第二章

布林代數及其應用

從數學領域稱為現代代數,傳統電腦的設計和維護。一百多年來,代數學家一 直在研究被稱為布爾代數的數學系統。布爾代數這個名字是為了紀念一位迷人的 英國數學家喬治·布爾 (George Boole),因為 1854 年他出版了一本傳統著作《思想 法則研究》,該書建立在邏輯和概率的數學理論之上。Boole 宣告的目標是完成邏 輯的數學分析。命題和集代數的微積分是基於 Boole 的調查。在這本書中,我們指 定現在用於量子邏輯電路設計和維護的代數為布爾代數。

在 IBM 量子電腦中,具有用於說明量子演演演算法(電路, circuit)內部工作圖 的數學技術有幾個優點。第一個優點是,使用用於描述量子演算法(電路, circuit)的 內部工作的代數表達式計算通常比應用原理圖甚至邏輯圖更方便。第二個優點是, 描述量子演算法(電路, circuit)內部工作的普通代數表達式可以減少或簡化。這使 得量子演算法(電路, circuit)的設計者實現了量子操作的構造和可靠性。布爾代數 還提供了一種經濟而直接的量子演演演算法(電路, circuit)設計方法,用於解決各 種應用。總之,布爾代數的知識在計算領域是不可或缺的。在本章中,我們將介紹 如何

圖 2.1:對位元的邏輯操作。

完成圖 2.1 的邏輯操作,其中包括 NOT, AND, NAND, OR, NOR, Exclusive-OR (XOR) 和 Exclusive-NOR (XNOR),透過後端 *ibmqx4 的*量子邏輯閘或 IBM 量 子電腦中的模擬器。我們還說明了如何完成來自布爾代數的幾個應用程式。

2.1 說明 NOT 閘操作

NOT 操作獲取單個輸入並產生單個 single 輸出。它將位的值反轉到位'的補 of 數中。也就是說,一位元的 NOT 閘提供了以下結果:

NOT
$$1 = 0$$

NOT $0 = 1$ (2.1)

布爾變數(位元)的值僅為零 (0) 或一 (1)。因此,一個 **NOT** 的布林變數 q[0],當 q[0]等於零(0)時,寫作 $q[\overline{0}]$ 時等於一(1)。同樣,當 $q[\overline{0}]$ 等於一(1)時,寫作 q[0]時等 於零(0)。)(2.1) 中 he 的規則也可以 operation may also be 以表 2.1 所示的真情 況表的形式表示。

輸入	輸出
q[0]	$\overline{q[0]}$
0	1
1	0

表 2.1 :NOT 操作的真號表。

從 (2.1) 和表 2.1 中, 一個位元的 NOT 閘操作是將其值反轉成其的補值。n 個位元的 NOT 閘操作通過實現一點 n 倍的 NOT 操作,為 n 輸入中的每個輸 入提供相應的補數。以下小節將用來說明如何設計量子程式以完成一個位元和兩 個位元的 NOT 閘操作。

2.1.1 一個位元 一補數的量子程式

假設兩個一位元的無號整數,分別為 0(010) 和 1(110),其中 010 是零的十進 位表示形式,110是一的十進位表示形式。我們想同時取得這兩個值的補數。

在清單 2.1 中,**IBM** 量子電腦中帶有五個量子位元的後端 *ibmqx4* 的程式是第 二章的第一個範例,其中我們說明瞭如何編寫量子程式以反轉 0(010)和 1(110)成他 們的補數。圖 2.2 是清單 2.1 中程式的相應量子電路。清單 2.1 第一行的語句 "OPENQASM 2.0"表示程式是使用 Open QASM 版本 2.0 編寫的。然後,他的宣 告"include "qelib1.inc",在清單 2.1 的第二行,是繼續解析檔案 qqelib1.inc",就像

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";

- 3. qreg q[5];
- 4. creg c[5];
- 5. h q[0];
- 6. x q[0];
- 7. measure $q[0] \rightarrow c[0]$;

清單 2.1:把一個's complement to a 補充到一點輸入的程式。

將檔案的內容貼上在包含語句的位置,其中檔案"qelib1.inc"是**量子體驗 (QE)標** 準標頭,其路徑是相對於當前工作目錄。

圖 2.2:清單 2.1 中程式的相應量子電路。

接下來,語句"qreg q[5];"在清單 2.1 的第三行,是宣告程式中有五個量子位元。 在圖 2.2 的左上部,五個量子位元為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個量子位 元的初始值設置為 |0>。我們使用量子位元 q[0] 對一個位元無符號整數的輸入 進行編碼。接下來,語句"creg c[5];",在清單 2.1 的第四行,是宣告程式中有五個傳 統位元。在圖 2.2 的左下部,五個傳統位元分別是 c[0]、c[1]、c[2]、c[3] 和 c[4]。 每個傳統位元的初始值設置為 0。

接下來,他宣告"h q[0];"在清單 2.1 的第五行完成
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

= $\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} (1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \frac{1}{\sqrt{2}} (|0> + |1>) \circ intersection inter$

來,他宣告"x q[0];"在清單 2.1 的第六行完成
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

接下來,清單 2.1 第 7 行的語句"measure q[0] -> c[0];"是測量第一個量子位元 q[0],並通過覆蓋第一個傳統位元 c[0]來記錄測量結果。在,IBM 量子電腦中,有 五個量子位元的後端 *ibmqx4* 中,我們使用命令"simulate"來執行清單 2.1 中的程 式。測量結果如圖 2.3 所示。從圖 2.3 中,我們獲得答案 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>)概率為 0.530。 也就是說,我們獲得位元輸入零 (0)的一補數(q[0] = |1>)為概率為 0.530。或者,我 們獲得概率為 0.470 的答案 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>)。這還意味著,我們獲得位元輸入一 (1) 的一補數(q[0] = |0>)的概率為 0.470 。

圖 2.3:在清單 2.1 中程序的測量完成後,我們獲得概率為 0.530 的答案 00001,獲得 概率為 0.470 的答案 00000。

2.1.2 兩個位元 一補數的量子程式

假設四個兩位元無號整數的值是為 00(010),01(10),10(210), 01 (110), 10 (210)和 11(310), 其中 010 是十進位表示零,110 是十進制表示表示一,210 是十進制表示二和 310 是十進制表示三。我們想同時取得這四個值得一補數。

在清單 2.2 中,IBM 量子電腦中,有五個量子位元的後端 *ibmqx4* 的程式是第 二章的第二個例子,其中我們描述了如何編寫量子程式來取 t 他一個 00(0 10)、 01(10)、10(210),01 (110),10 (210)和 11(3)10).圖 2.4 是清單 2.2 中程式的相應量子 電路。清單 2.2 第一行的語句"OPENQASM 2.0"指出程式是使用 Open QASM 版 本 2.0 編寫的。接下來,他的宣告「包括」qelib1.inc」;"在清單 2.2 的第二行是繼 續解析檔案 qqelib1.inc",就像將檔案的內容貼上在包含語句的位置,其中檔案" qelib1.inc" 是**量子體驗 (QE) 標準標頭**,其路徑是相對於當前工作目錄。。

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";
- 3. qreg q[5];
- 4. creg c[5];
- 5. h q[0];
- 6. h q[1];
- 7. x q[0];
- 8. x q[1];
- 9. measure $q[0] \rightarrow c[0]$;
- 10. measure $q[1] \rightarrow c[1]$;

清單 2.2:兩位元輸入 一補數的程式。

然後,語句"qreg q[5];"在清單 2.2 的第三行,是宣告程式中有五個量子位元。在 圖 2.4 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個量子 位元的初始值設置為 |0>。我們使用兩個量子位元 q[0] 和 q[1] 對兩位元無號整 數的輸入進行編碼。接下來,語句"creg c[5];在清單 2.2 的第四行,是宣告程式中有 五個傳統位元。在圖 2.4 的左下部,五個傳統位元分別是 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位元的初始值設置為 0。

圖 2.4:清單 2.2 中程式的相應量子電路。

然後,t他的宣告"hq[0];"在列表 2.2 第五行完成
$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|0> + |1>) \circ$$
這表示宣告"hq[0];"在列表 2.2 第五
行是應用 Hadamard 閘將 q[0] 從一種狀態轉 $|0>$ 換到另一個狀態 $\frac{1}{\sqrt{2}}$ $(|0> + |1>)$
(its superposition) \circ 接下來,宣告"hq[1];"在列表 2.2 第六行完成 $\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \times$

 $\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0 \end{pmatrix} + \begin{pmatrix} 0\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|0>+|1>).$ 。這表示宣告"hq[1];" 在列表 2.2 第六行是使用 Hadamard 閘將 q[1] 從一種狀態 |0> 轉換成另一個狀 態 $\frac{1}{\sqrt{2}} (|0>+|1>)$ (its superposition) 。因此,兩個量子位元 q[0] 和 q[1] 的 superposition 是 s $(\frac{1}{\sqrt{2}} (|0>+|1>)) (\frac{1}{\sqrt{2}} (|0>+|1>)) = \frac{1}{2} (|0>|0>+|0>|1>+|1>|0>+$ $|1>|1>) = \frac{1}{2} (|00>+|01>+|10>+|11>) .$ 在疊加(superposition) ,具振幅 $\frac{1}{2}$ 的|00>編碼值 00 (零) 到輸入兩位元,具振幅 $\frac{1}{2}$ 的 |01>編碼值 1(一) 到輸入兩位元,具 振幅 $\frac{1}{2}$ 的 |10>編碼值 2(兩) 到輸入兩位元 和 ,具振幅 $\frac{1}{2}$ 的 |11>編碼值 3(三) 到輸入兩位元.

接下來,他宣告"x q[0];"在清單 2.2 的第七行,實際完成 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \frac{1}{\sqrt{2}} (|1 \rangle + |0 \rangle)$ 和宣告"x q[1];"在清單 2.2 的第八行實際完成 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \frac{1}{\sqrt{2}} (|1 \rangle + |0 \rangle)$ 。也就是說兩個語句是"x q[0];"和"x q[1];"在清單 2.2 的第七行和第 8 行上,將振幅 $\frac{1}{2}$ 的|00> (兩位元的輸入零)反轉為 |11>帶振幅 $\frac{1}{2}$ (其一補數),振幅

 $\frac{1}{2}$ 的|01>(兩位元的輸入零)反轉為 |10>帶振幅 $\frac{1}{2}$ (其一補數),振幅 $\frac{1}{2}$ 的|10> (兩位元的輸入零)反轉為 |01>帶振幅 $\frac{1}{2}$ (其一補數)和振幅 $\frac{1}{2}$ 的|11>(兩位元的 輸入零)反轉為 |00>帶振幅 $\frac{1}{2}$ (其一補數)。這表明通過應用兩個量子操作"xq[0]" 和"xq[1]",完成了八個指令(八個 NOT 操作),即取得兩位元的輸入一補數。

接下來,兩個語句"measure q[0] -> c[0];"和"measure q[1] -> c[1];",在清單 2.2 的第九行和第十行,測量第一個量子位元 q[0]和第二個量子位元 q[1],並通過覆蓋 第一個傳統位元 c[0]和第二個傳統位元 c[1]來記錄測量結果。在 IBM 量子電腦 中,具有五個量子位元的後端 ibmqx4 中,我們應用命令"simulate"來執行清單 2.2 中的程式。測量結果如圖 2.5 所示。從圖 2.5 中,我們獲得答案 r 00001 (c[4] = $q[4] = |0\rangle, c[3] = q[3] = |0\rangle, c[2] = q[2] = |0\rangle, c[1] = q[1] = |0\rangle$ and $c[0] = q[0] = |1\rangle) \circ$ 也就是說,我們獲得兩位元輸入二 (10)的一補數 (q[1]= |0> and q[0]= |1>)概率為 0.330。或者我們獲得答案 00010(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.260。這表明我們獲得兩位元 輸入一 (01)的一補數 (q[1]=|1> and q[0]=|0>) 概率為 0.260。或者我們獲得答 x = 00011 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |1>), 概率為 0.210。這意味著我們獲得兩位元輪入零 (00)的一補數 t(q[1]=|1> and q[0]=|1>)概率為 0.210 。或者我們獲得答案 00000(c[4]=q[4]= |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>)概率為 0.200。也就是說,我們獲得兩位元輸入二 (11)的一補數 (q[1]=|0> and q[0]=|0>), 概率為 0.200。

圖 2.5:在清單 2.2 中程序的測量完成後,我們獲得概率為 0.330 的答案 00001,獲得 概率為 0.260 的答案 00010,概率為 00011,答案 00011 的概率為 0.210,答案 000000 的概率為 0.200.

