one CCNOT gate. Each quantum 

gate from the second time slot through the thirteenth time slot in Figure 2.11 were 

implemented by the statements “h q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, 

“t q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, “t q[0];”, “t q[1];”, “h q[0];”, “cx 

q[2],q[1];”, “tdg q[1];”, “t q[2];” and “cx q[2],q[1];” from line seven through line 

twenty-one in Listing 2.4. They take the new state vector |A1> = 
1

2
 (|000> + |010> + 

|100> + |110>) as the input in the second time slot and complete AND operation of a 

classical bit. After they were implemented, the following new state vector is obtained: 

 

|A16> = 
1

2
 (|000> + |010> + |100> + |111>). 

 

Next, three measurements from the fourteenth time slot through the sixteenth time 

slot in Figure 2.11 were implemented by the three statements “measure q[0] -> c[0];”, 

“measure q[1] -> c[1];” and “measure q[2] -> c[2];” on line twenty-two through line 

twenty-four of Listing 2.4 is to measure the first quantum bit q[0], the second quantum 

bit q[1] and the third quantum bit q[2] and to record the measurement outcome by 

overwriting the first classical bit c[0], the second classical bit c[1] and the third classical 

bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum computers, 

we use the command “simulate” to execute the program in Listing 2.4. The measured 

result is shown in Figure 2.12. From Figure 2.12, we obtain the answer 00010 (c[4] = 

q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) 

with the probability 0.290. Since the value of the first control bit q[2] is equal to zero 

and the value of the second control bit q[1] is equal to one, the value of the target bit 

q[0] is not changed and is equal to zero with the probability 0.290. 

  

 

Figure 2.12: After the measurement to the program in Listing 2.4 is completed, we 

obtain the answer 00010 with the probability 0.290, the answer 00111 with the 
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probability 0.280, the answer 00100 with the probability 0.240 or the answer 00000 

with the probability 0.190. 

 

Or we obtain the answer 00111 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|1>, c[1] = q[1] = |1> and c[0] = q[0] = |1>) with the probability 0.280. The value of the 

first control bit q[2] is equal to one and the value of the second control bit q[1] is equal 

to one, so the value of the target bit q[0] is flipped and is equal to one with the 

probability 0.280. Or we obtain the answer 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, 

c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.240. 

Because the value of the first control bit q[2] is equal to one and the value of the second 

control bit q[1] is equal to zero, the value of the target bit q[0] is not changed and is 

equal to zero with the probability 0.240. Or we obtain the answer 00000 (c[4] = q[4] = 

|0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with 

the probability 0.190. The value of the first control bit q[2] is equal to zero and the value 

of the second control bit q[1] is also equal to zero, so the value of the target bit q[0] is 

not changed and is equal to zero with the probability 0.190.        

 

2.4 Introduction to NAND Operation 

 

The NAND operation of a bit takes two inputs of a bit and generates one single 

output of a bit. If the value of the first input is 1 (one) and the value of the second input 

is also 1 (one), then it yields a result (output) of 0 (zero). Otherwise, the result (output) 

is 1 (one). A symbol “” is applied to represent the NAND operation. Hence, the NAND 

operation of a bit that has two inputs of a bit is the following four possible 

combinational results: 

 

                              0 ∧ 0 = 1 

                              0 ∧ 1 = 1 

                              1 ∧ 0 = 1 

                              1 ∧ 1 = 0                            (2.6) 

 

The value of a Boolean variable (a bit) is only 1 (one) or 0 (zero). Hence, NAND of 

two Boolean variables (two inputs of a bit) q[2] and q[1], written as 𝑞[2] ∧ 𝑞[1] is 

equal to 0 (zero) if and only if q[2] and q[1] are both 1 (one). Similarly, 𝑞[2] ∧ 𝑞[1] is 

equal to 1 (one) if and only if either q[2] or q[1], or both, are 0 (zero). A truth table is 

usually applied with logic operation to represent all possible combinations of inputs 

and the corresponding outputs. Therefore, the rules in (2.6) for the NAND operation of 

a bit that has two inputs of a bit and produces one single output of a bit may also be 
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expressed in the form of a truth table that is shown in Table 2.5. 

 

Input Output 

q[2] q[1] 𝑞[2] ∧ 𝑞[1] 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Table 2.5: The truth table for the NAND operation of a bit that has two inputs of a bit 

and produces one output of a bit. 

 

2.4.1 Quantum Program of Implementing NAND Operation 

 

We apply one CCNOT gate that has three quantum input bits and three quantum 

output bits to implement NAND operation of a classical bit that has two inputs of a 

classical bit and produces one output of a classical bit. We make use of the two control 

bits C1 and C2 of the CCNOT gate to encode two inputs q[2] and q[1] of a classical bit 

in NAND operation of a classical bit and use the target bit T of the CCNOT gate to 

store one output 𝑞[2] ∧ 𝑞[1] of a classical bit in NAND operation of a classical bit. 

The rule of applying one CCNOT gate to implement NAND operation may also be 

expressed in the form of a truth table that is shown in Table 2.6. Its graph representation 

is shown in Figure 2.13. The initial state of the target bit in the CCNOT gate in Figure 

2.13 is set to |1>. 

 

Input Output 

C1 C2 T C1 C2 T = 𝑞[2] ∧ 𝑞[1] 

0 0 1 0 0 1 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 0 

Table 2.6: The truth table of applying one CCNOT gate to implement NAND operation. 
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Figure 2.13: The quantum circuit of implementing NAND operation of a classical bit. 

 

In Listing 2.5, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the fifth example of the second chapter in which we illustrate how 

to write a quantum program to implement NAND operation of a classical bit by means 

of applying one CCNOT gate of three quantum bits. Figure 2.14 is the corresponding 

quantum circuit of the program in Listing 2.5. The statement “OPENQASM 2.0;” on 

line one of Listing 2.5 is to indicate that the program is written with version 2.0 of Open 

QASM. Then, the statement “include "qelib1.inc";” on line two of Listing 2.5 is to 

continue parsing the file “qelib1.inc” as if the contents of the file were pasted at the 

location of the include statement, where the file “qelib1.inc” is Quantum Experience 

(QE) Standard Header and the path is specified relative to the current working 

directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. x q[0]; 

6. h q[1]; 

7. h q[2]; 

8. h q[0]; 

9. cx q[1],q[0]; 

10. tdg q[0]; 

11. cx q[2],q[0]; 

12. t q[0]; 

13. cx q[1],q[0]; 

14. tdg q[0]; 

15. cx q[2],q[0]; 

16. t q[0]; 

17. t q[1]; 

18. h q[0]; 
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19. cx q[2],q[1]; 

20. tdg q[1]; 

21. t q[2]; 

22. cx q[2],q[1]; 

23. measure q[0] -> c[0]; 

24. measure q[1] -> c[1]; 

25. measure q[2] -> c[2]; 

Listing 2.5: The program of applying one CCNOT gate to implement NAND operation. 

 

Next, the statement “qreg q[5];” on line three of Listing 2.5 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.14, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We make use of three quantum bits q[2], q[1] and q[0] to respectively encode 

the first control bit, the second control bit and the target bit. This is to say that we use 

quantum bits q[2] and q[1] to encode two inputs of a classical bit in NAND operation 

of a classical bit and apply quantum bit q[0] to store the result of NAND operation of 

a classical bit. For the convenience of our explanation, q[k]0 for 0  k  4 is to represent 

the value of q[k] to be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] 

to be one (1). Similarly, for the convenience of our explanation, an initial state vector 

of implementing NAND operation of a classical bit is as follows: 

 

|B0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>. 

 

 

Figure 2.14: The corresponding quantum circuit of the program in Listing 2.5. 

 

Next, the statement “creg c[5];” on line four of Listing 2.5 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.14, five classical bits 

are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Next, the three statements “x q[0];”, “h q[1];” and “h q[2];”on line five through line 
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seven of Listing 2.5 implement one NOT gate and two Hadamard gates of the first time 

slot of the quantum circuit in Figure 2.14. This is to say that the statement “x q[0];” 

converts q[0] from one state |0> to another state |1> (its negation), the statement “h 

q[1];” converts q[1] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition) 

and the statement “h q[2];” converts q[2] from one state |0> to another state 
1

√2
 (|0> + 

|1>) (its superposition). Therefore, after one NOT gate and two Hadamard gates in the 

first time slot of the quantum circuit in Figure 2.14 are implemented by means of 

applying the three statements “x q[0];”, “h q[1];” and “h q[2];”on line five through line 

seven of Listing 2.5, the following new state vector is obtained: 

 

|B1> = 
1

2
 (|0> |0> |1> + |0> |1> |1> + |1> |0> |1> + |1> |1> |1>) 

= 
1

2
 (|001> + |011> + |101> + |111>). 