2.2 三個量子位元的 Toffoli 閘

Toffoli 閘,也稱為三個量子位元 controlled-controlled-NOT 或 CCNOT 閘

短陣或単元運算付。這衣明 *controlled-controlled-NOT* 或 *CCNOT* 閘(10101 閘) U_{CCN} 是具有三個量子位元的量子閘之一。如果量子狀態 $l_0 |000> + l_1 |001> + l_2 |010> + l_3 |011> + l_4 |100> + l_5 |101> + l_6 |110> + l_7 |111> 以向量表示法書寫$

(2.3)

的第一個條目 $l_0 \ge |000>$ 的振幅,第二個條目 $l_1 \ge |001>$ 的振幅,第三個條目 $l_2 \ge |010>$ 的振幅,第四個條目 $l_3 \ge |011>$ 的振幅,第五個條目 $l_4 \ge |100>$ 的振幅,第六個 條目 $l_5 \ge |101>$ 的振幅,第七個入口 $l_6 \ge |110>$ 的振幅;第八個條目 $l_7 \ge |111>$ 的 振幅,則 **CCNOT** 閘 U_{CCN} 的相應輸出為

 $l_2 l_3$

 $l_4 l_5 l_6$

這就是說,*CCNOT* 閘 U_{CCN} 從一個狀態 $l_0 |000> + l_1 |001> + l_2 |010> + l_3 |011>$ + $l_4 |100> + l_5 |101> + l_6 |110> + l_7 |111>, 到另一個狀態 <math>l_0 |000> + l_1 |001> + l_2 |010>$ + $l_3 |011> + l_4 |100> + l_5 |101> + l_7 |110> + l_6 |111>, 這意味著,在$ *CCNOT* $閘 <math>U_{CCN}$ 中,如果兩個控制量子位元(第一個量子位元和第二個量子位元)設置為 0,那麼目 標量子位元(第三個量子位元)是單獨保留的。如果兩個控制量子位元(第一個量子 位元和第二個量子位元)都設置為 1,則目標量子位元(第三個量子位元)被翻轉。 使用 *CCNOT* 閘 U_{CCN} 後,測量|000>, |001>, |010>, |011>, |100> or |101> 的概率保 持不變,測量 |111> 的概率為 $|l_1|^2$ 測量 與測量 的概率 |111> 為 $|l_6|^2$ 。由於

間 Uccw 兩次到一個狀態相當於對它不執行任何操作。如圖 2.6 所示, CCNOT 間 Uccw 的圖形表示形式。在圖 2.6 中, 左前兩條導線是控制位元, 由 CCNOT 閘 的操作不變。底部導線是一個目標位元, 如果兩個控制位都設置為 1, 則翻轉, 否則單獨保留, 其中⊕是兩個 module 相加。

圖 2.6:CCNOT 閘的電路表示形式 CCNOT。

2.2.1 實現三個量子位元的 Toffoli 閘

Toffoli 閘有三個輸入位元和三個輸出位元。真值表顯示在

我			輸出		
C_1	C_2	Т	C_1	C_2	Т
0	0	0	0	0	0
0	1	0	0	1	0
1	0	0	1	0	0

1	1	0	1	1	1
0	0	1	0	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

表 2.2:具有三個輸入位元和三個輸出位元的 Toffoli 閘真值表。

表 2.2.在 IBM Q 體驗中,它不提供一個量子指令(操作),以三個量子位元實現 *CCNOT* 閘(Toffoli 閘)。我們將 CCNOT 閘分解為六個 CNOT 閘和一個量子位 元的九個閘,如圖 2.7 所示。在圖 2.7 中,H 是 Hadamard 閘, $T = \begin{bmatrix} 1 & 0 \\ 0 & e^{\sqrt{-1} \times \frac{\pi}{4}} \end{bmatrix}$ and $T^{+} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} \end{bmatrix}$ 。在 IBM Q 體驗中,可用閘是 CNOT 是唯一具有兩個量子 位元的閘,另一個閘對單個量子位元執行操作,它們在前一章中有介紹。在具有五 個量子位元的後端 *ibmqx4* 中,只有六對量子位元可以應用 CNOT 閘。第 1.11.1 節中如圖 1.21 所示,後端 *ibmqx4* 中具有五個量子位元的 *CNOT* 閘的連接性。

圖 2.7:將 CCNOT 閘分解為 6 個 CNOT 閘和 9 個一位元閘。

在清單 2.3 中,IBM 量子電腦中,帶有五個量子位元的後端 *ibmqx4* 的程式是 第二章的第三個示例,其中我們說明瞭如何編寫量子程序來實現三個量子位元的 Toffoli 閘(*CCNOT* 閘)。圖 2.8 是清單 2.3 中程式的相應量子電路。清單 2.3 第一 行的語句"OPENQASM 2.0;"表示程式是使用 Open QASM 版本 2.0 編寫的。接 下來,宣告"include "qelib1.inc";"在清單 2.3 的第二行是繼續解析檔案 qqelib1.inc", 就像將檔案的內容貼上在包含語句的位置,其中檔案" qelib1.inc" 是**量子體驗** (**QE**) 標準標頭,其路徑是相對於當前工作目錄。

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";
- 3. qreg q[5];
- 4. creg c[5];

5. h q[1];

- 6. h q[2];
- 7. h q[0];
- 8. cx q[1],q[0];
- 9. tdg q[0];
- 10. cx q[2],q[0];
- 11. t q[0];
- 12. cx q[1],q[0];
- 13. tdg q[0];
- 14. cx q[2],q[0];
- 15. t q[0];
- 16. t q[1];
- 17. h q[0];
- 18. cx q[2],q[1];
- 19. tdg q[1];
- 20. t q[2];
- 21. cx q[2],q[1];
- 22. measure q[0] -> c[0];
- 23. measure $q[1] \rightarrow c[1]$;
- 24. measure q[2] -> c[2];

清單 2.3:實現三個量子位元 CCNOT 閘的程式。

接下來,語句"qreg q[5];"在清單 2.3 的第三行,是宣告程式中有五個量子位元。 在圖 2.8 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個量 子位元的初始值設置為 |0>。我們應用三個量子位元 q[2],q[1]和 q[0]來編碼第一 個控制位、第二個控制位和目標位元 。為了便於我們解釋, q[k]⁰ for $0 \le k \le 4$ 表 示 q[k] for $0 \le k \le 4$ 的值為 0, q[k]¹ for $0 \le k \le 4$ 表示 q[k] 的值 1。同樣,為了便 於我們解釋,實現 Toffoli 閘的初始狀態向量如下:

 $|\Phi_0\rangle = |q[2]^0\rangle |q[1]^0\rangle |q[0]^0\rangle = |0\rangle |0\rangle |0\rangle = |000\rangle$

然後,語句"creg c[5];"在清單 2.3 的第四行,是宣告程式中有五個傳統位元。在圖 2.8 的左下部,五個傳統位元分別是 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位 元的初始值設置為 0。

接下來,他兩個語句是"h q[1];"和"h q[2];" 在清單 2.3 的第五行和第六行,在

圖 2.8:清單 2.3 中程式的相應量子電路。

圖 2.8 中實現量子電路第一個時隙的兩個 Hadamard 閘,並且兩個閘實際上都完成
$$\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\right) \times \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|0>+|1>) \circ isind ising (|1])$$

是說, converting 將 q[1]從一個狀態 $|0>$ 轉換為另一個狀態 $\frac{1}{\sqrt{2}}(|0>+|1>)$ (its superposition)和將 q[2] 從一個狀態 $|0>$ 轉換為另一個狀態 $\frac{1}{\sqrt{2}}(|0>+|1>)$ (its superposition)完成。因此,兩個量子位元 q[2]和 q[1]的疊加是($\frac{1}{\sqrt{2}}(|0>+|1>)$) ($\frac{$

 $\begin{aligned} |\Phi_1\rangle &= \frac{1}{2} \ (|0\rangle |0\rangle |0\rangle + |0\rangle |1\rangle |0\rangle + |1\rangle |0\rangle |0\rangle + |1\rangle |1\rangle |0\rangle) \\ &= \frac{1}{2} \ (|000\rangle + |010\rangle + |100\rangle + |110\rangle). \end{aligned}$

圖 2.8 量子電路中的接下來的 12 個時隙實現 Toffoli 閘。接下來,他宣告"h q[0];" 在清單 2.3 的第七行採用新的狀態向量 $|\Phi_1\rangle = \frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |110\rangle)$ 作為其輸入,並在第二個時隙中完成 q[0] 的一個 Hadamard 閘。這就是說宣告"h q[0];"將 q[0] 從一個狀態 |0>; 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0>+|1>) (its superposition)。

由於第二個時隙中沒有其他量子閘作用於量子位元 q[2]和 q[1],因此它們狀態不 會更改。因此,在第二個時隙中 q[0]的一個 Hadamard 閘,透過語句"h q[0];"完成, 在清單 2.3 的第七行,獲得了以下新的狀態向量:

$$\begin{split} |\Phi_{2}\rangle &= \frac{1}{2} \left(|0\rangle |0\rangle \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) + |0\rangle |1\rangle \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) + |1\rangle |0\rangle \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) + \\ |1\rangle |1\rangle \frac{1}{\sqrt{2}} \left(|0\rangle + |1\rangle \right) &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + |110\rangle \\ &+ |111\rangle). \end{split}$$

接下來,語句 "cx q[1],q[0];" 在清單 2.3 的第 8 行採用新的狀態向量 |Φ₂> = $\frac{1}{2\sqrt{2}}$ (|000>+|001>+|010>+|011>+|100>+|101>+|110>+|111>), 作為其輸入, 並在第三個時隙完成 q[1]和 q[0]的一個 CNOT 閘。如果控制位 q[1]的值等於 1,則翻轉目標位 q[0] 的值。否則,它將不會更改。由於第三個時隙中沒有其他量 子閘作用於量子位元 q[2],因此其狀態不會更改。因此,在第三個時隙中 q[1] 和 q[0] 的一個 CNOT 間後,由語句"cx q[1],q[0];"完成。在清單 2.3 的第8行,獲得 以下新的狀態向量:

$$|\Phi_3\rangle = \frac{1}{2\sqrt{2}} (|000\rangle + |001\rangle + |011\rangle + |010\rangle + |100\rangle + |101\rangle + |111\rangle + |110\rangle).$$

接下來,語句"tdg q[0];"在清單 2.3 的第九行採用新的狀態向量 $|\Phi|_{3} = \frac{1}{2\sqrt{2}}$ $(|000\rangle = \{001\}$ gt; = $\{011\}$ gt; } $\{010\}$ gt; • $\{100\}$ gt; = $\{101\rangle = \{111\}$ gt; = $\{110\}$ gt; " 作為它的輸出,在第四個時隙中完成一個 T^{+} 閘,如果 q[0]的值等於 1,則其相位 將更改為 $e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}}$ 。否則,其階段不會更改。*第四*個時隙中沒有其他量子閘作 用於量子位元 q[2]和 q[1],因此它們狀態不會更改。因此,在第四個時隙中 q[0] 的 一個 T⁺ 閘後,由語句"tdg q[0];"完成。在清單 2.3 的第九行,獲得以下新的狀態向量:

$$|\Phi_{4}\rangle = \frac{1}{2\sqrt{2}} (|000\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|001\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |010\rangle + |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |111\rangle + |110\rangle)$$

接下來,語句"cx q[2],q[0];"在清單 2.3 的第 10 行採用新的狀態向量| Φ_4 > = $\frac{1}{2\sqrt{2}}$ $(|000\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |001\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |011\rangle + |010\rangle + |100\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |101\rangle + |010\rangle + |100\rangle + |10\rangle +$ 70

+ $e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}$ |111>+|110>), 作為其輸入,並在*第五*個時隙 完成 q[2] 和 q[0]的一 個 *CNOT* 閘。如果控制位 q[2]的值等於 1,則翻轉目標位 q[0] 的值。否則,它將 不會更改。由於*第五*個時隙中沒有其他量子閘作用於量子位元 q[1],因此其狀態 不會更改。因此,在第*五*個時隙中 q[2] 和 q[0] 的一個 *CNOT* 閘後,透過語句"cx q[2],q[0];"完成;在清單 2.3 的第 10 行,獲得以下新的狀態向量:

$$|\Phi_{5}\rangle = \frac{1}{2\sqrt{2}} (|000\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|001\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |010\rangle + |101\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |110\rangle + |111\rangle$$

接下來,語句"t q[0];" 在清單 2.3 的第 11 行採用新的狀態向量 $|\Phi_5\rangle = \frac{1}{2\sqrt{2}}$ ($|000\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|001\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|011\rangle + |010\rangle + |101\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|100\rangle$ + $e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|110\rangle + |111\rangle$)作為其輸入,並在*第六*個時隙 完成 q[0]的一個 T 閘。 如果 q[0]的值等於 1,則其相位將更改為 $e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$ 。否則,其階段不會更改。由於 *第六*個時隙中沒有其他量子閘作用於量子位元 q[2]和 q[1],因此它們狀態不會更 改。因此,*在第六*個時隙中 q[0] 的一個 T 閘後,透過語句"t q[0];"完成 ,在清單 2.3 的第 11 行,獲得了以下新的狀態向量:

$$\begin{split} |\Phi_{6}\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right)|001\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) \\ |011\rangle + |010\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |101\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |110\rangle + \\ e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |111\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + |011\rangle + |010\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |101\rangle + \\ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |110\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |111\rangle \right). \end{split}$$

接著,語句"cx q[1],q[0];"在清單 2.3 的第十二行採用新的狀態向量| Φ_6 > = $\frac{1}{2\sqrt{2}}$ (|000> + |001> + |011> + |010> + $e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$ |101> + $e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}$ |100> + $e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}$ |110> + $e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$ |110> 作為輸入,並在第七個時隙中執行 q[1] 和 q[0]的一個 **CNOT** 閘。如果控制位 q[1]的值等於 1,則翻轉目標位 q[0] 的值。否則,它將不 會更改。第七個時隙中沒有其他量子閘作用於量子位元 q[2],因此其狀態不會更 改。因此,在第七個時隙中 q[1] 和 q[0] 的一個 **CNOT** 閘後,透過語句"cx q[1],q[0];" 完成,在清單 2.3 的第十二行,獲得以下新的狀態向量:

$$\begin{split} |\Phi_{7}\rangle &= \frac{1}{2\sqrt{2}} \ (|000\rangle + |001\rangle + |010\rangle + |011\rangle + \ e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \ |101\rangle + \ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \ |100\rangle + \\ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \ |111\rangle + \ e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \ |110\rangle) \end{split}$$

接下來,語句"tdg q[0];"在清單 2.3 的第十三行採用新的狀態向量 $|\Phi_{7}\rangle = \frac{1}{2\sqrt{2}}$ ($|000\rangle + |001\rangle + |010\rangle + |011\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |101\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}$ $|111\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |110\rangle$) 作為輸入,並在*第*八個時隙中完成 q[0] 的一個 T^{+} 閘,如 果 q[0]的值等於 1,則其相位將更改為 $e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}$ 。否則,其階段不會更改。由於 *第*八個時隙中沒有其他量子閘作用於量子位元 q[2]和 q[1],因此它們狀態不會更 改。因此,*在第*八個時隙中 q{0} 的一個 T^{+} 閘後,由語句"tdg q[0];"完成。在清單 2.3 的第十三行,獲得了以下新的狀態向量:

$$\begin{split} |\Phi_8\rangle &= \frac{1}{2\sqrt{2}} \ (|000\rangle + \ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \ |001\rangle + |010\rangle + \ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \ |011\rangle + (e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}) \\ |101\rangle + \ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \ |100\rangle + \ (e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}) \ |111\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \ |110\rangle . \end{split}$$

接下來,語句"cx q[2],q[0];"在清單 2.3 的第十四行採用新的狀態向量| $\Phi_8 >= \frac{1}{2\sqrt{2}}$ ($|000>+e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|001>+|010>+e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|011>+(e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\times e^{1\times\sqrt{-1}\times\frac{\pi}{4}})$ $|101>+e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|100>+(e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}})|111>+e^{1\times\sqrt{-1}\times\frac{\pi}{4}}|110>$) 作為輸入,並在*第九*個時隙中完成 q[2] 和 q[0]的一個 *CNOT* 閘。如果控制位 q[2] 的值等於 1,則翻轉目標位 q[0] 的值。否則,它將不會更改。由於*第九*個時隙中沒 有其他量子閘作用於量子位元 q[1],因此,在第*九*個時隙中的一個 *CNOT* 閘為 q[2] 和 q[0] 完成語句"cx q[2],q[0];"後,其狀態不會更改。在清單 2.3 的第十四行,獲得 了以下新的狀態向量:

$$\begin{split} |\Phi_{9}\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |001\rangle + |010\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |111\rangle \right), \\ e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} |101\rangle + (e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}) |110\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |111\rangle), \\ & \text{Fr}, \text{is for t q[0]}; \text{``at function for the terms of terms$$

$$\begin{split} |\Phi_{10}\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |001\rangle + |010\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |101\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |101\rangle + \left(e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |101\rangle + \left(e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |111\rangle \\ &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + |010\rangle + |101\rangle + \left(e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |110\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |100\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |100\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |100\rangle + \left(e^{1\times\sqrt{-1}\times\frac{\pi}{4} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}\right) |100\rangle + \left(e^{1\times\sqrt{-1$$

接下來,語句"t q[1];"在清單 2.3 的第 16 行採用新的狀態向量 $|\Phi_{10}\rangle = \frac{1}{2\sqrt{2}}$ ($|000\rangle + |001\rangle + |010\rangle + |011\rangle + |100\rangle + |101\rangle + (e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}})|110\rangle +$ ($e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$) |111\rangle) 作為輸入,並在*第十*個時隙完成 q[1]的一個 T 閘。 如果 q[1]的值等於 1,則其相位將更改為 $e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$ 。否則,其階段不會更改。因為 *第十*個時隙中沒有其他量子閘作用於量子位元 q[2],因此其狀態不會更改。因此, *在第十*個時隙中 q[1] 的一個 T 閘後,透過語句"t q[1];" 完成。在清單 2.3 的第十

$$\begin{split} |\Phi_{11}\rangle &= \frac{1}{2\sqrt{2}} \left(|000\rangle + |001\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |010\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |100\rangle + |101\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |100\rangle + |101\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |100\rangle + |101\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$$

接下來,語句"h q[0];"在清單 2.3 的第十七行採用新的狀態向量 $|\Phi_{11}\rangle = \frac{1}{2\sqrt{2}}$ ($|000\rangle + |001\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |010\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}} |011\rangle + |100\rangle + |101\rangle + (e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}) |110\rangle + (e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}}) |111\rangle$ 作為 輸入,並在第 11 個時段完成一個 Hadamard 閘,用於 q[0]。如果 q[0] 的值等於 1,則其狀態將更改為 $\frac{1}{\sqrt{2}}$ ($|0\rangle - |1\rangle$)。否則,其狀態將更改為 $\frac{1}{\sqrt{2}}$ ($|0\rangle + |1\rangle$).。因此, *在第十*—個時隙中 q[0]的一個 Hadamard 閘後,透過語句"h q[0];"完成,在清單 2.3 的第十七行,獲得以下新的狀態向量:

$$\begin{split} |\Phi_{12}\rangle &= \frac{1}{2\sqrt{2}} \left(\frac{2}{\sqrt{2}} |000\rangle + \left(\frac{2}{\sqrt{2}} \times e^{1 \times \sqrt{-1} \times \frac{\pi}{4}}\right) |010\rangle + \frac{2}{\sqrt{2}} |100\rangle + \left(e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} \times \frac{2}{\sqrt{2}}\right) \\ |111\rangle) &= \frac{1}{2} \left(|000\rangle + e^{1 \times \sqrt{-1} \times \frac{\pi}{4}} |010\rangle + |100\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |111\rangle\right). \end{split}$$

接下來,語句"cx q[2],q[1];"在清單 2.3 的第十八行採用新的狀態向量 $|\Phi_{12}\rangle = \frac{1}{2}$ ($|000\rangle + e^{1\times\sqrt{-1}\times\frac{\pi}{4}}|010\rangle + |100\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|111\rangle$) 作為其輸入,並在第十一 個時隙中執行 q[2] 和 q[1]的一個 *CNOT* 閘。如果控制位 q[2]的值等於 1,則翻 轉目標位 q[1] 的值。否則,其值不會更改。因此,在第十一個時隙中 q[2] 和 q[1] 的一個 *CNOT* 閘後,由語句"cx q[2],q[1];"完成。在清單 2.3 的第十八行,獲得以下 新的狀態向量:

$$|\Phi_{13}\rangle = \frac{1}{2} (|000\rangle + e^{1 \times \sqrt{-1} \times \frac{\pi}{4}} |010\rangle + |110\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |101\rangle).$$

接下來,語句"tdg q[1];"在清單 2.3 的第十九行採用新的狀態向量 $|\Phi_{13}\rangle = \frac{1}{2}$

 $(|000> + e^{1 \times \sqrt{-1} \times \frac{\pi}{4}} |010> + |110> + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |101>)$ 作為其輸入,並在*第十二*個時隙中完成 q[1]的一個 T^+ 閘。如果 q[1]的值等於 1,則其相位將更改為 $e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}}$ 。否則,其階段不會更改。*第十二*個時隙中沒有其他量子閘作用於量子 位元 q[0],因此其狀態不會更改。因此,在第*十二*個時隙中 q[1] 的一個 T^+ 柵極後, 由語句透過"tdg q[1];"完成,在清單 2.3 的第十九行上,獲得了以下新的狀態向量:

$$|\Phi_{14}\rangle = \frac{1}{2} (|000\rangle + (e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} \times e^{1 \times \sqrt{-1} \times \frac{\pi}{4}})|010\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |110\rangle + e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}} |101\rangle.$$

接下來,語句"t q[2];"在清單 2.3 的第二十行採用新的狀態向量 $|\Phi_{14}\rangle = \frac{1}{2}$ ($|000\rangle + (e^{-1\times\sqrt{-1}\times\frac{\pi}{4}} \times e^{1\times\sqrt{-1}\times\frac{\pi}{4}})|010\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|110\rangle + e^{-1\times\sqrt{-1}\times\frac{\pi}{4}}|101\rangle$)作 為其輸入,並在*第十二*個時隙中完成 q[2]的一個 T 閘。如果 q[2]的值等於 1,則其 相位將更改為 $e^{1\times\sqrt{-1}\times\frac{\pi}{4}}$ 。否則,其階段不會更改。*第十二*個時隙中沒有其他量子 閘作用於量子位元 q[0],因此其狀態不會更改。因此,*在第十二*個時隙中 q[2] 的一 個 T 閘後,透過語句"t q[2];"完成,在清單 2.3 的第二十行,獲得以下新的狀態向 量:

$$|\Phi_{15}\rangle = \frac{1}{2} (|000\rangle + |010\rangle + (e^{1 \times \sqrt{-1} \times \frac{\pi}{4}} \times e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}}) |110\rangle + (e^{1 \times \sqrt{-1} \times \frac{\pi}{4}} \times e^{-1 \times \sqrt{-1} \times \frac{\pi}{4}}) |101\rangle) = \frac{1}{2} (|000\rangle + |010\rangle + |110\rangle + |101\rangle)$$

接下來,語句 "cx q[2],q[1];"在清單 2.3 的 21 號行採用新的狀態向量 $|\Phi_{15}\rangle = \frac{1}{2}$ ($|000\rangle + |010\rangle + |110\rangle + |101\rangle$) 作為其輸入,並在*第十三*個時隙中執行 q[2] 和 q[1]的一個 *CNOT* 閘。如果控制位 q[2]的值等於 1,則翻轉目標位 q[1] 的值。否則,其值不會更改。由於*第十三*個時隙中沒有其他量子閘作用於量子位元 q{0},因此其狀態不會更改。因此,在第*十三*個時隙中 q[2] 和 q[1] 的一個 *CNOT* 閘 後,透過語句"cx q[2],q[1];"完成,在清單 2.3 的第二十一行,獲得以下新的狀態向量:

$$|\Phi_{16}\rangle = \frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |111\rangle).$$

接下來,三個語句"measure q[0] -> c[0];", "measure q[1] -> c[1];"和"measure q[2] -> c[2];",在清單 2.3 的第二十二行第二十四行,測量第一個量子位元 q[0]、第二 個量子位元 q[1]和第三個量子位元 q[2],並通過覆蓋第一個傳統位元 c[0]、第二個 傳統位元 c[1]和第三個傳統位元 c[2]來記錄測量結果。在 IBM 的量子電腦中, 有五個量子位元 IBM 後端*ibmqx4* 中,我們使用命令"simulate"來執行清單 2.3 中的程式。測量結果如圖 2.9 所示。從

圖 2.9:在清單 2.3 中程序的測量完成後,我們獲得概率為 0.260 的答案 00100,獲得 概率為 0.250 的答案 00010,概率為 00111,概率為 00111,答案 000000 的概率為 00000。0.240.

圖 2.9,我們獲得答案 00100(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) 的概率為 0.260。由於第一個控制位 q[2] 的值等於 1,第二個控制項位 q[1]的值等於零,因此目標位 q[0]的值不會更改,並 且等於 0 的概率 0.260。

或者我們獲得答案 00010 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|0\rangle$,概率為 0.250。第一個控制位 q[2] 的值等 於零,第二個控制位 q[1] 的值等於 1,因此目標位 q[0] 的值不更改,等於 0 與概 率 0.250。或者我們獲得答案 00111 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|1\rangle$),概率為 0.250。由於第一個控制 位 q[2] 的值等於 1,並且第二個控制位 q[1] 的值也等於 1,因此目標位 q[0] 的值被翻轉,等於概率為 0.250 的值。或者我們獲得答案 00000 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$),概率為 0.240。由於第一個控制位 q[2] 的值等於 7,第二個控件位 q[1] 的值也等於零,因 此目標位 q[0] 的值不會更改,並且等於 0 的概率 0.240。

2.3 AND 閘操作的介紹

一位元的 AND 操作取得兩個位元輸入,並產生一個位元的單輸出。如果第一 個輸入的值為 1 (一),並且第二個輸入的值也是 1(一),則它生成結果(輸出)為 1(一)。否則,結果為 0(零)。符號"∧" 用來表示 AND 閘操作。因此,具有兩個位

$$0 \land 0 = 0$$

 $0 \land 1 = 0$
 $1 \land 0 = 0$
 $1 \land 1 = 1$ (2.5)

布爾變數(位)的值僅為 0(零)或 1(一)。因此,如果 q[2] 和 q[1] 都是 1 (一)時, 兩個布爾變數(兩個一位元輸入) q[2] 和 q[1],寫作 q[2] ^ q[1] 等於 1 (1)。同樣, 如果 q[2] 或 q[1]是 0(零),或兩者都為 0(零)時,則 q[2] ^ q[1]為 0(零)。真值 表通常與邏輯操作一起使用,以表示輸入和相應輸出的所有可能組合。因此,(2.5) 中的規則對於 AND 閘操作,具有兩個位輸入並生成一個位輸出的位元,也可以 以表 2.3 所示的真情況表的形式表示。

輸	輸出	
q[2]	q[1]	q[2] ^ q[1]
0	0	0
0	1	0
1	0	0
1	1	1

表 2.3:具有兩個位元輸入並生成一個位元輸出的 AND 閘操作真值表。

2.3.1 實現 AND 閘操作的量子程式

我們使用一個 CCNOT 閘,該閘具有三個量子輸入位元和三個量子輸出位元, 以實現具有兩個傳統位元輸入並生成一位元傳統位元 AND 閘操作。我們使用 CCNOT 閘的兩個控制位元 C₁ 和 C₂,對傳統位元的 AND 操作中對傳統位元的 兩個輸入 q[2] 和 q[1] 進行編碼,並應用 CCNOT 閘的目標位 T ,儲存一個位 元 AND 閘操作的 q[2] < q[1]輸出。使用 CCNOT 閘來實現 AND 操作的規則也 可以以表 2.4 所示的真值表的形式表示。圖 2.10 顯示了其圖形表示形式。圖 2.10 中 CCNOT 閘中的目標位元的初始狀態設置為 |0>。

輸入			輸L	Ł	
C_1	C_2	Т	C_1	C_2	$T = q[2] \wedge q[1]$
0	0	0	0	0	0
0	1	0	0	1	0

1	0	0	1	0	0
1	1	0	1	1	1

表 2.4:使用一個 CCNOT 閘來實現 AND 閘操作的真值表。

圖 2.10:一個傳統位元實現 AND 操作的量子電路。

在清單 2.4 中,**IBM** 量子電腦中帶有五個量子位元的後端 *ibmqx4* 程式是第二章的第四個示例,其中我們描述了如何通過使用三個量子位元的一個 *CCNOT* 閘來編寫量子程式來實現傳統位元 AND 閘操作。圖 2.11 是清單 2.4 中程式的相應量子電路。清單 2.4 第一行的語句"OPENQASM 2.0"指出,程式是使用 Open QASM 版本 2.0 編寫的。接下來,宣告"include "qelib1.inc";"在清單 2.4 的第二行是繼續解析檔案 qqelib1.inc",就像將檔案的內容貼上在包含語句的位置,其中檔案" gelib1.inc" 是**量子體驗 (OE) 標準標頭**,其路徑是相對於當前工作目錄。

1. OPENQASM 2.0;	
2. include "qelib1.inc";	
3. qreg q[5];	
4. creg c[5];	
5. h q[1];	
6. h q[2];	
7. h q[0];	
8. cx q[1],q[0];	
9. tdg q[0];	
10. cx q[2],q[0];	
11. t q[0];	
12. cx q[1],q[0];	
13. tdg q[0];	
14. cx q[2],q[0];	
15. t q[0];	
16. t q[1];	
17. h q[0];	

18. cx q[2],q[1];
 19. tdg q[1];
 20. t q[2];
 21. cx q[2],q[1];
 22. measure q[0] -> c[0];
 23. measure q[1] -> c[1];
 24. measure q[2] -> c[2];

清單 2.4:使用一個 CCNOT 閘來實現 AND 操作的程式。

然後,語句"qreg q[5];"在清單 2.4 的第三行,是宣告程式中有五個量子位元。在 圖 2.11 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個量 子位元的初始值設置為 |0>。我們使用三個量子位元 q[2],q[1]和 q[0]分別編碼第 一個控制位、第二個控制位和目標位元 。也就是說,我們應用量子位元 q[2]和 q[1] 對*傳統位元* AND 操作中的兩個傳統位元輸入進行編碼,並使用量子位元 q[0]來存 儲*傳統位元* 的 AND 操作結果。為了便於我們解釋 q[k]⁰ for $0 \le k \le 4$ 表示 q[k] 值為零 (0)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k]值為 1 (1)。同樣,為了便於我們解釋,實 現 AND 傳統位元和操作的初始狀態向量如下:

 $|A_0\rangle = |q[2]^0\rangle |q[1]^0\rangle |q[0]^0\rangle = |0\rangle |0\rangle |0\rangle = |000\rangle$

圖 2.11:清單 2.4 中程式的相應量子電路。

接下來,語句"creg c[5];在清單 2.4 的第四行,是宣告程式中有五個傳統位元。在圖 2.11 的左下部,五個傳統位元隨後為 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位 元的初始值設置為 0。