 

In the new state vector |B1>, four combinational states of quantum bits q[2] and q[1] 

with that the amplitude of each combinational state is 
1

2
  encode all of the possible 

inputs for NAND operation of a classical bit. The initial state of quantum bit q[0] in 

four combinational states of quantum bits q[2] and q[1] is |1> and it stores the result  

for NAND operation of a classical bit. 

 

The next 12 time slots in the quantum circuit of Figure 2.14 implement NAND 

operation of a classical bit by means of implementing one CCNOT gate. Each quantum 

gate from the second time slot through the thirteenth time slot in Figure 2.14 were 

implemented by the statements “h q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, 

“t q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, “t q[0];”, “t q[1];”, “h q[0];”, “cx 

q[2],q[1];”, “tdg q[1];”, “t q[2];” and “cx q[2],q[1];” from line eight through line 

twenty-two in Listing 2.5. They take the new state vector |B1> = 
1

2
 (|001> + |011> + 

|101> + |111>) as the input in the second time slot and complete NAND operation of a 

classical bit. After they were implemented, the following new state vector is obtained: 

 

|B16> = 
1

2
 (|001> + |011> + |101> + |110>). 
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Then, three measurements from the fourteenth time slot through the sixteenth time 

slot in Figure 2.14 were implemented by the three statements “measure q[0] -> c[0];”, 

“measure q[1] -> c[1];” and “measure q[2] -> c[2];” on line twenty-three through line 

twenty-five of Listing 2.5 is to measure the first quantum bit q[0], the second quantum 

bit q[1] and the third quantum bit q[2] and to record the measurement outcome by 

overwriting the first classical bit c[0], the second classical bit c[1] and the third classical 

bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum computers, 

we make use of the command “simulate” to execute the program in Listing 2.5. The 

measured result is shown in Figure 2.15. From Figure 2.15, we obtain the answer 00011 

(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] 

= |1>) with the probability 0.340. Because the value of the first control bit q[2] is equal 

to 0 (zero) and the value of the second control bit q[1] is equal to 1 (one), the value of 

the target bit q[0] is not changed and is equal to 1 (one) with the probability 0.340. 

  

 

Figure 2.15: After the measurement to the program in Listing 2.5 is completed, we 

obtain the answer 00011 with the probability 0.340, the answer 00001 with the 

probability 0.300, the answer 00101 with the probability 0.200 or the answer 00110 

with the probability 0.160. 

 

Or we obtain the answer 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) with the probability 0.300. Since the value 

of the first control bit q[2] is equal to 0 (zero) and the value of the second control bit 

q[1] is equal to 0 (zero), the value of the target bit q[0] is not changed and is equal to 1 

(one) with the probability 0.300. Or we obtain the answer 00101 (c[4] = q[4] = |0>, c[3] 

= q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) with the 

probability 0.200. The value of the first control bit q[2] is equal to 1 (one) and the value 

of the second control bit q[1] is equal to 0 (zero), so the value of the target bit q[0] is 

not changed and is equal to 1 (one) with the probability 0.200. Or we obtain the answer 

00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] 

= q[0] = |0>) with the probability 0.160. Because the value of the first control bit q[2] 

is equal to 1 (one) and the value of the second control bit q[1] is also equal to 1 (one), 

the value of the target bit q[0] is flipped and is equal to 0 (zero) with the probability 

0.160.        
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2.5 Introduction to OR Operation 

 

The OR operation of a bit acquires two inputs of a bit and yields one single output 

of a bit. If the value of the first input is 1 (one) or the value of the second input is also 

1 (one) or their values are both 1 (one), then it produces a result (output) of 1 (one). 

Otherwise, the result (output) is 0 (zero). A symbol “” is used to represent the OR 

operation. Thus, the OR operation of a bit that takes two inputs of a bit is the following 

four possible combinational results: 

 

0  0 = 0 

0  1 = 1 

1  0 = 1 

1  1 = 1                          (2.7) 

 

The value of a Boolean variable (a bit) is only 1 (one) or 0 (zero). Therefore, OR of 

two Boolean variables (two inputs of a bit) q[2] and q[1], written as q[2]  q[1] is equal 

to 1 (one) if and only if the value of q[2] is 1 (one) or the value of q[1] is 1 (one) or 

their values are both 1 (one). Similarly, q[2]  q[1] is equal to 0 (zero) if and only if the 

value of q[2] and the value of q[1] are both 0 (zero). A truth table is often used with 

logic operation to represent all possible combinations of inputs and the corresponding 

outputs. Hence, the rules in (2.7) for the OR operation of a bit that obtains two inputs 

of a bit and generates one single output of a bit may also be expressed in the form of a 

truth table that is shown in Table 2.7. 

 

Input Output 

q[2] q[1] q[2]  q[1] 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Table 2.7: The truth table for the OR operation of a bit that takes two inputs of a bit and 

generates one single output of a bit. 

 

2.5.1 Quantum Program of Implementing OR Operation 

 

We make use of one CCNOT gate that has three quantum input bits and three 

quantum output bits to implement OR operation of a classical bit that obtains two 
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inputs of a classical bit and yields one output of a classical bit. We use the two control 

bits C1 and C2 of the CCNOT gate to encode two inputs q[2] and q[1] of a classical bit 

in OR operation of a classical bit and apply the target bit T of the CCNOT gate to store 

one output q[2]  q[1] = 𝑞[2]  𝑞[1]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

  =  𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅   of a classical bit in OR 

operation of a classical bit. The rule of using one CCNOT gate to implement OR 

operation may also be expressed in the form of a truth table that is shown in Table 2.8. 

Its graph representation is shown in Figure 2.16. In Figure 2.16, the first control bit (the 

top first wire) C1 and the second control bit (the second wire) C2 of the CCNOT gate 

respectively encode the first input q[2] and the second input q[1]of a classical bit in OR 

operation of a classical bit. In Figure 2.16, the target bit (the bottom wire) T of the 

CCNOT gate is to store one output q[2]  q[1] = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  in OR operation of a 

classical bit.     

 

Input Output 

C1 C2 T C1 C2 
T = q[2]  q[1] = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  

0 0 1 0 0 0 

0 1 1 0 1 1 

1 0 1 1 0 1 

1 1 1 1 1 1 

Table 2.8: The truth table of applying one CCNOT gate to implement OR operation. 

 

 

Figure 2.16: The quantum circuit of implementing OR operation of a classical bit. 

 

The initial state of the target bit T in the CCNOT gate in Figure 2.16 is set to |1>. 

Implementing OR operation of a classical bit that takes two inputs q[2] and q[1] of a 

classical bit and produces one output 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  of a classical bit is equivalent to 
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implement NAND operation of a classical bit that takes two inputs 𝑞[2]̅̅ ̅̅ ̅̅  and 𝑞[1]̅̅ ̅̅ ̅̅  of 

a classical bit and yields one output 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ . Therefore, in Figure 2.16, we use two 

NOT gates to operate the two control bits C1 and C2 of the CCNOT gate that encode 

two inputs q[2] and q[1] of a classical bit and to generate their negations 𝑞[2]̅̅ ̅̅ ̅̅  and 

𝑞[1]̅̅ ̅̅ ̅̅ . Next, in Figure 2.16, we apply one CCNOT gate to take their negations 𝑞[2]̅̅ ̅̅ ̅̅  and 

𝑞[1]̅̅ ̅̅ ̅̅  as the input and to complete NAND operation of a classical bit. Because from 

Table 2.8 two inputs q[2] and q[1] of a classical bit in OR operation of a classical bit 

that is encoded by the two control bits C1 and C2 of the CCNOT gate in Figure 2.16 are 

not changed, we again make use of two NOT gates to operate the two control bits C1 

and C2 of the CCNOT gate in Figure 2.16 and to generate the result 𝑞[2]̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅  = q[2] and 

𝑞[1]̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅  = q[1]. This is to say that using NOT gate twice to the first control bit C1 and the 

second control bit C2 of the CCNOT gate in Figure 2.16 does nothing to them. 

 

In Listing 2.6, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the sixth example of the second chapter in which we introduce 

how to write a quantum program to implement OR operation of a classical bit by means 

of using one CCNOT gate of three quantum bits and four NOT gates of one quantum 

bits. Figure 2.17 is the corresponding quantum circuit of the program in Listing 2.6. 