接下來,他兩個語句是"h q[1];"和"h q[2];" 在清單 2.4 的第五行和第六行中,在 圖 2.11 中實現了量子電路第一個時隙的兩個 Hadamard 閘。這意味著語句"h q[1];" 將 q[1]從一個狀態 $|0>轉換為另一種狀態\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句 "h q[2];"將 q[2] 從一個狀態 $|0> 轉換為另一種狀態 \frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)。在圖 2.11 量子電路的第一個時隙中,量子閘沒有對量子位元 q[0] 的作用,因此其狀態|0>不變。因此,在圖 2.11 量子電路第一個時隙中的兩個 Hadamard 閘後,通過使用兩個語句 "h q[1];"和"h q[2];"實現;在清單 2.4 的第五行 和第六行,獲得以下新的狀態向量:

$$|A_1\rangle = \frac{1}{2} (|0\rangle|0\rangle + |0\rangle|1\rangle |0\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle)$$
$$= \frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |110\rangle).$$

在新的狀態向量 $|A_1>$,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 $\frac{1}{2}$,對一個位元 AND 操作的所有可能輸入進行編碼。量子位元 q[0]在量子位元 q[2]和 q[1]的四個組合狀態中的初始狀態為|0>,它存儲了 AND 傳統位元 AND 操作的結果。

圖 2.11 量子電路中的接下來的 12 個時隙通過實現一個 *CCNOT* 閘來實現傳 統位元**的和**操作。圖 2.11 中*第二*個時隙到第十三個時隙的每個量子閘都由語句 "h q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "cx q[2],q[0];", "t q[0];", "t q[1];", "h q[0];", "cx q[2],q[1];", "t q[2];" and "cx q[2],q[1];",第 21 行。它們採用新的狀態向量 $|A_1> = \frac{1}{2}$ (|000> + |010> + |100> + |110>) 作為*第二*個時隙中的輸入和傳統位元的完成 **AND** 操作。在操作 完成後,取得以下的的狀態向量:

 $|A_{16}\rangle = \frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |111\rangle) \circ$

接下來,圖 2.11 中從第*十四*個時隙到*第十六*個時隙的三個測量值由三個語句 "measure q[0] -> c[0];", "measure q[1] -> c[1];"和"measure q[2] -> c[2];"在清單 2.4 的第二十二行第二十四行,測量第一個量子位元 q[0]、第二個量子位元 q[1]和第 三個量子位元 q[2],並通過覆蓋第一個傳統位元 c[0]、第二個傳統位元 c[1]和第三 個傳統位元 c[2]來記錄測量結果。在 IBM 量子電腦中,有五個量子位元的後端 *ibmqx4* 中,我們使用命令"simulate"來執行清單 2.4 中的程式。測量結果如圖 2.12 所示。從圖 2.12 中,我們獲得答案 00010(c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>)的概率為 0.290。由於第一 個控制位 q[2] 的值等於零,第二個控制位 q[1] 的值等於 1,因此目標位 q[0] 的值不會更改,並且等於 0 的概率 0.290。

圖 2.12:在清單 2.4 中程序的測量完成後,我們獲得概率為 0.290 的答案 00010,獲 得概率為 0.280 的答案 00111,概率為 00100,答案 00100 的概率為 0.240,答案 00000 的概率為 0.190.

或者我們獲得答案 00111 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|1\rangle$)的概率為 0.280。第一個控制位 q[2] 的值等 於 1,第二個控制位 q[1] 的值等於 1,因此目標位 q[0]的值被翻轉,等於概率為 0.280 的值。或者我們獲得答案 00100 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$)的概率為 0.240。由於第一個控制 位 q[2] 的值等於 1,第二個控制項位 q[1]的值等於零,因此目標位 q[0] 的值不 會更改,並且等於 0 的概率 0.240。或者我們獲得答案 00000 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$)的概率為 0.190。第一個控制位 q[2] 的值等於零,第二個控制位 q[1] 的值也等於零,因此目 標位 q[0]的值不更改,等於 0 與概率 0.190。

2.4 NAND 操作介紹

NAND 操作需要兩個位元輸入,並產生一位元的單一輸出。如果第一個輸入的 值為 1(一),並且第二個輸入的值也是 1(一),則它會產生結果(輸出)為 0(零)。否則, 結果(輸出)為 1(一)。符號"⊼"用於表示 NAND 操作。 因此有兩個一位元輸入 NAND 操作,可能是以下四個可能的組合結果:

$$\overline{0 \wedge 0} = 1$$

$$\overline{0 \wedge 1} = 1$$

$$\overline{1 \wedge 0} = 1$$

$$\overline{1 \wedge 1} = 0$$
(2.6)

布爾變數(位)的值僅為 1(一)或 0(零)。因此,兩個布爾變數(兩個位元輸入) q[2] 和 q[1]的 NAND,僅當 $\overline{q[2] \land q[1]}$ 均為 1(一),時,寫入為等於 0(零)。同樣,當 q[2] 或 q[1] 為 0(零),或兩者都是 0(零), $\overline{q[2] \land q[1]}$ 等於 1(一)。通常使用邏輯操作 應用真值表,以表示輸入和相應輸出的所有可能組合。因此,(2.6)中的規則對於 NAND操作具有兩個位輸入並生成一個位輸出的位元,也可以以表 2.5 所示的 真情況表的形式表示。

輸	入	輸出
q[2]	q[1]	$\overline{q[2] \wedge q[1]}$
0	0	1
0	1	1
1	0	1
1	1	0

表 2.5: 具有兩個位輸入,並生成一個位輸出 NAND 操作的真值表。

2.4.1 實施 NAND 操作的量子程式

我們應用一個 *CCNOT* 閘,它有三個量子輸入位和三個量子輸出位,以實現具 有兩個傳統位元輸入,並產生傳統位元輸出*的傳統位元*的 NAND 操作。我們使 用 *CCNOT* 閘的兩個控制位 C_1 和 C_2 ,對一個傳統位元的 NAND 操作中的兩個 輸入 q[2] 和 q[1] 進行編碼,並使用 *CCNOT* 閘的目標位元 T,儲存一個傳統位 元的 NAND 操作中的一個輸出 $\overline{q[2]} \land q[1]$ 。套用 *CCNOT* 閘來實現 NAND 操 作的規則也可以以表 2.6 所示的真值表的形式表示。圖 2.13 顯示了其圖形表示 形式。圖 2.13 中 *CCNOT* 閘中的目標位的初始狀態設置為 |1>。

	輸出			輸L	Ł
C_1	C_2	Т	C_1	C_2	$T \overline{q[2] \wedge q[1]}$
0	0	1	0	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

表 2.6:應用一個 CCNOT 閘來實現 NAND 操作的真值表。

圖 2.13:實現傳統位元 NAND 操作的量子電路。

在清單 2.5 中,IBM 量子電腦中帶有五個量子位元的後端 *ibmqx4* 程式是第二章*的第五*個示例,其中我們如何通過應用三個量子位元的一個 *CCNOT* 閘來編寫量子程式來實現傳統位元的 NAND 操作。圖 2.14 是清單 2.5 中程式的相應量子電路。清單 2.5 第一行的語句"OPENQASM 2.0"表示程式是使用 Open QASM 版本 2.0 編寫的。然後,他的宣告"include "qelib1.inc";"在清單 2.5 的第二行是繼續解析檔案"qelib1.inc",就像將檔案的內容貼上在包含語句的位置,其中檔案"qelib1.inc" 是量子體驗 (QE) 標準標頭,其路徑是相對於當前工作目錄。

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";
- 3. qreg q[5];
- 4. creg c[5];
- 5. x q[0];
- 6. h q[1];
- 7. h q[2];
- 8. h q[0];
- 9. cx q[1],q[0];
- 10. tdg q[0];
- 11. cx q[2],q[0];
- 12. t q[0];
- 13. cx q[1],q[0];
- 14. tdg q[0];
- 15. cx q[2],q[0];
- 16. t q[0];
- 17. t q[1];
- 18. h q[0];
- 19. cx q[2],q[1];
- 20. tdg q[1];
- 21. t q[2];
- 22. cx q[2],q[1];

23. measure q[0] -> c[0];
24. measure q[1] -> c[1];
25. measure q[2] -> c[2];

清單 2.5:應用一個 CCNOT 閘來實現 NAND 操作的程式。

接下來,語句"qreg q[5];"在清單 2.5 的第三行,是宣告程式中有五個量子位元。 在圖 2.14 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個 量子位元的初始值設置為 |0>。我們使用三個量子位元 q[2],q[1]和 q[0]分別編碼 第一個控制位、第二個控制位和目標位元 。也就是說,我們使用量子位元 q[2]和 q[1]對*傳統位元*NAND 操作中的兩個傳統位元輸入進行編碼,並應用量子位元 q[0] 來存儲*傳統位元* NAND 操作的結果。為了便於我們解釋,q[k]⁰ for $0 \le k \le 4$ 表示 q[k] 值為零 (0)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k] 值為 1 (1)。同樣,為了便於我們 解釋,實現傳統位元 NAND 操作的初始狀態向量如下所示:

圖 2.14:清單 2.5 中程式的相應量子電路。

接下來,語句"creg c[5];在清單 2.5 的第四行,是宣告程式中有五個傳統位元。在圖 2.14 的左下部,五個傳統位元隨後為 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位 元的初始值設置為 0。

接下來,他三個語句"x q[0];", "h q[1];" and "h q[2];" 在清單 2.5 的第七行,在圖 2.14 中,量子電路*的第一個*時隙實現了一個 **NOT** 閘和兩個 Hadamard 閘。這就是 說,語句"x q[0];"將 q[0] 從一個狀態 |0> 轉換為另一種狀態 |1> (its negation), 語句 "h q[1];"將 q[1] 從一個狀態 |0>轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句"h q[2];"將 q[2]從一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)。因此,在圖 2.14 量子電路第一個時隙中的一個 **NOT** 閘 和兩個 Hadamard 閘之後,通過應用他三個語句"x q[0];", "h q[1];" and "h q[2];"實

現。在清單 2.5 的第五行到第七行,獲得以下新的狀態向量:

$$|B_1\rangle = \frac{1}{2} (|0\rangle|0\rangle|1\rangle + |0\rangle|1\rangle|1\rangle + |1\rangle|0\rangle|1\rangle + |1\rangle|1\rangle|1\rangle)$$
$$= \frac{1}{2} (|001\rangle + |011\rangle + |101\rangle + |111\rangle).$$

新的狀態向量 |B₁>,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 ¹/₂ ,對一個傳統位元 NAND 操作的所有可能輸入進行編碼。量子位元 q[0]在量 子位元 q[2]和 q[1]的四個組合狀態中的初始狀態為 |1>,並儲存了一個傳統位元 NAND 操作的結果。

圖 2.14 量子電路中的接下來的 12 個時隙通過實現一個 *CCNOT* 閘來實現傳 統位元 NAND 操作。圖 2.14 中*第二*個時隙到第十三個時隙的每個量子閘都由語 句"h q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "t q[1];", "h q[0];", "cx q[2],q[1];", "tdg q[1];", "t q[2];" and "cx q[2],q[1];"在清單 2.5 的第八行到第二十二行。它們採用新的狀態向量 $|B_1>=\frac{1}{2}$ (|001>+|011>+|101>+|111>)作為*第二*個時隙中的輸入和傳統位元的完 整 NAND 操作。從目前,取得以下的的狀態向量:

 $|B_{16}\rangle = \frac{1}{2} (|001\rangle + |011\rangle + |101\rangle + |110\rangle) \circ$

然後,圖 2.14 中從第十四個時隙到第十六個時隙的三個測量值由三個語句 s "measure q[0] -> c[0];", "measure q[1] -> c[1];" and "measure q[2] -> c[2];"在清單 2.5 的第二十三行第二十五行,測量第一個量子位元 q[0]、第二個量子位元 q[1]和 第三個量子位元 q[2],並通過覆蓋第一個傳統位元 c[0]、第二個傳統位元 c[1]和第 三個傳統位元 c[2]來記錄測量結果。在 **IBM** 量子電腦中,有五個量子位元的後端 *ibmqx4*,我們使用命令""simulate"來執行清單 2.5 中的程式。測量結果如圖 2.15 所示。從圖 2.15 中,我們獲得答案 00011 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |1>)的概率為 0.34。由於第一個控制 位 q[2] 的值等於 0(零),並且第二個控制位 q[1] 的值等於 1(一),因此目標位 q[0] 的值不會更改,並且等於概率為 0.340 的 1(一)。

圖 2.15:在清單 2.5 中程序的測量完成後,我們獲得概率為 0.340 的答案 00011,答 案 00001 的概率為 0.300,答案 00101 的概率為 0.200,答案 00110 的概率為 0.160.

或者我們獲得答案 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>)概率為 0.300。由於第一個控制位 q[2] 的值 等於 0(零),並且第二個控制位 q[1] 的值等於 0(零),因此目標位 q[2] 的值不會 更改,並且等於概率為 0.300 的 1(1)。或者我們獲得答案 00101 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |1>)第一個控 制位 q[2] 的值等於 1 (1),第二個控制位 q[1] 的值等於 0(零),因此目標位 q{0} 的值不更改,等於概率為 0.200 的 1(1)。或者我們獲得答案 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.160。由於第一個控制位 q[2] 的值等於 1 (1),並且第二個控制位 q[1] 的值也等於 1 (1),因此目標位 q[0] 的值被翻轉,等於 0(零),概率為 0.160。

2.5 OR 操作介紹

一位元的 OR 操作取得兩個位輸入,並產生一個位元的單輸出。如果第一個輸入的值為 1(一),或者第二個輸入的值也是 1 (一),或者其值均為 1 (一),則生成結果 (輸出)為 1(一)。否則,結果(輸出)為 0(零)。符號"\"表示 OR 操作。因此,使用兩個一位元輸入的一位元 OR 操作,可能是以下四個組合結果:

$$0 \lor 0 = 0$$

 $0 \lor 1 = 1$
 $1 \lor 0 = 1$
 $1 \lor 1 = 1$ (2.7)

布爾變數(位)的值僅為 1(一)或 0(零)。因此,當 q[2] 的值為 1(1)或 q[1] 的值為 1(1),或兩者均為 1(1)時,則兩個布爾變數(一位元的兩個輸入)q[2] 和 q[1],寫入 q[2] ∨ q[1]等於 1(1)。同樣,如果 q[2] 值和 q[1] 值均為 0(零),則 q[2] ∨ q[1] 等 於 0(零)。真值表通常與邏輯操作一起使用,以表示輸入和相應輸出的所有可能組 合。因此,(2.7) 中的規則對於 OR 操作取得兩個位輸入並產生一個位元輸出的 位元,也可以以表 2.7 所示的真情況表的形式表示。

輸	入	輸出
q[2]	q[1]	q[2] ∨ q[1]
0	0	0
0	1	1
1	0	1
1	1	1

表 2.7: 使用兩個一位元輸入,並產生一位元單一輸出的一位元 OR 操作真值表

2.5.1 實施 OR 閘操作的量子程式

我們使用一個 *CCNOT* 閘,它有三個量子輸入位和三個量子輸出位來實現傳統 位元的 **OR** 操作,其包含了傳統位元的兩個輸入,並產生一個傳統位元的輸出。我 們使用 *CCNOT* 閘的兩個控制位元 C_1 和 C_2 ,在傳統位元 **OR** 操作中的傳統位元 的兩個輸入 q[2] 和 q[1] 進行編碼,並應用 *CCNOT* 閘的目標位元 *T*,來存儲 傳統位元 **OR** 操作的輸出 q[2] \vee q[1] = $\overline{q[2]} \vee q[1] = \overline{q[2]} \wedge \overline{q[1]}$,使用 *CCNOT* 閘來實現 **OR** 操作的規則也可以以表 2.8 所示的真值表的形式表示。圖 2.16 顯示了其圖形表示形式。在圖 2.16 中,CCNOT 閘的第一個控制位(J頁部第一線) C_1 和第二控制位(第二根導線) C_2 ,分別對傳統位元 **OR** 操作中傳統位元的第一 個輸入 q[2] 和第二個輸入 q[1]進行編碼。在圖 2.16 中,CCNOT 閘的目標位元 (底部導線)*T*,將存儲傳統位元的 **OR** 操作中一個輸出 q[2] \vee q[1] = $\overline{q[2]} \wedge \overline{q[1]}$.

	輸入				輸出
C_1	C_2	Т	C_1	C_2	$T = q[2] \vee q[1]\overline{q[2]} \wedge \overline{q[1]}$
0	0	1	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	1

表 2.8:應用一個 CCNOT 閘來實現 OR 操作的真值表。

圖 2.16:實現 OR 操作傳統位元的量子電路。

圖 2.16 中 *CCNOT* 閘中的目標位元 T 的初始狀態設置為 |1>。實現使用兩個輸入 q[2] 和 q[1],並生成傳統位元的一個輸出傳統位元的 OR 操作,該位,並透 過實現使用兩個輸入和一個傳統位元,產生一個輸出的傳統位元 NAND 操作,來 產生 $\overline{q[2]} \land \overline{q[1]}$ 。因此,在圖 2.16 中,我們使用兩個 *NOT* 閘來操作兩個控制位 C_1 和 C_2 的 *CCNOT* 閘的編碼兩個輸入 q[2] 和 q[1] 的傳統位元,並生成其反值 $\overline{q[2]}$ 和 $\overline{q[1]}$ 。 接下來,在圖 2.16 中,我們應用一個 *CCNOT* 閘來獲取其其反值 $\overline{q[2]}$ 和 $\overline{q[1]}$ 。 接下來,在圖 2.16 中,我們應用一個 *CCNOT* 閘來獲取其其反值 $\overline{q[2]}$ 和 $\overline{q[1]}$ 作為輸入,並完成傳統位元的 NAND 操作。因為從表 2.8 傳統位元 的 OR 操作的兩個輸入 q[2]和 q[1] 沒有改變,其在圖 2.16 由兩個控制位 C_1 和 C_2 的 *CCNOT* 閘編碼而成,我們再次使用兩個 *NOT* 閘操作兩個控制位 C_1 和 C_2 的圖 2.16 中的 CCNOT 閘,並生成結果 $\overline{q[2]} = q[2]$ 和 $\overline{q[1]} = q[1]$ 。也就是說,在圖 2.16 中,對第一個控制位 C_1 和第二個控制位 C_2 使用 *NOT* 閘兩次,對它們沒有 任何影響。

在清單 2.6 中,IBM 量子電腦中帶有五個量子位元的後端 *ibmqx4* 程式是第二章的第六個示例,其中我們介紹了如何通過使用一個 *CCNOT* 閘三個量子位元和 四個 *NOT* 閘一個實現傳統位元的 OR 操作量子位元。圖 2.17 是清單 2.6 中程式 的相應量子電路。清單 2.6 第一行的語句"OPENQASM 2.0"指出,程式是使用 Open QASM 版本 2.0 編寫的。接下來,宣告 "qelib1.inc";"在清單 2.6 的第二行是繼續 解析檔案 "qelib1.inc",就像將檔案的內容貼上在包含語句的位置,其中檔案 "qelib1.inc"是量子體驗 (QE) 標準標頭,其路徑是相對於當前工作目錄。。

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";
- 3. qreg q[5];
- 4. creg c[5];
- 5. x q[0];

- 6. h q[1];
- 7. h q[2];
- 8. x q[1];
- 9. x q[2];
- 10. h q[0];
- 11. cx q[1],q[0];
- 12. tdg q[0];
- 13. cx q[2],q[0];
- 14. t q[0];
- 15. cx q[1],q[0];
- 16. tdg q[0];
- 17. cx q[2],q[0];
- 18. t q[0];
- 19. t q[1];
- 20. h q[0];
- 21. cx q[2],q[1];
- 22. tdg q[1];
- 23. t q[2];
- 24. cx q[2],q[1];
- 25. x q[1];
- 26. x q[2];
- 27. measure q[0] -> c[0];
- 28. measure $q[1] \rightarrow c[1];$
- 29. measure $q[2] \rightarrow c[2];$

清單 2.6:使用一個 CCNOT 閘和四個 NOT 閘來實施 OR 操作的程式。

然後,語句"qreg q[5];"在清單 2.6 的第三行,是宣告程式中有五個量子位元。在 圖 2.17 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個量 子位元的初始值設置為 |0>。我們使用三個量子位元 q[2],q[1]和 q[0]分別編碼第 一個控制位、第二個控制位和目標位元 。這表明我們利用量子位元 q[2]和 q[1] 對*傳統位元* OR 操作中的兩個傳統位元輸入進行編碼,並應用量子位元 q[0]來存 儲*傳統位元* OR 操作的結果。為了便於我們解釋, q[k]⁰ for $0 \le k \le 4$ 表示 q[k] 值 為 0 (零)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k]值為 1 (一)。同樣,為了便於我們解釋,實 現傳統位元 OR 操作的初始狀態向量如下所示:

 $|C_0\rangle = |q[2]^0\rangle |q[1]^0\rangle |q[0]^0\rangle = |0\rangle |0\rangle |0\rangle = |000\rangle$

圖 2.17:清單 2.6 中程式的相應量子電路。

接下來,語句"creg c[5];"在清單 2.6 的第四行,是宣告程式中有五個傳統位元。在圖 2.17 的左下部,五個傳統位元隨後為 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位 元的初始值設置為 0。

接下來,他三個語句"x q[0];", "h q[1];" and "h q[2];",在清單 2.6 的第七行,在圖 2.17 中,量子電路*的第一個*時隙實現了一個 NOT 閘和兩個 Hadamard 閘。這意味 著語句"x q[0];"將 q[0] 從一個狀態 |0> 轉換為另一種狀態 |1> (its negation),語 句 "h q[1];"將 q[1] 從一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句"h q[2];"將 q[2] 從一個狀態 |0>轉換為另一種狀態 (|0> + |1>) (its superposition)。因此,在圖 2.17 量子電路第一個時隙中的一個 NOT 閘和 兩個 Hadamard 閘之後,通過使用三個語句"x q[0];", "h q[1];" and "h q[2];"實現。 在清單 2.6 的第五行第七行,獲得以下新的狀態向量:

 $|C_1> = \frac{1}{2} (|0>|0>|1>+|0>|1>|1>+|1>|0>|1>+|1>|0>|1>+|1>|1>|1>)$ $= \frac{1}{2} (|001>+|011>+|101>+|111>)$

新的狀態向量 |C₁>,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 ¹/₂ 對傳統位元 OR 操作的所有可能輸入的編碼。量子位元 q[0]在量子位元 q[2]和 q[1]的四個組合狀態中的初始狀態為 |1>,它存儲傳統位元 OR 操作的結果。

然後,他兩個語句"x q[1];" and "x q[2];"在清單 2.6 的第 8 行,在圖 2.17 中實現 了量子電路第二個時隙的兩個 *NOT* 閘。它們採用新的狀態向量 $|C_1>=\frac{1}{2}$ (|001> +|011>+|101>+|111>)作為圖 2.17 *第二個*時隙中的輸入。這就是說,在新的狀態 向量 $|C_1>$ 將 q[2]的狀態(|0>+|1>)轉換為狀態(|1>+|0>)與將 q[1]的狀態(|0>+|1>)轉換為狀態(|1>+|0>)。由於沒有對 q[0] 執行操作的閘,因此其狀態不會更改。 因此,在圖 2.17 量子電路第二個時隙中的兩個 NOT 閘後,通過應用兩個語句"x q[1];" and "x q[2];"實現。在清單 2.6 的第九行,獲得以下新的狀態向量:

$$|C_{2}\rangle = \frac{1}{2} (|1\rangle|1\rangle|1\rangle+|1\rangle|0\rangle|1\rangle+|0\rangle|1\rangle+|1\rangle+|0\rangle|0\rangle|1\rangle)$$
$$= \frac{1}{2} (|111\rangle+|101\rangle+|011\rangle+|001\rangle) \circ$$

圖 2.17 量子電路中的下一個 12 個時隙實現 **OR** 操作(q[2] ∨ q[1] = $\overline{q[2]} \land \overline{q[1]}$) 的傳統位元,相當於實現具有兩個輸入 $\overline{q[2]}$ 和 $\overline{q[1]}$ 的傳統位元的 **NAND** 操作, 並通過實現一個 *CCNOT* 閘。圖 2.17 中第三個時隙到*第十四*個時隙的每個量子 閘都由語句"h q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "cx q[2],q[1];", "tdg q[1];", "t q[2];" and "cx q[2],q[1];"。在清單 2.6 的第一行到第二十四行。它們 採用新的狀態向量 $|C_2> = \frac{1}{2}$ (|111> + |101> + |011> + |001>)作為*第三*個時隙中的 輸入,並完成傳統位元的 **OR** 操作(q[2] ∨ q[1] = $\overline{q[2]} \land \overline{q[1]}$)。以上完成後,會取

得以下的新狀態向量:

$$|C_{17}\rangle = \frac{1}{2} (|110\rangle + |101\rangle + |011\rangle + |001\rangle) \circ$$

接著,兩個語句"x q[1];" and "x q[2];"在清單 2.6 的第二十五行中,在圖 2.17 中 實現了量子電路 2.6 第十五個時隙的兩個 NOT 閘。它們採用新的狀態向量 $|C_{17}>$ = $\frac{1}{2}$ (|110>+|101>+|011>+|001>) 作為圖 2.17 第 15 個時隙中的輸入。這就是 說,在新的狀態向量 $|C_{17}>$ 狀態 (|110>)轉換為狀態 (|000>),狀態(|101>)轉換為狀 態 (|011>), 狀態(|011>)轉換為(|101>), 狀態 (|001>) 轉換為狀態 (|111>), 由於 沒有對 q[0] 執行操作的閘,因此其狀態不會更改。因此,在圖 2.17 量子電路*第十* 五個時隙中的兩個 NOT 閘之後,通過應用兩個語句"x q[1];" and "x q[2];"實現。在 清單 2.6 的第二十五行, 獲得以下新的狀態向量:

$$|C_{18}\rangle = \frac{1}{2} (|000\rangle + |011\rangle + |101\rangle + |111\rangle) \circ$$

接下來,圖 2.17 中從第十六個時隙到第十八個時隙的三個測量值由三個語句

"measure q[0] -> c[0];", "measure q[1] -> c[1];" and "measure q[2] -> c[2];"在清單 2.6 的第二十七行第二十七行,測量第一個量子位元 q[0],第二個量子位元 q[1]和第 三個量子位元 q[2],並通過覆蓋第一個傳統位元 c[0]、第二個傳統位元 c[1]和第三 個傳統位元 c[2]來記錄測量結果。在 IBM 的量子電腦中,具五個量子位元的後端 *ibmqx4* 中,我們使用命令"simulate"來執行清單 2.6 中的程式。測量結果如圖 2.18 所示。從圖 2.18 中,我們獲得答案 00101 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |1>)概率為 0.290, 由於在 **OR** 傳統位元 **OR** 操作中,第一個輸入(第一個控制位)q[2] 的值等於 1(一),第二個輸入(第二個控制位)q[1] 的值等於 0(零),輸出(目標位) q[0] 的值等於 1(一),概率 為 0.290。

圖 2.18:在清單 2.6 中程序的測量完成後,我們獲得概率為 0.290 的答案 00101,答 案 00011 的概率為 0.270,答案 00000 的概率為 0.250,答案 0011 與概率 0.190.

或者我們獲得答案 00011 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|1\rangle$),概率為 0.270。因為在 **OR** 傳統位元 **OR** 操 作中,第一個輸入(第一個控制位)q[2] 的值等於 0(零),第二個輸入(第二個控制 位)q[1] 的值等於 1(一),因此輸出(目標位)q[0]的值等於 1(一),概率為 0.270。或 者我們獲得答案 00000(c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$)概率為 0.250。在 **OR** 傳統位元的 **OR** 操作中,第一 個輸入(第一個控制位)q[2]的值等於 0(零),第二個輸入(第二個控制位)q[1]的值也 等於 0(零),因此輸出(目標位)q[0]的值等於 0(零),概率為 0.250。或者我們獲得答 案 00111 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|1\rangle$), 概率為 0.190。因為在 **OR** 傳統位元的 **OR** 操作中,第一個輸入 (第一個控制位)q[2]的值等於 1(一),第二個輸入(第二個控制位)q[1] 的值也等於 1 (1),因此輸出值(目標位)等於 1(一),概率為 0.190。

2.6 介紹 NOR 操作

一個位的 NOR 操作取得兩個位輸入,並產生一個位的單輸出。如果第一個輸入的值為 0(零),並且第二個輸入的值也是 0(零),則它會產生結果(輸出)1(一)。但是,如果第一個輸入的值或第二個輸入的值或它們兩個值的值都是 1,則它會產生結果(輸出)為 0 (零)。符號"▽"用於表示 NOR 操作。因此,一位元 NOR 操作,獲

$$\overline{0 \lor 0} = 1$$

$$\overline{0 \lor 1} = 0$$

$$\overline{1 \lor 0} = 0$$

$$\overline{1 \lor 1} = 0$$
(2.8)

布爾變數(位)的值僅為 0(零)或 1(1)。因此,當 q[2]的值為 0(零),並且 q[1] 的值 為 0(零),則兩個布爾變數(兩個位輸入)q[2] 和 q[1]的 NOR 操作,寫入 $\overline{q[2] \vee q[1]}$ 等於 1(1)。同樣,當 q[2] 的值為 1(一)或 q[1] 的值為 1(一)或兩者均 為 1(一)或兩者均為 1(一),則 $\overline{q[2] \vee q[1]}$ 等於 0(零)。通常使用邏輯操作應用真值 表,以表示輸入和相應輸出的所有可能組合。因此,在 (2.8) 中用於 NOR 操作的 一個位的規則,該位需要兩個位輸入並生成一個位的單個輸出,也可以以表 2.9 所 示的真情況表的形式表示。