The statement “OPENQASM 2.0;” on line one of Listing 2.6 is to point out that the 

program is written with version 2.0 of Open QASM. Next, the statement “include 

"qelib1.inc";” on line two of Listing 2.6 is to continue parsing the file “qelib1.inc” as if 

the contents of the file were pasted at the location of the include statement, where the 

file “qelib1.inc” is Quantum Experience (QE) Standard Header and the path is 

specified relative to the current working directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. x q[0]; 

6. h q[1]; 

7. h q[2]; 

8. x q[1]; 

9. x q[2]; 

10. h q[0]; 

11. cx q[1],q[0]; 

12. tdg q[0]; 
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13. cx q[2],q[0]; 

14. t q[0]; 

15. cx q[1],q[0]; 

16. tdg q[0]; 

17. cx q[2],q[0]; 

18. t q[0]; 

19. t q[1]; 

20. h q[0]; 

21. cx q[2],q[1]; 

22. tdg q[1]; 

23. t q[2]; 

24. cx q[2],q[1]; 

25. x q[1]; 

26. x q[2]; 

27. measure q[0] -> c[0]; 

28. measure q[1] -> c[1]; 

29.measure q[2] -> c[2]; 

Listing 2.6: The program of using one CCNOT gate and four NOT gates to implement 

OR operation. 

 

Then, the statement “qreg q[5];” on line three of Listing 2.6 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.17, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We use three quantum bits q[2], q[1] and q[0] to respectively encode the first 

control bit, the second control bit and the target bit. This indicates that we make use of 

quantum bits q[2] and q[1] to encode two inputs of a classical bit in OR operation of a 

classical bit and apply quantum bit q[0] to store the result of OR operation of a classical 

bit. For the convenience of our explanation, q[k]0 for 0  k  4 is to represent the value 

of q[k] to be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] to be one 

(1). Similarly, for the convenience of our explanation, an initial state vector of 

implementing OR operation of a classical bit is as follows: 

 

|C0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>. 
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Figure 2.17: The corresponding quantum circuit of the program in Listing 2.6. 

 

Next, the statement “creg c[5];” on line four of Listing 2.6 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.17, five classical bits 

are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Next, the three statements “x q[0];”, “h q[1];” and “h q[2];”on line five through line 

seven of Listing 2.6 implement one NOT gate and two Hadamard gates of the first time 

slot of the quantum circuit in Figure 2.17. This implies that the statement “x q[0];” 

converts q[0] from one state |0> to another state |1> (its negation), the statement “h 

q[1];” converts q[1] from one state |0> to another state 
1

√2
 (|0> + |1>) (its superposition) 

and the statement “h q[2];” converts q[2] from one state |0> to another state 
1

√2
 (|0> + 

|1>) (its superposition). Hence, after one NOT gate and two Hadamard gates in the first 

time slot of the quantum circuit in Figure 2.17 are implemented by means of using the 

three statements “x q[0];”, “h q[1];” and “h q[2];”on line five through line seven of 

Listing 2.6, the following new state vector is obtained: 

 

|C1> = 
1

2
 (|0> |0> |1> + |0> |1> |1> + |1> |0> |1> + |1> |1> |1>) 

= 
1

2
 (|001> + |011> + |101> + |111>). 

 

In the new state vector |C1>, four combinational states of quantum bits q[2] and q[1] 

with that the amplitude of each combinational state is 
1

2
  encode all of the possible 

inputs for OR operation of a classical bit. The initial state of quantum bit q[0] in four 

combinational states of quantum bits q[2] and q[1] is |1> and it stores the result for OR 

operation of a classical bit. 
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Then, the two statements “x q[1];” and “x q[2];” on line eight through line nine of 

Listing 2.6 implement two NOT gates of the second time slot of the quantum circuit in 

Figure 2.17. They take the new state vector |C1> = 
1

2
 (|001> + |011> + |101> + |111>) 

as the input in the second time slot of Figure 2.17. This is to say that in the new state 

vector |C1> the state (|0> + |1>) of q[2] is converted into the state (|1> + |0>) and the 

state (|0> + |1>) of q[1] is converted into the state (|1> + |0>). Because there is no gate 

to act on q[0], its state is not changed. Therefore, after two NOT gates in the second 

time slot of the quantum circuit in Figure 2.17 are implemented by means of applying 

the two statements “x q[1];” and “x q[2];” on line eight through line nine of Listing 2.6, 

the following new state vector is obtained: 

 

|C2> = 
1

2
 (|1> |1> |1> + |1> |0> |1> + |0> |1> |1> + |0> |0> |1>) 

= 
1

2
 (|111> + |101> + |011> + |001>). 

 

The next 12 time slots in the quantum circuit of Figure 2.17 implement OR 

operation (q[2]  q[1] = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ ) of a classical bit that is equivalent to implement 

NAND operation of a classical bit with two inputs 𝑞[2]̅̅ ̅̅ ̅̅   and 𝑞[1]̅̅ ̅̅ ̅̅   by means of 

implementing one CCNOT gate. Each quantum gate from the third time slot through 

the fourteenth time slot in Figure 2.17 was implemented by the statements “h q[0];”, 

“cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, “t q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx 

q[2],q[0];”, “t q[0];”, “t q[1];”, “h q[0];”, “cx q[2],q[1];”, “tdg q[1];”, “t q[2];” and “cx 

q[2],q[1];” from line ten through line twenty-four in Listing 2.6. They take the new state 

vector |C2> = 
1

2
 (|111> + |101> + |011> + |001>) as the input in the third time slot and 

complete OR operation (q[2]  q[1] = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ ) of a classical bit. After they were 

implemented, the following new state vector is obtained: 

 

|C17> = 
1

2
 (|110> + |101> + |011> + |001>). 

 

Next, the two statements “x q[1];” and “x q[2];” on line twenty-five through line 

twenty-six of Listing 2.6 implement two NOT gates of the fifteenth time slot of the 

quantum circuit in Figure 2.17. They take the new state vector |C17> = 
1

2
 (|110> + |101> 
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+ |011> + |001>) as the input in the fifteenth time slot of Figure 2.17. This is to say that 

in the new state vector |C17> the state (|110>) is converted into the state (|000>), the 

state (|101>) is converted into the state (|011>), the state (|011>) is converted into the 

state (|101>) and the state (|001>) is converted into the state (|111>). Because there is 

no gate to act on q[0], its state is not changed. Thus, after two NOT gates in the fifteenth 

time slot of the quantum circuit in Figure 2.17 were implemented by means of applying 

the two statements “x q[1];” and “x q[2];” on line twenty-five through line twenty-six 

of Listing 2.6, the following new state vector is obtained: 

 

|C18> = 
1

2
 (|000> + |011> + |101> + |111>). 

 

Next, three measurements from the sixteenth time slot through the eighteenth time 

slot in Figure 2.17 were implemented by the three statements “measure q[0] -> c[0];”, 

“measure q[1] -> c[1];” and “measure q[2] -> c[2];” on line twenty-seven through line 

twenty-nine of Listing 2.6 is to measure the first quantum bit q[0], the second quantum 

bit q[1] and the third quantum bit q[2] and to record the measurement outcome by 

overwriting the first classical bit c[0], the second classical bit c[1] and the third classical 

bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum computers, 

we use the command “simulate” to execute the program in Listing 2.6. The measured 

result is shown in Figure 2.18. From Figure 2.18, we obtain the answer 00101 (c[4] = 

q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) 

with the probability 0.290. Since in OR operation of a classical bit the value of the first 

input (the first control bit) q[2] is equal to 1 (one) and the value of the second input (the 

second control bit) q[1] is equal to 0 (zero), the value of the output (the target bit) q[0] 

is equal to 1 (one) with the probability 0.290. 

  

 

Figure 2.18: After the measurement to the program in Listing 2.6 is completed, we 

obtain the answer 00101 with the probability 0.290, the answer 00011 with the 

probability 0.270, the answer 00000 with the probability 0.250 or the answer 00111 

with the probability 0.190. 

 

Or we obtain the answer 00011 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |1> and c[0] = q[0] = |1>) with the probability 0.270. Because in OR 
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operation of a classical bit the value of the first input (the first control bit) q[2] is equal 

to 0 (zero) and the value of the second input (the second control bit) q[1] is equal to 1 

(one), the value of the output (the target bit) q[0] is equal to 1 (one) with the probability 

0.270. Or we obtain the answer 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] 

= |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.250. In OR 

operation of a classical bit, the value of the first input (the first control bit) q[2] is equal 

to 0 (zero) and the value of the second input (the second control bit) q[1] is also equal 

to 0 (zero), so the value of the output (the target bit) q[0] is equal to 0 (zero) with the 

probability 0.250. Or we obtain the answer 00111 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, 

c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |1>) with the probability 0.190. 