輸	輸出	
q[2]	q[1]	$\overline{q[2] \lor q[1]}$
0	0	1
0	1	0
1	0	0
1	1	0

表 2.9: 使用兩位元輸入並生成一位元輸出的 NOR 操作真值表,該操作。

2.6.1 實施 NOR 操作的量子程式

我們使用一個 *CCNOT* 閘,它有三個量子輸入位和三個量子輸出位,以實現傳統位元的 NOR 操作,該位獲取傳統位元的兩個輸入並生成一個傳統位元的輸出。 我們應用 *CCNOT* 閘的兩個控制位 C_1 和 $C2_2$,對*傳統位元* NOR 操作中傳統位元 的兩個輸入 q[2]和 q[1]進行編碼,並使用 *CCNOT* 閘的目標位元 *T*,在*傳統位元* NOR 操作中存儲一個傳統位元的輸出 $\overline{q[2] \lor q[1]q[2] \land \overline{q[1]}}$ 。套用 *CCNOT* 閘 來完成 NOR 操作的規則也可以以表 2.10 所示的真值表的形式表示。圖 2.19 顯 示了其圖形表示形式。在圖 2.19 中,CCNOT 閘的第一個控制位(頂部第一線) C_1 和第二控制位(第二根導線) C_2 ,分別編碼傳統位元 NOR 操作中傳統位元的第一 個輸入 q[2] 和第二個輸入 q[1]。 在圖 2.19 中,CCNOT 閘的目標位(底部導 線),將存儲在傳統位元 NOR 操作的輸出 $\overline{q[2] \lor q[1]q[2] \land \overline{q[1]}}$ 中。

輸入			輸出		
C_1	C_2	Т	C_1	C_2	$\boldsymbol{T} = \overline{\boldsymbol{q}[2] \vee \boldsymbol{q}[1]\boldsymbol{q}[2]} \wedge \overline{\boldsymbol{q}[1]}$
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	0	1	1	0

表 2.10:使用一個 CCNOT 閘來實現 NOR 操作的真值表。

圖 2.19:實現傳統位元 NOR 操作的量子電路。

圖 2.19T 中 CCNOT 閘中的目標位 T 的初始狀態設置為 $|0>\circ$ 實現*傳統位* 元的 NOR 操作,該操作採用傳統位元的兩個輸入 q[2] 和 q[1]並生成一個輸出 $\overline{q[2] \lor q[1]} = \overline{q[2]} \land \overline{q[1]}$,等效於獲取兩個輸入的傳統位元 $\overline{q[2]}$ and $\overline{q[1]}$ 和一個 傳統位元的完整 AND 操作,並生成一個輸出 $\overline{q[2]} \land \overline{q[1]}$. 因此,在圖 2.19 中,我們 應用兩個 NOT 閘來操作兩個控制位元 CCNOT 閘的 C₁ 和 C₂,對傳統位元的 兩個輸入 q[2] 和 q[1] 進行編碼,並產生其反值 。接下來,在圖 2.19 中,我們使 用一個 CCNOT 閘來獲取其 $\overline{q[2]}$ 和 $\overline{q[1]}$ 的反值和作為輸入,並實現傳統位元的 AND 操作。由於從表 2.10 中的兩個傳統位元輸入 q[2] 和 q[1],在 NOR 操作 中的傳統位元,由圖 2.19 中的 CCNOT 閘 C 的兩個控制位 C₁ 和 C₂編碼,因此未 更改,因此我們使用兩個 NOT 閘來操作圖 2.19 中的 CCNOT 閘,並生成結果 $\overline{q[2]} = q[2]$ 和 $\overline{q[1]} = q[1]$ 。這意味著在圖 2.19 中,對第一個控制位 C₁ 和 CCNOT 閘的第二個控制位 C₂,使用 NOT 閘兩次對它們沒有任何作用。

在清單 2.7 中,IBM 量子電腦中帶有五個量子位元的後端 *ibmqx4* 程式是第二 章的第七個示例,其中我們描述了如何通過應用一個三個量子位元的 *CCNOT* 閘 和一個量子位元的四個 *NOT* 閘來實現傳統位元的 NOR 操作。圖 2.20 是清單 2.7 中程式的相應量子電路。清單 2.7 第一行的語句"OPENQASM 2.0"表示程式是使 用 Open QASM 版本 2.0 編寫的。接下來,宣告"include "qelib1.inc";"在清單 2.7 的 第二行是繼續解析檔案 "qelib1.inc",就像將檔案的內容貼上在包含語句的位置, 其中檔案 "qelib1.inc" 是量子體驗 (QE) 標準標頭,其路徑是相對於當前工作目錄。

1. OPENQASM 2.0; 2. include "qelib1.inc"; 3. qreg q[5]; 4. creg c[5]; 5. h q[1]; 6. h q[2]; 7. x q[1]; 8. x q[2]; 9. h q[0]; 10. cx q[1],q[0]; 11. tdg q[0]; 12. cx q[2],q[0]; 13. t q[0]; 14. cx q[1],q[0]; 15. tdg q[0]; 16. cx q[2],q[0]; 17. t q[0]; 18. t q[1]; 19. h q[0]; 20. cx q[2],q[1]; 21. tdg q[1]; 22. t q[2]; 23. cx q[2],q[1]; 24. x q[1]; 25. x q[2]; 26. measure q[0] -> c[0]; 27. measure q[1] -> c[1]; 28. measure q[2] -> c[2];

清單 2.7:應用一個 CCNOT 閘和四個非間來實施 NOR 操作的程式。

圖 2.20:清單 2.7 中程式的相應量子電路。

接下來,語句"qreg q[5];"在清單 2.7 的第三行,是宣告程式中有五個量子位元。 在圖 2.20 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個 量子位元的初始值設置為 |0>。我們使用三個量子位元 q[2],q[1]和 q[0]分別編碼 第一個控制位、第二個控制位和目標位元 。也就是說,我們使用量子位元 q[2]和 q[1]對*傳統位元* **NOR** 操作中的兩個傳統位元輸入進行編碼,並使用量子位元 q[0] 來存儲*傳統位元* **NOR** 操作的結果。為了便於我們解釋, q[k]⁰ for $0 \le k \le 4$ 表示 q[k]值為 0(零)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k]值為 1 (一)。同樣,為了便於我們解 釋,實現傳統位元 **NOR** 操作的初始狀態向量如下所示:

 $|D_0\rangle = |q[2]^0\rangle |q[1]^0\rangle |q[0]^0\rangle = |0\rangle |0\rangle = |000\rangle \circ$

接下來,語句"creg c[5];"在清單 2.7 的第四行,是宣告程式中有五個傳統位元 。在 圖 2.20 的左下部,五個傳統位元隨後為 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳 統位元的初始值設置為 0。

接下來,他兩個語句是"h q[1];" and "h q[2];"在清單 2.7 的第五行,在圖 2.20 中 實現了量子電路*第一個*時隙 2.7 的兩個 Hadmard 閘。這就是說,語句"h q[1];"將 q[1]從一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句"h q[2];" 將 q[2] 從一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)。由於沒有對量子位元 q[0]執行操作的閘,因此其狀態不會更改。因 此,在圖 2.20 量子電路第一個時隙中的兩個 Hadamard 閘後,通過應用"h q[1];" and "h q[2];"兩個語句實現。在清單 2.7 的第五行第六行,獲得以下新的狀態向量:

$$|D_1\rangle = \frac{1}{2} (|0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle|0\rangle)$$
$$= \frac{1}{2} (|000\rangle + |010\rangle + |100\rangle + |110\rangle)$$

新的狀態向量 |D₁>,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 ¹/₂ ,對傳統位元 NOR 操作的所有可能輸入進行編碼。量子位元 q[0]在量子位元 q[2]和 q[1]的四個組合狀態中的初始狀態為 |0>,它存儲了傳統位元 NOR 操作的 結果。

接下來,他兩個語句"x q[1];" and "x q[2];"在清單 2.7 的第七行第八行完成。圖 2.20 中量子電路第二個時隙的兩個 NOT 閘。它們採用新的狀態向量 $|D_1> = \frac{1}{2}$ (|000> + |010> + |100> + |110>)。作為圖 2.20 第二個時間段的輸入。這表明在新 的狀態向量中 $|D_1>$,將 q[2]的狀態(|0> + |1>)轉換為狀態(|1> + |0>),將 q[1]的狀態 (|0> + |1>)轉換為狀態(|1> + |0>)。沒有對量子位元 q[0] 執行操作的閘,因此其狀 態不會更改。因此,在圖 2.20 量子電路第二個時隙中的兩個 NOT 閘後,通過使用 兩個語句"x q[1];" and "x q[2];"實現。在清單 2.7 的第七行第八行,獲得以下新的 狀態向量:

 $|D_2> = \frac{1}{2} (|1>|1>|0>+|1>|0>|0>+|0>|1>|0>+|0>|0>|0>|0>)$ $= \frac{1}{2} (|110>+|100>+|010>+|000>) \circ$

圖 2.20 量子電路中的下一個 12 個時隙實現傳統位元的 NOR 操作($\overline{q[2] \lor q[1]}$ = $\overline{q[2]} \land \overline{q[1]}$),這相當於用兩個輸入 $\overline{q[2]}$ 和q[1]完成傳統位元的 AND 閘操作,並 通過實現一個 *CCNOT* 閘。圖 2.20 中第三個時隙到*第十四*個時隙的每個量子閘 都 由 語 句 "h q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "cx q[1],q[0];", "tdg q[0];", "cx q[2],q[0];", "t q[0];", "t q[1];", "h q[0];", "cx q[2],q[1];", "tdg q[1];", "t q[2];",第 27 行。它們採用新的狀態向量 $|D_2>=\frac{1}{2}$ (|110>+|100>+|100>+|100>+|100>+|100>+|100>) 作為 *第三*個時隙中的輸入,並完成傳統位元的 NOR 操作 ($(\overline{q[2] \lor q[1]} = \overline{q[2]} \land \overline{q[1]}$)。以上完成後,取得以下的的狀態向量:

 $|D_{17}\rangle = \frac{1}{2} (|111\rangle + |100\rangle + |010\rangle + |000\rangle) \circ$

接著,他兩個語句"x q[1];" and "x q[2];",在清單 2.7 的第二十四行,在圖 2.20 中實現了量子電路*第十五* 2.7 個時隙的兩個 **NOT** 閘。它們採用新的狀態向量 $|D_{17}> = \frac{1}{2} (|111> + |100> + |010> + |000>) 作為圖 2.20 第 15 個時隙中的輸入。$ 這表明在新的狀態向量中 |D₁₇> 狀態 (|111>)轉換為狀態 (|001>),狀態(|100>)轉 換為狀態 (|010>),狀態 (|010>)轉換為狀態 (|100>),狀態 (|000>) 轉換為 狀 態(|110>)。由於沒有對量子位元 q[0] 執行操作的閘,因此其狀態不會更改。因此, 在圖 2.20 量子電路*第十五*個時隙中的兩個 **NOT** 閘後,通過使用兩個語句"x q[1];" and "x q[2];"實現。在清單 2.7 的第二十四行到第二十五行,獲得以下新的狀態向 量:

$$|D_{18}\rangle = \frac{1}{2} (|001\rangle + |010\rangle + |100\rangle + |110\rangle) \circ$$

接下來,圖 2.20 中從第*十*六個時隙到第 *18 個*時隙的三個測量值由三個語句 "measure q[0] -> c[0];", "measure q[1] -> c[1];" and "measure q[2] -> c[2];"在清單 2.7 的第二十六行第二十六行,測量第一個量子位元 q[0]、第二個量子位元 q[1]和 第三個量子位元 q[2],並通過覆蓋第一個傳統位元 c[0]、第二個傳統位元 c[1]和第 三個傳統位元 c[2]來記錄測量結果。在 IBM 的量子電腦中,具有五個量子位元 後端 *ibmqx4* 中,我們應用命令"simulate"來執行清單 2.7 中的程式。測量結果如 圖 2.21 所示。從圖 2.21 中,我們獲得答案 00001 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |1>)概率是 0.270, 由於在 傳統位元 NOR 操作中,第一個輸入(第一個控制位)q[2] 的值等於 0(零),第二個 輸入(第二個控制位)q[1] 的值等於 0(零),因此輸出(目標位)q[0]的值等於 1(一) 的概率為 0.270。

圖 2.21:在清單 2.7 中程序的測量完成後,我們獲得概率為 0.270 的答案 00001,答 案 00010 的概率為 0.270,答案 00100 的概率為 0.260,答案 00110 的概率為 0.200.