Because in OR operation of a classical bit the value of the first input (the first control 

bit) q[2] is equal to 1 (one) and the value of the second input (the second control bit) 

q[1] is also equal to 1 (one), the value of the output (the target bit) is equal to 1 (one) 

with the probability 0.190.        

 

2.6 Introduction of NOR Operation 

 

The NOR operation of a bit obtains two inputs of a bit and produces one single 

output of a bit. If the value of the first input is 0 (zero) and the value of the second input 

is also 0 (zero), then it produces a result (output) of 1 (one). However, if either the value 

of the first input or the value of the second input, or both of them, are 1, then it yields 

a result (output) of 0 (zero). A symbol “∨̅” is applied to represent the NOR operation. 

Therefore, the NOR operation of a bit that acquires two inputs of a bit is the following 

four possible combinational results: 

 

0 ∨ 0̅̅ ̅̅ ̅̅ ̅ = 1 

0 ∨ 1̅̅ ̅̅ ̅̅ ̅ = 0 

1 ∨ 0̅̅ ̅̅ ̅̅ ̅ = 0 

1 ∨ 1̅̅ ̅̅ ̅̅ ̅ = 0                          (2.8) 

 

The value of a Boolean variable (a bit) is only 0 (zero) or 1 (one). Hence, NOR 

operation of two Boolean variables (two inputs of a bit) q[2] and q[1], written as 

𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equal to 1 (one) if and only if the value of q[2] is 0 (zero) and the value 

of q[1] is 0 (zero). Similarly, 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is equal to 0 (zero) if and only if either the 

value of q[2] is 1 (one) or the value of q[1] is 1 (one) or both of them are 1 (one). A 

truth table is usually applied with logic operation to represent all possible combinations 

of inputs and the corresponding outputs. Thus, the rules in (2.8) for the NOR operation 

of a bit that takes two inputs of a bit and generates one single output of a bit may also 
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be expressed in the form of a truth table that is shown in Table 2.9. 

 

Input Output 

q[2] q[1] 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Table 2.9: The truth table for the NOR operation of a bit that takes two inputs of a bit 

and generates one single output of a bit. 

 

2.6.1 Quantum Program of Implementing NOR Operation 

 

We use one CCNOT gate that has three quantum input bits and three quantum output 

bits to implement NOR operation of a classical bit that acquires two inputs of a classical 

bit and generates one output of a classical bit. We apply the two control bits C1 and C2 

of the CCNOT gate to encode two inputs q[2] and q[1] of a classical bit in NOR 

operation of a classical bit and make use of the target bit T of the CCNOT gate to store 

one output 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅   of a classical bit in NOR operation of a 

classical bit. The rule of applying one CCNOT gate to complete NOR operation may 

also be expressed in the form of a truth table that is shown in Table 2.10. Its graph 

representation is shown in Figure 2.19. In Figure 2.19, the first control bit (the top first 

wire) C1 and the second control bit (the second wire) C2 of the CCNOT gate 

respectively encode the first input q[2] and the second input q[1]of a classical bit in 

NOR operation of a classical bit. In Figure 2.19, the target bit (the bottom wire) T of 

the CCNOT gate is to store one output 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  in NOR operation 

of a classical bit.    

 

Input Output 

C1 C2 T C1 C2 T = 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  

0 0 0 0 0 1 

0 1 0 0 1 0 

1 0 0 1 0 0 

1 1 0 1 1 0 

Table 2.10: The truth table of using one CCNOT gate to implement NOR operation. 
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Figure 2.19: The quantum circuit of implementing NOR operation of a classical bit. 

 

The initial state of the target bit T in the CCNOT gate in Figure 2.19 is set to |0>. 

Implementing NOR operation of a classical bit that takes two inputs q[2] and q[1] of a 

classical bit and generates one output 𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅  of a classical bit is 

equivalent to complete AND operation of a classical bit that acquires two inputs 𝑞[2]̅̅ ̅̅ ̅̅  

and 𝑞[1]̅̅ ̅̅ ̅̅   of a classical bit and produces one output 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ .  Hence, in Figure 

2.19, we apply two NOT gates to operate the two control bits C1 and C2 of the CCNOT 

gate that encode two inputs q[2] and q[1] of a classical bit and to yield their negations 

𝑞[2]̅̅ ̅̅ ̅̅  and 𝑞[1]̅̅ ̅̅ ̅̅ . Next, in Figure 2.19, we make use of one CCNOT gate to obtain their 

negations 𝑞[2]̅̅ ̅̅ ̅̅  and 𝑞[1]̅̅ ̅̅ ̅̅  as the input and to implement AND operation of a classical 

bit. Since from Table 2.10 two inputs q[2] and q[1] of a classical bit in NOR operation 

of a classical bit that is encoded by the two control bits C1 and C2 of the CCNOT gate 

in Figure 2.19 are not changed, we again use two NOT gates to operate the two control 

bits C1 and C2 of the CCNOT gate in Figure 2.19 and to produce the result 𝑞[2]̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅  = q[2] 

and 𝑞[1]̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅  = q[1]. This implies that using NOT gate twice to the first control bit C1 and 

the second control bit C2 of the CCNOT gate in Figure 2.19 does nothing to them. 

 

In Listing 2.7, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the seventh example of the second chapter in which we describe 

how to write a quantum program to implement NOR operation of a classical bit by 

means of applying one CCNOT gate of three quantum bits and four NOT gates of one 

quantum bits. Figure 2.20 is the corresponding quantum circuit of the program in 

Listing 2.7. The statement “OPENQASM 2.0;” on line one of Listing 2.7 is to indicate 

that the program is written with version 2.0 of Open QASM. Next, the statement 

“include "qelib1.inc";” on line two of Listing 2.7 is to continue parsing the file 

“qelib1.inc” as if the contents of the file were pasted at the location of the include 

statement, where the file “qelib1.inc” is Quantum Experience (QE) Standard 

Header and the path is specified relative to the current working directory. 
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1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[1]; 

6. h q[2]; 

7. x q[1]; 

8. x q[2]; 

9. h q[0]; 

10. cx q[1],q[0]; 

11. tdg q[0]; 

12. cx q[2],q[0]; 

13. t q[0]; 

14. cx q[1],q[0]; 

15. tdg q[0]; 

16. cx q[2],q[0]; 

17. t q[0]; 

18. t q[1]; 

19. h q[0]; 

20. cx q[2],q[1]; 

21. tdg q[1]; 

22. t q[2]; 

23. cx q[2],q[1]; 

24. x q[1]; 

25. x q[2]; 

26. measure q[0] -> c[0]; 

27. measure q[1] -> c[1]; 

28.measure q[2] -> c[2]; 

Listing 2.7: The program of applying one CCNOT gate and four NOT gates to 

implement NOR operation. 

 

 

Figure 2.20: The corresponding quantum circuit of the program in Listing 2.7. 
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Next, the statement “qreg q[5];” on line three of Listing 2.7 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.20, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We use three quantum bits q[2], q[1] and q[0] to respectively encode the first 

control bit, the second control bit and the target bit. This is to say that we use quantum 

bits q[2] and q[1] to encode two inputs of a classical bit in NOR operation of a classical 

bit and make use of quantum bit q[0] to store the result of NOR operation of a classical 

bit. For the convenience of our explanation, q[k]0 for 0  k  4 is to represent the value 

of q[k] to be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] to be one 

(1). Similarly, for the convenience of our explanation, an initial state vector of 

implementing NOR operation of a classical bit is as follows: 

 

|D0> = |q[2]0> |q[1]0> |q[0]0> = |0> |0> |0> = |000>. 

 

Next, the statement “creg c[5];” on line four of Listing 2.7 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.20, five classical bits 

are subsequently c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Next, the two statements “h q[1];” and “h q[2];”on line five through line six of 

Listing 2.7 implement two Hadamard gates of the first time slot of the quantum circuit 

in Figure 2.20. This is to say that the statement “h q[1];” converts q[1] from one state 

|0> to another state 
1

√2
  (|0> + |1>) (its superposition) and the statement “h q[2];” 

converts q[2] from one state |0> to another state 
1

√2
  (|0> + |1>) (its superposition). 

Because there is no gate to act on quantum bit q[0], its state is not changed. Therefore, 

after two Hadamard gates in the first time slot of the quantum circuit in Figure 2.20 are 

implemented by means of applying the two statements “h q[1];” and “h q[2];”on line 

five through line six of Listing 2.7, the following new state vector is obtained: 

 

|D1> = 
1

2
 (|0> |0> |0> + |0> |1> |0> + |1> |0> |0> + |1> |1> |0>) 

= 
1

2
 (|000> + |010> + |100> + |110>). 