或者我們獲得答案 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.270。因為在**傳統位元**的 NOR 操 作中,第一個輸入(第一個控制位)q[2] 的值等於 0(零),第二個輸入(第二個控制 位)q[1] 的值等於 1(一),因此輸出(目標位)q{0}的值等於 0(零),概率為 0.270。或 者我們獲得答案 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>),概率為 0.260。在 NOR 傳統位元的 NOR 操作中, 第一個輸入(第一個控制位)q[2] 的值等於 1(一),第二個輸入(第二個控制位)q[1] 的值等於 0(零),因此輸出(目標位)q[0]的值等於 0(零),概率為 0.260。或者我們獲 得答案 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.200。因為在**傳統位元**的 NOR 操作中,第一個 輸入(第一個控制位)q[2] 的值等於 1(一),第二個輸入(第二個控制位)q[1] 的值也 等於 1(1),因此輸出(目標位)q{0}的值等於 0(零),概率為 0.200。

2.7 XOR 操作簡介

一位元 Exclusive-OR (XOR)動作需要兩個位輸入,並產生一個位的單個輸出。 如果第一個輸入的值與第二個輸入的值相同,則它會產生結果(輸出)為 0(零)。但 是,如果第一個輸入的值和第二個輸入的值都不同,則生成1(一) 的輸出。符號"⊕" 代表 XOR 操作。因此,一位元的 XOR 操作,得到兩個輸入位是以下四個可能 的組合結果:

$$0 \oplus 0 = 0$$
$$0 \oplus 1 = 1$$
$$1 \oplus 0 = 1$$
$$1 \oplus 1 = 0$$

(2.9)

布爾變數(位)的值僅為 1(一)或 0(零)。因此,當 q[2] 值和 q[1] 的值不同,則兩個 布爾變數(兩個位輸入)q[2] 和 q[1]的 **XOR** 操作, 寫作 q[2] ⊕ q[1]等於 1(1)。 同樣,如果 q[2] 值和 q[1] 值相同,則 q[2] ⊕ q[1] 等於 0(零)。真值表通常與邏輯 操作一起使用,以表示輸入和相應輸出的所有可能組合。因此,在 (2.9) 中輸入的 **XOR** 操作中取得兩個位輸入並生成一個位輸出的規則也可以以表 2.11 所示的 真情況表的形式表示。

輸	輸出	
q[2]	q[1]	q[2]⊕q[1]
0	0	0
0	1	1
1	0	1
1	1	0

表 2.11:取得兩個位輸入並生成位元單個輸出的位 XOR 操作的真情況表。

2.7.1 實現 XOR 操作的量子程式

我們應用一個 CNOT 閘,該閘具有兩個量子輸入位和兩個量子輸出位,以實現 傳統位元 XOR 操作,該操作採用傳統位元的兩個輸入並生成傳統位元的一個輸 出。我們使用控制位 C1和 CNOT 閘的目標位元 T,對傳統位元 XOR 操作中傳 統位元的兩個輸入 q[2] 和 q[1]進行編碼,還使用 *CNOT* 閘的目標位元 *T*,儲存 傳統位元 XOR 操作的一個輸出 q[2] ⊕ q[1]。使用 *CNOT* 閘來實現 XOR 操作 的規則也可以以表 2.12 所示的真情況表的形式表示。圖 2.22 顯示了其圖形表示 形式。

輸入		輸出		
C_1	Т	C_1	$T = q[2] \oplus q[1]$	
0	0	0	0	
0	1	0	1	
1	0	1	1	
1	1	1	0	

表 2.12: 使用 CNOT 閘來實現 XOR 操作的真值表。

在圖 2.22 中,*CNOT* 閘第一個控制位(上線)C₁ 和目標位元(底部導線)T,分別 對表 2.11 中傳統位元 XOR 操作中第一個輸入 q[2] 和第二個輸入 q[1]進行編 碼。 在圖 2.22 中,*CNOT* 閘的目標位元(底部導線)T,儲存表 2.11 中傳統位元 的 XOR 操作中儲存一個傳統位元的輸出 q[2]⊕q[1]。

圖 2.22:實現傳統位元 XOR 操作的量子電路。

實現*傳統位元*的 **XOR** 操作,該操作獲取傳統位元的兩個輸入 q[2] 和 q[1]並 生成一個傳統位元的輸出 q[2] ⊕q[1],相當於實現一個 *CNOT* 閘,其控制位及其 目標位編碼傳統位元的兩個輸入 q[2] 和 q[1],其目標位也存儲一個輸出 q[2] ⊕q{1}。因此,在圖 2.22 中,我們使用一個 *CNOT* 閘來實現傳統位元的 **XOR** 操 作。

在清單 2.8 中,**IBM** 量子電腦中,帶有五個量子位元的後端 *ibmqx4* 程式是第 二章的第八個示例,其中我們說明瞭如何通過使用兩個量子位元的一個 *CNOT* 閘 來完成傳統位元的 **XOR** 操作。圖 2.23 是清單 2.8 中程式的相應量子電路。清單 2.8 第一行的語句"OPENQASM 2.0"指出,程式是使用 Open QASM 版本 2.0 編寫 的。然後,他的宣告"include "qelib1.inc";"在清單 2.8 的第二行是繼續解析檔案 "qelib1.inc",就像將檔案的內容貼上在包含語句的位置,其中檔案 "qelib1.inc" 是量子體驗 (QE)標準標頭,其路徑是相對於當前工作目錄。

- 1. OPENQASM 2.0;
- 2. include "qelib1.inc";
- 3. qreg q[5];
- 4. creg c[5];
- 5. h q[1];
- 6. h q[2];
- 7. cx q[2],q[1];
- 8. measure q[1] -> c[1];

清單 2.8:使用一個 CNOT 閘來實現 XOR 操作的程式。

圖 2.23:清單 2.8 中程式的相應量子電路。

接下來,語句"qreg q[5];"在清單 2.8 的第三行,是宣告程式中有五個量子位元。 在圖 2.23 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個 量子位元的初始值設置為 |0>。我們使用兩個量子位元 q[2]和 q[1]分別編碼一個 *CNOT* 閘的控制位和目標位元。這意味著我們應用量子位元 q[2]和 q[1]對*傳統位* 元 XOR 操作中的兩個傳統位元輸入進行編碼,並使用量子位元 q[1]來存儲*傳統 位元* XOR 操作的結果。為了便於我們解釋, q[k]⁰ for $0 \le k \le 4$ 表示 q[k] 值為零 (0)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k] 值為 1 (1)。同樣,為了便於我們解釋,實現傳統 位元 XOR 操作的初始狀態向量如下所示:

 $|E_0\rangle = |q[2]^0\rangle |q[1]^0\rangle = |0\rangle |0\rangle = |00\rangle \circ$

接下來,語句"creg c[5];在清單 2.8 的第四行,是宣告程式中有五個傳統位元。在圖 2.23 的左下部,五個傳統位元分別是 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位

然後,他兩個語句是"h q[1];" and "h q[2];"在清單 2.8 的第五行第六行,實現圖 2.23 中量子電路第一個時隙的兩個 Hadmard 閘。這表示語句"h q[1];"將 q[1] 從 一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句"h q[2];" 將 q[2]從一個狀態 |0> 轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)。因此, 在圖 2.23 中量子電路*第一*個時隙中的兩個 Hadamard 閘後,通過使用 the 兩 two 個語句"h q[1];" and "h q[2];"實現;在清單 2.8 的第五行第六行,獲得以下新的狀態 向量:

$$|E_1> = \frac{1}{2} (|0>|0>+|0>|1>+|1>|0>+|1>|1>)$$
$$= \frac{1}{2} (|00>+|01>+|10>+|11>)$$

新的狀態向量 $|E_1>$,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 $\frac{1}{2}$,表 2.11 中傳統位元 **XOR** 操作中的所有可能輸入。量子位元 q[1] 在表 2.11 中存儲傳統位元 **XOR** 操作的結果。

接下來,宣告"cx q[2],q[1];"在清單 2.8 的第七行,完成圖 2.23 中量子電路第二 個時隙的一個 *CNOT* 閘。它們採用新的狀態向量 $|E_1> = \frac{1}{2} (|00>+|01>+|10>+$ |11>) 作為圖 2.23 第二個時間段的輸入。這就是說,在新的狀態向量 $|E_1>$ 量子位 元 q[2] 和 q[1] 的狀態 (|00>) 未更改,並且量子位元 q[2] 和 q[1] 的狀態 (|01>) 也未更改,因為控制位 q[2] 的值等於 0(零)。但是,量子位元 q[2] 和 q[1] 的狀態(|10>)轉換為狀態(|10>),量子位元 q[2] 和 q[1] 的狀態(|11>)轉換為狀態 (|10>),因為控制位 q[2] 的值等於 1 (1)和目標位元 q[1]。因此,在圖 2.23 量子電 路第二個時隙中的一個 *CNOT* 柵閘後,通過應用語句"cx q[2],q[1];"實現,在清單 2.8 的第七行,獲得了以下新的狀態向量:

$$|E_2> = \frac{1}{2} (|0>|0>+|0>|1>+|1>|1>+|1>|0>)$$
$$= \frac{1}{2} (|00>+|01>+|11>+|10>) \circ$$

接下來,圖 2.23 *中從第三*個時隙到*第四*個時隙的兩個測量值由兩個語句 "measure q[1] -> c[1];" and "measure q[2] -> c[2];"實現,在列表 2.8 第八行到第九 行。它們將測量第二個量子位元 q[1]和第三個量子位元 q[2],並通過覆蓋第二個 傳統位元 c[1]和第三個傳統位元 c[2]來記錄測量結果。在 IBM 的量子電腦中,有 五個量子位元後端 *ibmqx4* 中,我們使用命令"simulate"在清單 2.8 中運行該程式。 測量結果如圖 2.24 所示。從圖 2.24 中,我們得到的答案 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>) 的概率為 0.260。因為在 **XOR** 傳統位元 XOR 操作中,第一個輸入(控制位)q[2]的值等於 0(零), 第二個輸入(目標位)q[1]的值等於 1(1),因此輸出(目標位)q[1]的值等於 1(一),概率 為 0.260。

圖 2.24:在清單 2.8 中程序的測量完成後,我們獲得概率為 0.260 的答案 00010,獲 得概率為 0.260 的答案 00110,答案 00100 的概率為 0.250,答案 00000 的概率為 0.230.

或者我們獲得答案 00110 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|1\rangle$ and c[0] = q[0] = $|0\rangle$)概率為 0.260。由於在 **XOR** 傳統位元 **XOR** 操作中,第一個輸入(控制位)q[2] 的值等於 1(1),第二個輸入(目標位)q[1] 的值等 於 0(零),輸出(目標位)q[1] 的值等於 1(1),概率為 0.260。或者我們獲取答案 00100 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|1\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$,概率為 0.250。由於在 **XOR** 傳統位元 **XOR** 操作中,第一個輸 入(控制位)q[2] 的值等於 1(1),第二個輸入(目標位)q[1] 的值等於 1(1),因此輸出 (目標位)q[1]的值等於 0(零),概率為 0.250。或者,我們得到的答案 00000 (c[4] = q[4] = $|0\rangle$, c[3] = q[3] = $|0\rangle$, c[2] = q[2] = $|0\rangle$, c[1] = q[1] = $|0\rangle$ and c[0] = q[0] = $|0\rangle$), 概率為 0.230。在 **XOR** 傳統位元的 XOR 操作中,第一個輸入(控制位)q[2]的值等 於 0(零),第二個輸入(目標位)q[1]的值也等於 0(零),因此輸出(目標位)q[1]的值等 於 0(零),概率為 0.230。

2.8 Exclusive-NOR 操作介紹

一位元的 Exclusive-OR (XOR)操作的一補數,它獲取了兩個位的輸入,並產生 一個位的單個輸出,稱為一位元 Exclusive-NOR (XNOR)操作。一位元的 Exclusive-NOR (XNOR)操作獲取兩位元輸入,並生成一位元輸出。如果第一個 輸入的值與第二個輸入的值相同,則生成結果(輸出)為 1(一)。但是,如果第一個輸入的值和第二個輸入的值都不同,則它產生的輸出為 0(零)。符號"④"用於表示一位元 XNOR 操作。因此,使用兩個輸入位元的一位元 XNOR 操作,是以下四個可能的組合結果:

$$\overline{\begin{array}{c}0 \oplus 0} = 1\\ \overline{0 \oplus 1} = 0\\ \overline{1 \oplus 0} = 0\\ \overline{1 \oplus 1} = 1\end{array}$$
(2.10)

布爾變數(位)的值僅為 0(零)或 1(一)。因此,如果 q[2]的值和 q[1]的值相同,則 兩個布爾變(兩個位輸入)q[2]和 q[1]的 **XNOR** 操作,寫作 q[2] ⊕ q[1]等於 1(一)。 同樣,如果 q[2]的值和 q[1] 的值不同時, q[2] ⊕ q[1]等於 0(零)。通常使用邏輯操 作應用真值表,以表示輸入和相應輸出的所有可能組合。因此,在 (2.10) 中的規則 對於獲得兩個位輸入並生成單個位輸出的位的 **XNOR** 操作也可以以表 2.13 所 示的真情況表的形式表示。

輸	輸出	
q[2]	q[1]	$\overline{q[2] \oplus q[1]}$
0	0	1
0	1	0
1	0	0
1	1	1

表 2.13:取得兩個位輸入並生成位元單個輸出的位 XNOR 操作的真情況表。

2.8.1 實現 XNOR 操作的量子程式

我們使用一個 CNOT 閘和一個 NOT 閘來實現*傳統位元* XNOR 操作,該操作 獲取傳統位元的兩個輸入並生成傳統位元的一個輸出。我們使用控制位元 C_1 和 CNOT 閘的目標位元 T 在傳統位元的 XNOR of the 操作中對傳統位元的兩個輸 入 q[2] 和 q[1] 進行編碼,還使用 CNOT 閘的目標位元 T,在傳統位元 XNOR 操作中儲存傳統位元的一個輸出 $\overline{q[2] \oplus q[1]}$ 。套用 CNOT 閘和 NOT 閘來完成 XNOR 操作的規則也可以以如一如表所示的真值表的形式表示。圖 2.25 顯示了 其圖形表示形式。

輸入	輸出

C_1	Т	C_1	$T \overline{q[2] \oplus q[1]}$
0	0	0	1
0	1	0	0
1	0	1	0
1	1	1	1

表 2.14:使用一個 CNOT 閘和一個 NOT 閘來實現 XNOR 操作的真相表。

在圖 2.25 中,CNOT 閘的第一個控制位(頂部線) C_1 和目標位(底部線)T,分別 對表 2.13 中傳統位元 XNOR 操作中第一個輸入 q[2] 和第二個輸入 q[1]進行 編碼。 在圖 2.25 中,CNOT 閘的目標位元(底部導線)T 在表 2.13 中傳統位元 的 XNOR 操作中儲存傳統位元的輸出 $\overline{q[2] \oplus q[1]}$ 。

圖 2.25:實現傳統位元 XNOR 操作的量子電路。

實現*傳統位元*的 **XNOR** 操作,該操作採用傳統位元的兩個輸入 q[2]和 q[1],並 生成一個傳統位元的輸出 $\overline{q[2] \oplus q[1]}$,相當於實現一個 *CNOT* 閘和一個 *NOT* 閘,其中控制位和目標位編碼傳統位元的兩個輸入 q[2] 和 q[1],其目標位也存儲 一個輸出 $\overline{q[2] \oplus q[1]}$ 。因此,在圖 2.25 中,我們首先應用一個 *CNOT* 閘來生成儲 存在目標位元(底部導線)T 中的 **XOR** 操作的輸出q[2] \oplus q[1]。接下來,我們使用 一個 *NOT* 閘來生成 **XOR** 操作 ($\overline{q[2] \oplus q[1]}$)的反值,即完成儲存目標位*元 T* 中 的 **XNOR** 操作(q[2] \oplus q[1])。

在清單 2.9 中,IBM 量子電腦中帶有五個量子位元的後端 *ibmqx4* 程式是第二 章的第九個示例 second,其中我們描述了如何通過應用一個 CNOT 閘和一個 NOT 閘來編寫量子程式來完成傳統位元的 XNOR 操作。圖 2.26 是清單 2.9 中程式的 相應量子電路。清單 2.9 第一行的語句"OPENQASM 2.0"表示程式是使用 Open QASM 版本 2.0 編寫的。接下來,他的宣告"include "qelib1.inc";"在清單 2.9 的第 二行是繼續解析檔案 "qelib1.inc",就像將檔案的內容貼上在包含語句的位置,其 中檔案 "qelib1.inc" 是**量子體驗 (QE) 標準標頭**,其路徑是相對於當前工作目錄。