 

In the new state vector |D1>, four combinational states of quantum bits q[2] and q[1] 
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with that the amplitude of each combinational state is 
1

2
  encode all of the possible 

inputs for NOR operation of a classical bit. The initial state of quantum bit q[0] in four 

combinational states of quantum bits q[2] and q[1] is |0> and it stores the result for 

NOR operation of a classical bit. 

 

Next, the two statements “x q[1];” and “x q[2];” on line seven through line eight of 

Listing 2.7 complete two NOT gates of the second time slot of the quantum circuit in 

Figure 2.20. They take the new state vector |D1> = 
1

2
 (|000> + |010> + |100> + |110>) 

as the input in the second time slot of Figure 2.20. This indicates that in the new state 

vector |D1> the state (|0> + |1>) of q[2] is converted into the state (|1> + |0>) and the 

state (|0> + |1>) of q[1] is converted into the state (|1> + |0>). There is no gate to act on 

quantum bit q[0], so its state is not changed. Thus, after two NOT gates in the second 

time slot of the quantum circuit in Figure 2.20 are implemented by means of using the 

two statements “x q[1];” and “x q[2];” on line seven through line eight of Listing 2.7, 

the following new state vector is obtained: 

 

|D2> = 
1

2
 (|1> |1> |0> + |1> |0> |0> + |0> |1> |0> + |0> |0> |0>) 

= 
1

2
 (|110> + |100> + |010> + |000>). 

 

The next 12 time slots in the quantum circuit of Figure 2.20 implement NOR 

operation (𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ ) of a classical bit that is equivalent to complete 

AND operation of a classical bit with two inputs 𝑞[2]̅̅ ̅̅ ̅̅   and 𝑞[1]̅̅ ̅̅ ̅̅   by means of 

implementing one CCNOT gate. Each quantum gate from the third time slot through 

the fourteenth time slot in Figure 2.20 was implemented by the statements “h q[0];”, 

“cx q[1],q[0];”, “tdg q[0];”, “cx q[2],q[0];”, “t q[0];”, “cx q[1],q[0];”, “tdg q[0];”, “cx 

q[2],q[0];”, “t q[0];”, “t q[1];”, “h q[0];”, “cx q[2],q[1];”, “tdg q[1];”, “t q[2];” and “cx 

q[2],q[1];” from line nine through line twenty-three in Listing 2.7. They take the new 

state vector |D2> = 
1

2
 (|110> + |100> + |010> + |000>) as the input in the third time slot 

and complete NOR operation (𝑞[2] ∨ 𝑞[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 𝑞[2]̅̅ ̅̅ ̅̅ ∧ 𝑞[1]̅̅ ̅̅ ̅̅ ) of a classical bit. After they 

were implemented, the following new state vector is obtained: 

 

|D17> = 
1

2
 (|111> + |100> + |010> + |000>). 
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Next, the two statements “x q[1];” and “x q[2];” on line twenty-four through line 

twenty-five of Listing 2.7 implement two NOT gates of the fifteenth time slot of the 

quantum circuit in Figure 2.20. They take the new state vector |D17> = 
1

2
 (|111> + |100> 

+ |010> + |000>) as the input in the fifteenth time slot of Figure 2.20. This indicates that 

in the new state vector |D17> the state (|111>) is converted into the state (|001>), the 

state (|100>) is converted into the state (|010>), the state (|010>) is converted into the 

state (|100>) and the state (|000>) is converted into the state (|110>). Because there is 

no gate to act on quantum bit q[0], its state is not changed. Therefore, after two NOT 

gates in the fifteenth time slot of the quantum circuit in Figure 2.20 were implemented 

by means of using the two statements “x q[1];” and “x q[2];” on line twenty-four 

through line twenty-five of Listing 2.7, the following new state vector is obtained: 

 

|D18> = 
1

2
 (|001> + |010> + |100> + |110>). 

 

Next, three measurements from the sixteenth time slot through the eighteenth time 

slot in Figure 2.20 were implemented by the three statements “measure q[0] -> c[0];”, 

“measure q[1] -> c[1];” and “measure q[2] -> c[2];” on line twenty-six through line 

twenty-eight of Listing 2.7 is to measure the first quantum bit q[0], the second quantum 

bit q[1] and the third quantum bit q[2] and to record the measurement outcome by 

overwriting the first classical bit c[0], the second classical bit c[1] and the third classical 

bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum computers, 

we apply the command “simulate” to execute the program in Listing 2.7. The measured 

result is shown in Figure 2.21. From Figure 2.21, we obtain the answer 00001 (c[4] = 

q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>) 

with the probability 0.270. Since in NOR operation of a classical bit the value of the 

first input (the first control bit) q[2] is equal to 0 (zero) and the value of the second 

input (the second control bit) q[1] is equal to 0 (zero), the value of the output (the target 

bit) q[0] is equal to 1 (one) with the probability 0.270. 

  

 
Figure 2.21: After the measurement to the program in Listing 2.7 is completed, we 

obtain the answer 00001 with the probability 0.270, the answer 00010 with the 
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probability 0.270, the answer 00100 with the probability 0.260 or the answer 00110 

with the probability 0.200. 

 

Or we obtain the answer 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.270. Because in NOR 

operation of a classical bit the value of the first input (the first control bit) q[2] is equal 

to 0 (zero) and the value of the second input (the second control bit) q[1] is equal to 1 

(one), the value of the output (the target bit) q[0] is equal to 0 (zero) with the probability 

0.270. Or we obtain the answer 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] 

= |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.260. In NOR 

operation of a classical bit, the value of the first input (the first control bit) q[2] is equal 

to 1 (one) and the value of the second input (the second control bit) q[1] is equal to 0 

(zero), so the value of the output (the target bit) q[0] is equal to 0 (zero) with the 

probability 0.260. Or we obtain the answer 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, 

c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.200. 

Because in NOR operation of a classical bit the value of the first input (the first control 

bit) q[2] is equal to 1 (one) and the value of the second input (the second control bit) 

q[1] is also equal to 1 (one), the value of the output (the target bit) q[0] is equal to 0 

(zero) with the probability 0.200.        

 

2.7 Introduction for Exclusive-OR Operation 

 

The Exclusive-OR (XOR) operation of a bit takes two inputs of a bit and generates 

one single output of a bit. If the value of the first input is the same as that of the second 

input, then it produces a result (output) of 0 (zero). However, if the value of the first 

input and the value of the second input are both different, then it generates an output of 

1 (one). A symbol “” is used to represent the XOR operation. Hence, the XOR 

operation of a bit that gets two inputs of a bit is the following four possible 

combinational results: 

0  0 = 0 

0  1 = 1 

1  0 = 1 

1  1 = 0                         (2.9) 

The value of a Boolean variable (a bit) is only 1 (one) or 0 (zero). Therefore, XOR 

operation of two Boolean variables (two inputs of a bit) q[2] and q[1], written as q[2] 

 q[1] is equal to 1 (one) if and only if the value of q[2] and the value of q[1] are 

different. Similarly, q[2]  q[1] is equal to 0 (zero) if and only if the value of q[2] and 

the value of q[1] are the same. A truth table is often used with logic operation to 
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represent all possible combinations of inputs and the corresponding outputs. Therefore, 

the rules in (2.9) for the XOR operation of a bit that obtains two inputs of a bit and 

yields one single output of a bit may also be expressed in the form of a truth table that 

is shown in Table 2.11. 

 

Input Output 

q[2] q[1] q[2]  q[1] 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Table 2.11: The truth table for the XOR operation of a bit that acquires two inputs of a 

bit and produces one single output of a bit. 

 

2.7.1 Quantum Program of Implementing XOR Operation 

 

We apply one CNOT gate that has two quantum input bits and two quantum output 

bits to implement XOR operation of a classical bit that takes two inputs of a classical 

bit and produces one output of a classical bit. We make use of the control bit C1 and the 

target bit T of the CNOT gate to encode two inputs q[2] and q[1] of a classical bit in 

XOR operation of a classical bit and also use the target bit T of the CNOT gate to store 

one output q[2]  q[1] of a classical bit in XOR operation of a classical bit. The rule 

of using one CNOT gate to implement XOR operation may also be expressed in the 

form of a truth table that is shown in Table 2.12. Its graph representation is shown in 

Figure 2.22.  

 

Input Output 

C1 T C1 T = q[2]  q[1] 

0 0 0 0 

0 1 0 1 

1 0 1 1 

1 1 1 0 

Table 2.12: The truth table of using one CNOT gate to implement XOR operation. 

 

In Figure 2.22, the first control bit (the top wire) C1 and the target bit (the bottom 

wire) T of the CNOT gate respectively encode the first input q[2] and the second input 

q[1]of a classical bit in XOR operation of a classical bit in Table 2.11. In Figure 2.22, 
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the target bit (the bottom wire) T of the CNOT gate also stores one output q[2]  q[1] 

of a classical bit in XOR operation of a classical bit in Table 2.11. 

 

 

Figure 2.22: The quantum circuit of implementing XOR operation of a classical bit. 

 

Implementing XOR operation of a classical bit that acquires two inputs q[2] and 

q[1] of a classical bit and yields one output q[2]  q[1] of a classical bit is equivalent 

to implement one CNOT gate that its control bit and its target bit encode two inputs q[2]  

and q[1] of a classical bit and its target bit also stores one output q[2]  q[1]. Therefore, 

in Figure 2.22, we use one CNOT gate to implement XOR operation of a classical bit. 

 

In Listing 2.8, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the eighth example of the second chapter in which we illustrate 

how to write a quantum program to complete XOR operation of a classical bit by means 

of using one CNOT gate of two quantum bits. Figure 2.23 is the corresponding quantum 

circuit of the program in Listing 2.8. The statement “OPENQASM 2.0;” on line one of 

Listing 2.8 is to point out that the program is written with version 2.0 of Open QASM. 

Then, the statement “include "qelib1.inc";” on line two of Listing 2.8 is to continue 

parsing the file “qelib1.inc” as if the contents of the file were pasted at the location of 

the include statement, where the file “qelib1.inc” is Quantum Experience (QE) 

Standard Header and the path is specified relative to the current working directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[1]; 

6. h q[2]; 

7. cx q[2],q[1]; 

8. measure q[1] -> c[1]; 
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9. measure q[2] -> c[2]; 

Listing 2.8: The program of using one CNOT gate to implement XOR operation. 

 

 

Figure 2.23: The corresponding quantum circuit of the program in Listing 2.8. 

 

Next, the statement “qreg q[5];” on line three of Listing 2.8 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.23, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We make use of two quantum bits q[2] and q[1] to respectively encode the 

control bit and the target bit of one CNOT gate. This implies that we apply quantum 

bits q[2] and q[1] to encode two inputs of a classical bit in XOR operation of a classical 

bit and use quantum bit q[1] to store the result of XOR operation of a classical bit. For 

the convenience of our explanation, q[k]0 for 0  k  4 is to represent the value of q[k] 

to be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] to be one (1). 

Similarly, for the convenience of our explanation, an initial state vector of 

implementing XOR operation of a classical bit is as follows: 

 

|E0> = |q[2]0> |q[1]0> = |0> |0> = |00>. 

 

Next, the statement “creg c[5];” on line four of Listing 2.8 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.23, five classical bits 

are respectively c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Then, the two statements “h q[1];” and “h q[2];”on line five through line six of 

Listing 2.8 implement two Hadamard gates of the first time slot of the quantum circuit 

in Figure 2.23. This indicates that the statement “h q[1];” converts q[1] from one state 

|0> to another state 
1

√2
  (|0> + |1>) (its superposition) and the statement “h q[2];” 
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converts q[2] from one state |0> to another state 
1

√2
  (|0> + |1>) (its superposition). 

Hence, after two Hadamard gates in the first time slot of the quantum circuit in Figure 

2.23 are implemented by means of using the two statements “h q[1];” and “h q[2];”on 

line five through line six of Listing 2.8, the following new state vector is obtained: 

 

|E1> = 
1

2
 (|0> |0> + |0> |1> + |1> |0> + |1> |1>) 

= 
1

2
 (|00> + |01> + |10> + |11>). 

 

In the new state vector |E1>, four combinational states of quantum bits q[2] and q[1] 

with that the amplitude of each combinational state is 
1

2
  encode all of the possible 

inputs in XOR operation of a classical bit in Table 2.11. Quantum bit q[1] stores the 

result for XOR operation of a classical bit in Table 2.11. 

 

Next, the statement “cx q[2],q[1];” on line seven of Listing 2.8 complete one CNOT 

gates of the second time slot of the quantum circuit in Figure 2.23. They take the new 

state vector |E1> = 
1

2
 (|00> + |01> + |10> + |11>) as the input in the second time slot of 

Figure 2.23. This is to say that in the new state vector |E1> the state (|00>) of quantum 

bits q[2] and q[1] is not changed and the state (|01>) of quantum bits q[2] and q[1] is 

also not changed because the value of the control bit q[2] is equal to 0 (zero). However, 

the state (|10>) of quantum bits q[2] and q[1] is converted into the state (|11>) and the 

state (|11>) of quantum bits q[2] and q[1] is converted into the state (|10>) because the 

value of the control bit q[2] is equal to 1 (one) and the target bit q[1] is flipped. 

Therefore, after one CNOT gate in the second time slot of the quantum circuit in Figure 

2.23 is implemented by means of applying the statement “cx q[2],q[1];” on line seven 

of Listing 2.8, the following new state vector is obtained: 

 

|E2> = 
1

2
 (|0> |0> + |0> |1> + |1> |1> + |1> |0>) 

= 
1

2
 (|00> + |01> + |11> + |10>). 

 

Next, two measurements from the third time slot through the fourth time slot in 

Figure 2.23 were implemented by the two statements “measure q[1] -> c[1];” and 
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“measure q[2] -> c[2];” on line eight through line nine of Listing 2.8. They are to 

measure the second quantum bit q[1] and the third quantum bit q[2] and to record the 

measurement outcome by overwriting the second classical bit c[1] and the third 

classical bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers, we use the command “simulate” to run the program in Listing 2.8. The 

measured result is shown in Figure 2.24. From Figure 2.24, we get the answer 00010 

(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] 

= |0>) with the probability 0.260. Because in XOR operation of a classical bit the value 

of the first input (the control bit) q[2] is equal to 0 (zero) and the value of the second 

input (the target bit) q[1] is equal to 1 (one), the value of the output (the target bit) q[1] 

is equal to 1 (one) with the probability 0.260. 

  

 
Figure 2.24: After the measurement to the program in Listing 2.8 is completed, we 

obtain the answer 00010 with the probability 0.260, the answer 00110 with the 

probability 0.260, the answer 00100 with the probability 0.250 or the answer 00000 

with the probability 0.230. 

 

Or we obtain the answer 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.260. Since in XOR 

operation of a classical bit the value of the first input (the control bit) q[2] is equal to 1 

(one) and the value of the second input (the target bit) q[1] is equal to 0 (zero), the value 

of the output (the target bit) q[1] is equal to 1 (one) with the probability 0.260. Or we 

acquire the answer 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = 

q[1] = |0> and c[0] = q[0] = |0>) with the probability 0.250. Since in XOR operation of 

a classical bit the value of the first input (the control bit) q[2] is equal to 1 (one) and the 

value of the second input (the target bit) q[1] is equal to 1 (one), the value of the output 

(the target bit) q[1] is equal to 0 (zero) with the probability 0.250. Or we get the answer 

00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] 

= q[0] = |0>) with the probability 0.230. In XOR operation of a classical bit the value 

of the first input (the control bit) q[2] is equal to 0 (zero) and the value of the second 

input (the target bit) q[1] is also equal to 0 (zero), so the value of the output (the target 

bit) q[1] is equal to 0 (zero) with the probability 0.230.        

 

2.8 Introduction of Exclusive-NOR Operation 
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The one’s complement of the Exclusive-OR (XOR) operation of a bit that acquires 

two inputs of a bit and yields one single output of a bit is known as the Exclusive-NOR 

(XNOR) operation of a bit. The Exclusive-NOR (XNOR) operation of a bit obtains 

two inputs of a bit and produces one single output of a bit. If the value of the first input 

is the same as that of the second input, then it generates a result (output) of 1 (one). 

However, if the value of the first input and the value of the second input are both 

different, then it produces an output of 0 (zero). A symbol “̅” is applied to represent 

the XNOR operation of a bit. Therefore, the XNOR operation of a bit that takes two 

inputs of a bit is the following four possible combinational results: 

 

0  0̅̅ ̅̅ ̅̅ ̅ = 1 

0  1̅̅ ̅̅ ̅̅ ̅ = 0 

1  0̅̅ ̅̅ ̅̅ ̅ = 0 

1  1̅̅ ̅̅ ̅̅ ̅ = 1                        (2.10) 

 

The value of a Boolean variable (a bit) is just 0 (zero) or 1 (one). Hence, XNOR 

operation of two Boolean variables (two inputs of a bit) q[2] and q[1], written as 

q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is equal to 1 (one) if and only if the value of q[2] and the value of q[1] are 

the same. Similarly, q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is equal to 0 (zero) if and only if the value of q[2] 

and the value of q[1] are different. A truth table is usually applied with logic operation 

to represent all possible combinations of inputs and the corresponding outputs. Hence, 

the rules in (2.10) for the XNOR operation of a bit that gets two inputs of a bit and 

produces one single output of a bit may also be expressed in the form of a truth table 

that is shown in Table 2.13. 