1.	OPENQASM 2.0;
2.	include "qelib1.inc";
3.	qreg q[5];
4.	creg c[5];
5.	h q[1];
6.	h q[2];
7.	cx q[2],q[1];
8.	x q[1];

- 9. measure q[1] -> c[1];
- 10. measure $q[2] \rightarrow c[2];$

清單 2.9:使用一個 CNOT 閘和一個 NOT 閘來實現 XNOR 操作的程式。

圖 2.26:清單 2.9 中程式的相應量子電路。

接下來,語句"qreg q[5];"在清單 2.9 的第三行,是宣告程式中有五個量子位元。 在圖 2.26 的左上部,五個量子位元隨後為 q[0]、q[1]、q[2]、q[3] 和 q[4]。每個 量子位元的初始值設置為 |0>。我們使用兩個量子位元 q[2]和 q[1]分別編碼一個 *CNOT* 閘的控制位和目標位元。這意味著我們應用量子位元 q[2]和 q[1]對*傳統位* 元 XNOR 操作中的兩個傳統位元輸入進行編碼,並使用量子位元 q[1]來存儲*傳統 位元* XNOR 操作的結果。為了便於我們解釋, q[k]⁰ for $0 \le k \le 4$ 表示 q[k]值為 零 (0)和 q[k]¹ for $0 \le k \le 4$ 表示 q[k] 值為 1(1)。同樣,為了便於我們解釋,實現 傳統位元 XNOR 操作的初始狀態向量如下所示:

$$|F_0\rangle = |q[2]^0\rangle |q[1]^0\rangle = |0\rangle |0\rangle = |00\rangle$$

然後,語句"creg c[5];在清單 2.9 的第四行,是宣告程式中有五個傳統位元。在圖 2.26 的左下部,五個傳統位元分別是 c[0]、c[1]、c[2]、c[3] 和 c[4]。每個傳統位 元的初始值設置為 0。

接下來,他兩個語句是"h q[1];" and "h q[2];"在清單 2.9 的第五行,在圖 2.26 中

實現了量子電路*第一個*時隙的兩個 Hadmard 閘。這就是說,語句"h q[1];"將 q[1] 從一個狀態 |0>轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)和語句"h q[2];" 將 q[2] 從一個狀態 |0>轉換為另一種狀態 $\frac{1}{\sqrt{2}}$ (|0> + |1>) (its superposition)。因此, 在圖 2.26 量子電路*第一*個時隙中的兩個 Hadamard 閘後,通過應用"h q[1];" and "h q[2];"兩個語句實現。在清單 2.9 的第五行第六行,獲得以下新的狀態向量:

 $|F_1> = \frac{1}{2} (|0>|0>+|0>|1>+|1>|0>+|1>|1>)$ $= \frac{1}{2} (|00>+|01>+|10>+|11>)$

新的狀態向量 $|F_1\rangle$,量子位元 q[2]和 q[1]的四個組合狀態,每個組合狀態的振幅是 $\frac{1}{2}$,表2.13中傳統位元 **XNOR** 操作中的所有可能輸入。量子位元 q[1] 在表 2.13 中存儲傳統位元 **XNOR** 操作的結果。

接下來,宣告"cx q[2],q[1];"在清單 2.9 的第七行,在圖 2.26 中實現了量子電路 第二個時隙的 2.9 一個 *CNOT* 閘。它們採用新的狀態向量 $|F_1\rangle = \frac{1}{2}$ ($|00\rangle + |01\rangle +$ $|10\rangle + |11\rangle$) 作為圖 2.26 *第二*個時隙中的輸入。這意味著在新的狀態向量中 $|F_1\rangle$ 量子位元 q[2] 和 q[1] 的狀態 ($|00\rangle$) 未更改,並且量子位元 q[2] 和 q[1] 的狀 態($|01\rangle$)也不會更改,因為控制位 q[2] 的值等於 0(零),並且目標位 q[1] 的值不 變。但是,量子位元 q[2] 和 q[1] 的狀態($|10\rangle$)轉換為狀態($|11\rangle$),量子位元 q[2] 和 q[1] 的狀態($|11\rangle$)轉換為狀態($|10\rangle$),因為控制位 q[2] 的值等於 1 (1)和目標 位 q[1] 的值。因此,在圖 2.26 量子電路第二個時隙中的一個 *CNOT* 閘後,通過使 用"cx q[2],q[1];"實現,在清單 2.9 的第七行,獲得了以下新的狀態向量:

 $|F_2> = \frac{1}{2} (|0>|0>+|0>|1>+|1>|1>+|1>|0>)$ $= \frac{1}{2} (|00>+|01>+|11>+|10>).$

接下來,語句"x q[1];"在清單 2.9 的第 8 行,*NOT* 在圖 2.26 中量子電路*的第三*個 時隙中實現了一個 NOT 閘。它採用新的狀態向量 $|F_2> = \frac{1}{2} (|00> + |01> + |11> + |10>)$ 作為圖 2.26 中量子電路*第三*個時隙中的輸入。這就是說,在新的狀態向量

|F₂>, q[2]和 q[1]量子位元(|00>), (|01>), (|11>) and (|10>)隨後轉換為新狀態((|01>), (|00>), (|10>) and (|11>),因為量子位元 q[1]的值被翻轉,量子位元 q[2]沒有量子閘 作用,量子位元 q[2]值不變。因此,在圖 2.26 中量子電路的第三個時隙中一個 **NOT** 閘後,通過應用語句"x q[1];"實現。在清單 2.9 的第 8 行,獲得以下新的狀態向量:

$$|F_3\rangle = \frac{1}{2} (|0\rangle|1\rangle + |0\rangle|0\rangle + |1\rangle|0\rangle + |1\rangle|1\rangle)$$
$$= \frac{1}{2} (|01\rangle + |00\rangle + |10\rangle + |11\rangle).$$

接下來,圖 2.26 中從第四個時隙到量子電路第五個時隙的兩個測量由兩個語 句"measure q[1] -> c[1];" and "measure q[2] -> c[2];"實現,在列表 2.9 第九行到第 十行。它們將測量第二個量子位元 q[1]和第三個量子位元 q[2],並通過覆蓋第二 個傳統位元 c[1]和第三個傳統位元 c[2]來記錄測量結果。在 IBM 的量子電腦中, 有五個量子位元後端 *ibmqx4*中,我們使用命令"simulate"來執行清單 2.9 中的程 式。測量結果如圖 2.27 所示。從圖 2.27 中,我們獲得答案 00000 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |0> and c[0] = q[0] = |0>) 的概 率為 0.370。由於在 XNOR 傳統位元 XNOR 操作中,第一個輸入(控制位)q[2] 的 值等於 0(零),第二個輸入(目標位)q[1] 的值等於 1(1),輸出(目標位)q[1]的值等於 0(零),概率為 0.370。或者我們得到答案 00100 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |0> and c[0] = q[0] = |0>),概率為 0.260。因為在 XNOR 傳統位元 XNOR 操作中,第一個輸入(控制位)q[2]的值等於 1(1),第二個輸入(目標 位)q[1]的值等於 0(零),因此輸出(目標位)q[1]的值等於 0(零),概率為 0.260。

圖 2.27:在清單 2.9 中程序的測量完成後,我們獲得概率為 0.370 的答案 00000,獲 得概率為 0.260 的答案 00100,概率為 00010,答案 00010 的概率為 0.230,答案 00110 的概率為 0.140.

或者我們獲取答案 00010 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |0>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.230。因為在 **XNOR** 傳統位元 **XNOR** 操作中,第一個輸入(控制位)q[2]的值等於 0(零),第二個輸入(目標位)q[1]的 值等於 0(零),因此輸出(目標位)q[1]的值等於 1(一),概率為 0.230。或者我們獲得 答案 00110 (c[4] = q[4] = |0>, c[3] = q[3] = |0>, c[2] = q[2] = |1>, c[1] = q[1] = |1> and c[0] = q[0] = |0>),概率為 0.140。在 **XNOR** 傳統位元的 XNOR 操作中,第一個 輸入(控制位)q[2]的值等於 1(1),第二個輸入(目標位)q[1]的值也等於 1(1),因此輸 出(目標位)q[1]的值等於 1(一),概率為 0.140。

2.9 摘要

在本章中,我們提供了一個示例,說明如何通過在其中使用量子位和量子閘來 對位執行由 NOT, AND, NAND, OR, NOR, Exclusive-OR(XOR)和 Exclusive-NOR(XNOR)組成的邏輯運算 IBM 的量子計算機。我們在清單 2.1 中介紹了第一個程序,在清單 2.2 中介紹了第二個程序,以解釋如何通過使用 量子位和位來實現一位元的補數(NOT 運算)和兩位元的補數(NOT 運算)。 IBM 量子計算機中的 X 閘(NOT 閘)。接下來,我們在清單 2.3 中描述了第三 個程序,以展示如何通過將 CCNOT 閘分解為 IBM 量子計算機中的 6 個 CNOT 閘和 9 個 1 位元閘來實現一個 CCNOT 閘。

然後,我們在清單 2.4 中引入了第四個程序,以揭示如何通過在 IBM 量子計算機中使用一個 CCNOT 閘和三個量子位來實現位的 AND 操作。我們還演示了清單 2.5 中的第五個程序,以說明如何通過在 IBM 量子計算機中應用一個CCNOT 閘和三個量子位來實現位的 NAND 操作。接下來,我們描述了清單 2.6 中的第六個程序,以展示如何通過在 IBM 量子計算機中使用一個 CCNOT 閘,四個 NOT 閘 (四個 X 閘)和三個量子位來實現位的 OR 操作。

然後,我們在清單 2.7 中說明了第七個程序,以揭示如何通過在 IBM 量子計算機中應用一個 CCNOT 閘,四個 NOT 閘(四個 X 閘)和三個量子位來實現位的 NOR 操作。我們還在清單 2.8 中引入了第八個程序,以說明如何通過在 IBM 量子計算機中使用一個 CNOT 閘和兩個量子位來實現位的 XOR 操作。接下來,我們在清單 2.9 中描述了第九個程序,以展示如何通過在 IBM 的量子計算機中應用一個 CNOT 閘,一個 NOT 閘(一個 X 閘)和兩個量子位來實現位的 NOR 操作。

2.10 書目註解

這些作者在[Mano 1979;瑪諾 1993; Chang and Vasilakos 2014]很好地說明了 邏輯運算,包括位上的 NOT, AND, NAND, OR, NOR, Exclusive-OR(XOR) 和 Exclusive-NOR (XNOR)。在教科書[Nielsen and Chuang 2000]和著名的文 章[Shende and Markov 2009]中可以找到很好的將 CCNOT 閘分解為六個 CNOT 閘和一個九位閘的介紹。在[IBM Q 2016]中著名的菜單中也可以找到編寫從清單 2.1 到清單 2.9 的九個量子程序的良好指南。在[2.11 節]的練習中很好地說明了布 爾函數。瑪諾 1993; Brown and Vranesic 2007; Chang and Vasilakos 2014]。

2.11 練習

 ^{2.1} 一元運算符"[¬]"表示邏輯運算 NOT,而二元運算符 "∨"表示邏輯運算 OR。
 對於邏輯運算, x ∨ y 和 x 是布爾變量,它們分別是第一個輸入和第二個輸入。其真值表如表 2.15 所示。請編寫一個量子程序來實現邏輯運算的功能 x ∨ y。

第一個輸入(x)	第二個輸入(y)	$ar{x} \lor y$
0	0	1
0	1	1
1	0	0
1	1	1

表 2.15:邏輯操作 x > y 的真值表。

2.2 一元運算符"[¬]"表示邏輯運算 NOT,而二元運算符 "∨"表示邏輯運算 OR。
 對於邏輯運算,x ∨ ӯ和 x 是布爾變量,它們分別是第一個輸入和第二個輸入。其真值表如表 2.16 所示。請編寫一個量子程序來實現邏輯運算的功能 x ∨ ӯ。

第一個輸入(x)	第二個輸入(y)	$x \lor \overline{y}$
0	0	1
0	1	0
1	0	1
1	1	1

表 2.16:邏輯操作 $x \vee \bar{y}$ 的真值表。

2.3 一元運算符"⁻"表示邏輯運算 NOT,而二元運算符"[^]"表示邏輯運算 AND。 對於邏輯運算, $\bar{y} \land (x \lor \bar{x}) = \bar{y} \land 1 = \bar{y}$ 和 x 是布爾變量,它們分別是第一 個輸入和第二個輸入。其真值表如表 2.17 所示。請編寫一個量子程序來實現 邏輯運算的功能 $\bar{y} \land (x \lor \bar{x}) = \bar{y} \land 1 = \bar{y}$ 。

第一個輸入(x)	第二個輸入(y)	$\overline{y} \land (x \lor \overline{x}) = \overline{y} \land 1 = \overline{y}$
0	0	1
0	1	0
1	0	1
1	1	0

表 2.17:邏輯操作 $\bar{y} \land (x \lor \bar{x}) = \bar{y} \land 1 = \bar{y}$ 的真值表

2.4 一元運算符"「"表示邏輯運算 NOT,而二元運算符"^"表示邏輯運算 AND。 對於邏輯運算, $\bar{x} \land (y \lor \bar{y}) = \bar{x} \land 1 = \bar{x}$ 和 x 是布爾變量,它們分別是第 一個輸入和第二個輸入。其真值表如表 2.18 所示。請編寫一個量子程序來實 現邏輯運算的功能 $\bar{x} \land (y \lor \bar{y}) = \bar{x} \land 1 = \bar{x}$ 。

第一個輸入(x)	第二個輸入(y)	$\bar{x} \land (y \lor \bar{y}) = \bar{x} \land 1 = \bar{x}$
0	0	1
0	1	1
1	0	0
1	1	0

表 2.18: 邏輯操作 $x \vee \bar{y}$ 的真值表。

 2.5 一元運算符"[¬]"表示邏輯運算 NOT,而二元運算符 "∧"表示邏輯運算 AND。
 對於邏輯運算, x ∧ y 和 x 是布爾變量,它們分別是第一個輸入和第二個輸入。其真值表如表 2.15 所示。請編寫一個量子程序來實現邏輯運算的功能 x ∧ y。

第一個輸入(x)	第二個輸入(y)	$\bar{x} \wedge y$
0	0	0
0	1	1
1	0	0
1	1	0

表 2.19:邏輯操作 x ^ y 的真值表。

2..6一元運算符"⁻"表示邏輯運算NOT,而二元運算符"∧"表示邏輯運算AND。
 對於邏輯運算, x ∧ ȳ和 x 是布爾變量,它們分別是第一個輸入和第二個輸入。其真值表如表 2.15 所示。請編寫一個量子程序來實現邏輯運算的功能 x ∧ ȳ。

第一個輸入(x)	第二個輸入(y)	$X. \wedge \overline{y}$
0	0	0
0	1	0
1	0	1
1	1	0

表 2.20:邏輯操作 x ^ y的真值表。