 

Input Output 

q[2] q[1] q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Table 2.13: The truth table for the XNOR operation of a bit that acquires two inputs of 

a bit and generates one single output of a bit. 

 

2.8.1 Quantum Program of Implementing XNOR Operation 
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We make use of one CNOT gate and one NOT gate to implement XNOR operation 

of a classical bit that acquires two inputs of a classical bit and generates one output of 

a classical bit. We use the control bit C1 and the target bit T of the CNOT gate to encode 

two inputs q[2] and q[1] of a classical bit in XNOR operation of a classical bit and also 

use the target bit T of the CNOT gate to store one output q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of a classical bit 

in XNOR operation of a classical bit. The rule of applying one CNOT gate and one 

NOT gate to complete XNOR operation may also be expressed in the form of a truth 

table that is shown in Table 2.14. Its graph representation is shown in Figure 2.25.  

 

Input Output 

C1 T C1 T = q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

0 0 0 1 

0 1 0 0 

1 0 1 0 

1 1 1 1 

Table 2.14: The truth table of using one CNOT gate and one NOT gate to implement 

XNOR operation. 

 

In Figure 2.25, the first control bit (the top wire) C1 and the target bit (the bottom 

wire) T of the CNOT gate respectively encode the first input q[2] and the second input 

q[1]of a classical bit in XNOR operation of a classical bit in Table 2.13. In Figure 2.25, 

the target bit (the bottom wire) T of the CNOT gate also stores one output q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

of a classical bit in XNOR operation of a classical bit in Table 2.13. 

 

 

Figure 2.25: The quantum circuit of implementing XNOR operation of a classical bit. 

 

Implementing XNOR operation of a classical bit that takes two inputs q[2] and q[1] 

of a classical bit and produces one output q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of a classical bit is equivalent 

to implement one CNOT gate and one NOT gate in which the control bit and the target 
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bit encode two inputs q[2] and q[1] of a classical bit and its target bit also stores one 

output q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Hence, in Figure 2.25, we first apply one CNOT gate to generate 

an output q[2]  q[1] of XOR operation that is stored in the target bit (the bottom 

wire) T. Next, we use one NOT gate to produce the negation of XOR operation 

(q[2]  q[1]) that is to complete XNOR operation q[2]  q[1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ that is stored in the 

target bit T. 

 

In Listing 2.9, the program in the backend ibmqx4 with five quantum bits in IBM’s 

quantum computer is the ninth example of the second chapter in which we describe 

how to write a quantum program to complete XNOR operation of a classical bit by 

means of applying one CNOT gate and one NOT gate. Figure 2.26 is the corresponding 

quantum circuit of the program in Listing 2.9. The statement “OPENQASM 2.0;” on 

line one of Listing 2.9 is to indicate that the program is written with version 2.0 of Open 

QASM. Next, the statement “include "qelib1.inc";” on line two of Listing 2.9 is to 

continue parsing the file “qelib1.inc” as if the contents of the file were pasted at the 

location of the include statement, where the file “qelib1.inc” is Quantum Experience 

(QE) Standard Header and the path is specified relative to the current working 

directory. 

 

1. OPENQASM 2.0; 

2. include "qelib1.inc"; 

3. qreg q[5]; 

4. creg c[5]; 

5. h q[1]; 

6. h q[2]; 

7. cx q[2],q[1]; 

8. x q[1]; 

9. measure q[1] -> c[1]; 

10. measure q[2] -> c[2]; 

Listing 2.9: The program of using one CNOT gate and one NOT gate to implement 

XNOR operation. 
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Figure 2.26: The corresponding quantum circuit of the program in Listing 2.9. 

 

Next, the statement “qreg q[5];” on line three of Listing 2.9 is to declare that in the 

program there are five quantum bits. In the left top of Figure 2.26, five quantum bits 

are subsequently q[0], q[1], q[2], q[3] and q[4]. The initial value of each quantum bit is 

set to |0>. We use two quantum bits q[2] and q[1] to respectively encode the control bit 

and the target bit of one CNOT gate. This implies that we apply quantum bits q[2] and 

q[1] to encode two inputs of a classical bit in XNOR operation of a classical bit and 

use quantum bit q[1] to store the result of XNOR operation of a classical bit. For the 

convenience of our explanation, q[k]0 for 0  k  4 is to represent the value of q[k] to 

be zero (0) and q[k]1 for 0  k  4 is to represent the value of q[k] to be one (1). Similarly, 

for the convenience of our explanation, an initial state vector of implementing XNOR 

operation of a classical bit is as follows: 

 

|F0> = |q[2]0> |q[1]0> = |0> |0> = |00>. 

 

Then, the statement “creg c[5];” on line four of Listing 2.9 is to declare that there are 

five classical bits in the program. In the left bottom of Figure 2.26, five classical bits 

are respectively c[0], c[1], c[2], c[3] and c[4]. The initial value of each classical bit is 

set to 0. 

 

Next, the two statements “h q[1];” and “h q[2];”on line five through line six of 

Listing 2.9 implement two Hadamard gates of the first time slot of the quantum circuit 

in Figure 2.26. This is to say that the statement “h q[1];” converts q[1] from one state 

|0> to another state 
1

√2
  (|0> + |1>) (its superposition) and the statement “h q[2];” 

converts q[2] from one state |0> to another state 
1

√2
  (|0> + |1>) (its superposition). 

Hence, after two Hadamard gates in the first time slot of the quantum circuit in Figure 

2.26 are implemented by means of applying the two statements “h q[1];” and “h 
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q[2];”on line five through line six of Listing 2.9, the following new state vector is 

obtained: 

 

|F1> = 
1

2
 (|0> |0> + |0> |1> + |1> |0> + |1> |1>) 

= 
1

2
 (|00> + |01> + |10> + |11>). 

 

In the new state vector |F1>, four combinational states of quantum bits q[2] and q[1] 

with that the amplitude of each combinational state is 
1

2
  encode all of the possible 

inputs in XNOR operation of a classical bit in Table 2.13. Quantum bit q[1] stores the 

result for XNOR operation of a classical bit in Table 2.13. 

 

Next, the statement “cx q[2],q[1];” on line seven of Listing 2.9 implements one 

CNOT gates of the second time slot of the quantum circuit in Figure 2.26. They take 

the new state vector |F1> = 
1

2
 (|00> + |01> + |10> + |11>) as the input in the second 

time slot of Figure 2.26. This implies that in the new state vector |F1> the state (|00>) 

of quantum bits q[2] and q[1] is not changed and the state (|01>) of quantum bits q[2] 

and q[1] is also not changed because the value of the control bit q[2] is equal to 0 (zero) 

and the value of the target bit q[1] is not changed. However, the state (|10>) of quantum 

bits q[2] and q[1] is converted into the state (|11>) and the state (|11>) of quantum bits 

q[2] and q[1] is converted into the state (|10>) because the value of the control bit q[2] 

is equal to 1 (one) and the value of the target bit q[1] is flipped. Hence, after one CNOT 

gate in the second time slot of the quantum circuit in Figure 2.26 is implemented by 

means of using the statement “cx q[2],q[1];” on line seven of Listing 2.9, the following 

new state vector is obtained: 

 

|F2> = 
1

2
 (|0> |0> + |0> |1> + |1> |1> + |1> |0>) 

= 
1

2
 (|00> + |01> + |11> + |10>). 

 

Next, the statement “x q[1];” on line eight of Listing 2.9 implements one NOT gate 

in the third time slot of the quantum circuit in Figure 2.26. It takes the new state vector 

|F2> = 
1

2
 (|00> + |01> + |11> + |10>) as the input in the third time slot of the quantum 
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circuit in Figure 2.26. This is to say that in the new state vector |F2> the states (|00>), 

(|01>), (|11>) and (|10>) of quantum bits q[2] and q[1] are subsequently converted into 

the new states (|01>), (|00>), (|10>) and (|11>) because the value of quantum bit q[1] is 

flipped, there is no quantum gate to act on quantum bit q[2] and the value of quantum 

bit q[2] is not changed. Therefore, after one NOT gate in the third time slot of the 

quantum circuit in Figure 2.26 is implemented by means of applying the statement “x 

q[1];” on line eight of Listing 2.9, the following new state vector is obtained: 

 

|F3> = 
1

2
 (|0> |1> + |0> |0> + |1> |0> + |1> |1>) 

= 
1

2
 (|01> + |00> + |10> + |11>). 

 

Next, two measurements from the fourth time slot through the fifth time slot of the 

quantum circuit in Figure 2.26 were implemented by the two statements “measure q[1] 

-> c[1];” and “measure q[2] -> c[2];” on line nine through line ten of Listing 2.9. They 

are to measure the second quantum bit q[1] and the third quantum bit q[2] and to record 

the measurement outcome by overwriting the second classical bit c[1] and the third 

classical bit c[2]. In the backend ibmqx4 with five quantum bits in IBM’s quantum 

computers, we make use of the command “simulate” to execute the program in Listing 

2.9. The measured result is shown in Figure 2.27. From Figure 2.27, we obtain the 

answer 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> 

and c[0] = q[0] = |0>) with the probability 0.370. Since in XNOR operation of a 

classical bit the value of the first input (the control bit) q[2] is equal to 0 (zero) and the 

value of the second input (the target bit) q[1] is equal to 1 (one), the value of the output 

(the target bit) q[1] is equal to 0 (zero) with the probability 0.370. Or we get the answer 

00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] 

= q[0] = |0>) with the probability 0.260. Because in XNOR operation of a classical bit 

the value of the first input (the control bit) q[2] is equal to 1 (one) and the value of the 

second input (the target bit) q[1] is equal to 0 (zero), the value of the output (the target 

bit) q[1] is equal to 0 (zero) with the probability 0.260. 

  

 

Figure 2.27: After the measurement to the program in Listing 2.9 is completed, we 

obtain the answer 00000 with the probability 0.370, the answer 00100 with the 
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probability 0.260, the answer 00010 with the probability 0.230 or the answer 00110 

with the probability 0.140. 

 

Or we acquire the answer 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = 

|0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.230. Because in 

XNOR operation of a classical bit the value of the first input (the control bit) q[2] is 

equal to 0 (zero) and the value of the second input (the target bit) q[1] is equal to 0 

(zero), the value of the output (the target bit) q[1] is equal to 1 (one) with the probability 

0.230. Or we obtain the answer 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] 

= |1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) with the probability 0.140. In XNOR 

operation of a classical bit, the value of the first input (the control bit) q[2] is equal to 

1 (one) and the value of the second input (the target bit) q[1] is also equal to 1 (one), so 

the value of the output (the target bit) q[1] is equal to 1 (one) with the probability 0.140. 

 

2.9 Summary 

 

In this chapter we offered an illustration to how logic operations consisting of NOT, 

AND, NAND, OR, NOR, Exclusive-OR (XOR) and Exclusive-NOR (XNOR) on bits 

were implemented by means of using quantum bits and quantum gates in IBM’s 

quantum computers. We introduced the first program in Listing 2.1 and the second 

program in Listing 2.2 to explain how the one’s complement (the NOT operation) of a 

bit and the one’s complement (the NOT operation) of two bits were implemented by 

means of using quantum bits and the X gates (the NOT gates) in IBM’s quantum 

computers. Next, we described the third program in Listing 2.3 to show how one 

CCNOT gate was implemented by means of decomposing CCNOT gate into six 

CNOT gates and nine gates of one bit in IBM’s quantum computers. 

 

Then, we introduced the fourth program in Listing 2.4 to reveal how the AND 

operation of a bit was implemented by means of using one CCNOT gate and three 

quantum bits in IBM’s quantum computers. We also illustrated the fifth program in 

Listing 2.5 to explain how the NAND operation of a bit was implemented by means of 

applying one CCNOT gate and three quantum bits in IBM’s quantum computers. Next, 

we described the sixth program in Listing 2.6 to show how the OR operation of a bit 

was implemented by means of using one CCNOT gate, four NOT gates (four X gates) 

and three quantum bits in IBM’s quantum computers. 

 

We then illustrated the seventh program in Listing 2.7 to reveal how the NOR 

operation of a bit was implemented by means of applying one CCNOT gate, four NOT 
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gates (four X gates) and three quantum bits in IBM’s quantum computers. We also 

introduced the eighth program in Listing 2.8 to explain how the XOR operation of a bit 

was implemented by means of using one CNOT gate and two quantum bits in IBM’s 

quantum computers. Next, we described the ninth program in Listing 2.9 to show how 

the XNOR operation of a bit was implemented by means of applying one CNOT gate, 

one NOT gate (one X gate) and two quantum bits in IBM’s quantum computers. 

 

2.10 Bibliographical Notes 

 

The textbooks written by these authors in [Mano 1979; Mano 1993; Chang and 

Vasilakos 2014] is a good illustration to logic operations including NOT, AND, NAND, 

OR, NOR, Exclusive-OR (XOR) and Exclusive-NOR (XNOR) on bits. A good 

introduction of decomposing CCNOT gate into six CNOT gates and nine gates of one 

bit can be found in the textbook [Nielsen and Chuang 2000] and in the famous article 

[Shende and Markov 2009]. A good guide of writing nine quantum programs from 

Listing 2.1 to Listing 2.9 can also be found from the famous menu in [IBM Q 2016]. A 

good illustration to Boolean’s functions discussed in exercises in Section 2.11 is [Mano 

1979; Mano 1993; Brown and Vranesic 2007; Chang and Vasilakos 2014]. 

 

2.11 Exercises 

 

2.1 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation OR. For a logical operation, 𝑥̅  y, x and y are Boolean 

variables that are subsequently the first input and the second input. Its truth table 

is shown in Table 2.15. Please write a quantum program to implement the function 

of the logical operation, 𝑥̅  y. 

 

The first input (x) The second input (y) 𝑥̅  y 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

Table 2.15: The truth table to a logical operation 𝑥̅  y.  

 

2.2 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation OR. For a logical operation, x  𝑦̅, x and y are Boolean 

variables that are respectively its first input and its second input. Its truth table is 

shown in Table 2.16. Please write a quantum program to implement the function of 
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the logical operation, x  𝑦̅. 

 

The first input (x) The second input (y) x  𝑦̅ 

0 0 1 

0 1 0 

1 0 1 

1 1 1 

Table 2.16: The truth table to a logical operation x  𝑦̅. 

 

2.3 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation AND. For a logical operation, 𝑦̅  (x  𝑥̅) = 𝑦̅  1 = 

𝑦̅, x and y are Boolean variables that are subsequently the first input and the second 

input. Its truth table is shown in Table 2.17. Please write a quantum program to 

implement the function of the logical operation, 𝑦̅  (x  𝑥̅) = 𝑦̅  1 = 𝑦̅. 

 

The first input (x) The second input (y) 𝑦̅  (x  𝑥̅) = 𝑦̅  1 = 𝑦̅ 

0 0 1 

0 1 0 

1 0 1 

1 1 0 

Table 2.17: The truth table to a logical operation 𝑦̅  (x  𝑥̅) = 𝑦̅  1 = 𝑦̅. 

 

2.4 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation AND. For a logical operation, 𝑥̅  (y  𝑦̅) = 𝑥̅  1 = 

𝑥̅, x and y are Boolean variables that are respectively the first input and the second 

input. Its truth table is shown in Table 2.18. Please write a quantum program to 

implement the function of the logical operation, 𝑥̅  (y  𝑦̅) = 𝑥̅  1 = 𝑥̅. 

 

The first input (x) The second input (y) 𝑥̅  (y  𝑦̅) = 𝑥̅  1 = 𝑥̅ 

0 0 1 

0 1 1 

1 0 0 

1 1 0 

Table 2.18: The truth table to a logical operation 𝑥̅  (y  𝑦̅) = 𝑥̅  1 = 𝑥̅. 

 

2.5 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation AND. For a logical operation, 𝑥̅  y, x and y are Boolean 

variables that are subsequently the first input and the second input. Its truth table 
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is shown in Table 2.19. Please write a quantum program to implement the function 

of the logical operation, 𝑥̅  y. 

 

The first input (x) The second input (y) 𝑥̅  y 

0 0 0 

0 1 1 

1 0 0 

1 1 0 

Table 2.19: The truth table to a logical operation 𝑥̅  y. 

 

2.6 The unary operator “ ̅ ” denotes logical operation NOT and the binary operator “” 

denotes logical operation AND. For a logical operation, x  𝑦̅, x and y are Boolean 

variables that are respectively its first input and its second input. Its truth table is 

shown in Table 2.20. Please write a quantum program to implement the function of 

the logical operation, x  𝑦̅. 

 

The first input (x) The second input (y) x  𝑦̅ 

0 0 0 

0 1 0 

1 0 1 

1 1 0 

Table 2.20: The truth table to a logical operation x  𝑦̅. 


